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Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced
metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of
the central nervous system which are activated by pro-inflammatory signals causing local production of spe-
cific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether
or how this microglial activation can be averted or reversed is unknown. Since running exercise improves
systemic metabolic health and has been found to promote neuronal survival as well as the recovery of
brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western
diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (ldlr−/−) mice to bet-
ter reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is se-
verely increased upon exposure to a high-fat, or “western”, diet. Moderate, but regular, treadmill running
exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline
in microglial activation was associated with an improvement of glucose tolerance. Our findings support the
hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to
avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Over the last decade, research has established that obesity is asso-
ciated with a state of moderate but chronic inflammation. Such sub-
acute inflammatory processes are characterized by increased tissue-
specific as well as circulating levels of interleukins and cytokines, a
phenomenonwhich is also believed to participate in the development
of many obesity-associated comorbidities [1]. Intriguingly, pro-
inflammatory cytokines are also produced in the hypothalamus, a
key site for regulation of food intake, body weight, and energy expen-
diture [2,3]. This process of hypothalamic inflammation has recently
been proposed as a critically important phenomenon occurring during
consumption of a western diet (WD) and one which may further pro-
mote obesity [4]. This increase in a hypothalamic inflammatory re-
sponse is detectable as early as 1 week of WD feeding and coincides
with excessive energy intake and hypothalamic insulin or leptin resis-
tance [5,6]. Emerging evidence points to a plethora of potentially un-
derlying pathways and molecular processes including endoplasmatic
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reticular stress, toll-like receptor (TLR) and c-Jun N-terminal kinase
(JNK) signaling [7–11].

Microglial cells, the quiescent macrophages of the central nervous
system (CNS), have been reported to be involved in the mediation as
well as the compensation of inflammation-associated damage [12].
Microglia are particularly sensitive to even modest homeostastic im-
balances in their microenvironment and increased microglia activity
is a well established sign of an inflammatory response [13]. Upon
WD feeding,morphology of these cells transforms from small cell bod-
ies with fine ramified processes to an activated pro-inflammatory
phenotype associated with enlarged cell bodies and highly ramified
processes, producing cytokines and interleukins which in turn induce
inflammation and cell death [5,6,14,15]. Moreover, microglial cells can
also be activated by diverse pro-inflammatory factors or cytokines, in-
cluding metabolic hormones such as leptin, which stimulate the pro-
duction of IL1β, TNFα and IL6 in microglia. All of those events have
been found to be capable of affecting metabolism [16–18]. Activated
microglia continue to accumulate in the mediobasal hypothalamus
over months of WD feeding, thus perpetuating hypothalamic inflam-
mation and potentially posing a constant challenge that chronically
impairs metabolic homeostasis [5]. Thus, it becomes increasingly ap-
parent that hypothalamic inflammation and microglial activation
may represent a key process in the pathogenesis of chronic metabolic
disease caused by exposure to WD.

http://dx.doi.org/10.1016/j.physbeh.2012.03.021
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It is unknown whether WD-induced activation of microglia is re-
versible. Although specific lifestyle interventions and therapeutic ap-
proaches have been reported to decrease circulating inflammatory
markers in overweight and obese patients [19], it is unclear whether
such influences would also translate into reduced hypothalamic in-
flammation, and as a consequence of improved systemic metabolism.
Since the risk of developing obesity and its comorbidities is inversely
associated with regular physical activity [20], we hypothesized that
regular running exercise may blunt the activation of hypothalamic
microglia by WD exposure. Using low density lipoprotein receptor
deficient mouse (ldlr−/−) as a relevant genetic mouse model for
the metabolic syndrome, we report for the first time that moderate
amounts of regular exercise prevent WD-induced microglial activa-
tion in the hypothalamus even in the absence of body weight loss.
The observed reduction in hypothalamic inflammation was associat-
ed with improved metabolic function.
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Fig. 1. Moderate exercise does not change body weight, circulating leptin levels, food
intake and energy expenditure, but improves endurance performance in ldlr−/−
mice fed a western diet. Body weight (A), circulating leptin levels (B), distance covered
during exercise exhaustion test (C), energy intake (D), and energy expenditure (E) in
sedentary (open bars, n=6) and exercised (closed bars, n=10) ldlr−/− mice on
western diet. Values are expressed as means±SEM. **Pb0.005 compared with the sed-
entary groups.
2. Materials and methods

2.1. Mice and exercise regime

Age-matched male low density lipoprotein receptor deficient
(ldlr−/−) mice (The Jackson Laboratories, Bar Harbor, ME) were
housed in a pathogen-free environment with all animal care and ex-
perimental procedures conforming to institutional guidelines for an-
imal experiments and approved by the Institutional Animal Care and
Use Committee (IACUC) at the University of Cincinnati. After ran-
domization for body weight, all mice were accustomed to treadmill
running for 3 days as described previously [21–23] and then an exer-
cise exhaustion test was performed in all mice. Next, mice were di-
vided into two groups and fed the D12079B western diet from
Research Diets (New Brunswick, NJ) containing 17 kcal% protein,
42% carbohydrate, and 41 kcal% fat as well as a high-fructose corn
syrup sweetened beverage (a popular commercial soda). The ‘run-
ner’ group (n=10) was subjected to a 30-min treadmill running
(Simplex II metabolic rodent treadmill equipped with an electro-
stimulator, Columbus Instruments, Columbus, OH) during the first
4 h of the dark phase of the circadian cycle, five times a week with
an inclination of 10% and a speed of 5 m/min for 30 min for
26 weeks, resulting in a covered distance of 150 m/day. The ‘seden-
tary’ group (n=6) was not forced to run except during exercise ex-
haustion tests. For exhaustion tests during the first four hours in the
dark phase of the circadian cycle at weeks 0 and 25 of the study, an-
imals ran on the treadmill tilted 25% uphill starting at a warm-up
speed of 14 m/min for 6 min. Every subsequent 2 min, the speed
was increased by 2 m/min until mice were exhausted. Exhaustion
was defined as the inability of the animal to return to running within
10 s after direct contact with an electric-stimulus grid. Running time
was measured and running distance calculated. Distance is the prod-
uct of time and speed of the treadmill. Outside of the training sched-
ule, all mice had unlimited access to food and soda. Food and soda
intake were measured daily during the resting period (last two
hours of the light cycle) for 1 week in individually housed mice and
presented as cumulative caloric intake at week 24 of the study and
in the metabolic cages throughout their circadian cycle during the
measurements of indirect calorimetry on weeks 20 to 22 (data not
shown). For energy balance measurements at week 20 of the study,
mice were acclimated to respiratory chambers for 4 days before
measurements. Energy expenditure, respiratory quotient, food in-
take, fluid intake, and locomotor activity were measured simulta-
neously over a 24-h period using a customized 32-cage, Indirect
Calorimetry System combined with Drinking and Feeding Monitor
and TSE ActiMot system (TSE-Systems, Germany) as described previ-
ously [24,25]. Mice were not exercised during ongoing measure-
ments of indirect calorimetry.
2.2. Biochemical assays

An intraperitoneal glucose tolerance test (ipGTT) was performed
by injection of glucose (2 g/kg, 50% wt/vol. D-glucose [Sigma, St
Louis, MO, USA] in 0.9% wt/vol. NaCl) after a 6-h fast. Tail blood glu-
cose levels [mmol/l] were measured with a glucometer (TheraSense
Freestyle) before (0 min) and at 15, 30, 45, 60 and 120 min after in-
jection. Plasma insulin levels were measured with the Ultra Sensitive
Rat Insulin ELISA kit (Crystal Chem, Chicago, IL) using rat insulin as
the standard in mice that had been fasted for 15 h. HOMA Index has
been calculated as described previously [26,27]. Circulating levels
of adipokines and inflammatory markers leptin, TNF-a, IL6, INF-g, IL-
1 alpha, PAI-1 and MCP1 have been measured at the end of the
study using the LINCOplex Kit (Millipore, Billerica, MA).

2.3. Immunohistochemistry

At the end of the study, all groups of mice were decapitated
and brains were immerse-fixed in 4% paraformaldehyde 0.1 M
phosphate-buffered saline (PBS, pH 7.4) at 4 °C for 48 h. Brains were
then equilibrated 48 h with 30% sucrose in 0.1 M Tris-buffered saline
(TBS, pH 7.2). Immunohistochemistry and quantitative analysis for al-
lograft inflammatory factor 1 (iba1) were performed on coronal brain
sections (30 μm) throughout the hypothalamus. After rinsing in 0.1 M
TBS, whole-brain sections were incubated with rabbit anti-iba1 pri-
mary antibody (Synaptic System, Goettingen, Germany) at 1:1000 di-
lution overnight at 4 °C. Sections were then rinsed and incubated in
biotinylated secondary antibody (horse anti-rabbit IgG, Vector, CA,
USA) for 1 h; subsequently, sections were rinsed and incubated in
avidin–biotin complex (ABC, Vector) for 1 h. The reaction product
was visualized by incubation in 1% diaminobenzidine with 0.01%
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hydrogen peroxide for 7 min. Sections were mounted on gelatin-
coated glass slides, dried, dehydrated in graded ethanol series, cleared
in xylene, and cover-slipped for observation by light microscope.

2.4. Quantitative analysis

All quantitative analyses were performed under blinded condi-
tions and confirmed by at least two independent researchers. For
eachmouse, two to three sections in the middle portion of the arcuate
nuclei (ARC) within the mediobasal hypothalamus were selected and
images were captured by a computerized image analysis system con-
sisting of an Axioskop color video camera (Carl Zeiss International,
Fig. 2. Microglial activation is markedly blunted specifically in the arcuate nucleus (ARC) in
cells in the ARC of sedentary mice fed a high fat diet (n=6) (A) are significantly increased
crease (C and D), This changes only take place in the ARC, but not in the hippocampus (E a
median eminence. Arrows indicate some of the activated microglia. Scale bar: 50 μm.
Thornwood, NY). Both sides of the ARC were manually outlined
with an area of 0.03 mm2 on each side. iba1 immunoreactive (ir)
microglia were manually counted throughout the ARC, and expressed
as number of cells per mm3. The average of iba1-ir microglia from
each mouse was then calculated and expressed as the mean±SEM
from each group.

2.5. Statistical analyses

Quantitative data are presented as mean±SEM. Values were ana-
lyzed for statistically significant differences applying two-tailed, un-
paired t tests. Pb0.05 was considered significant (GraphPad Prism,
the hypothalamus of exercised ldlr−/− mice fed a western diet. Iba1-immunopositive
compared to chow fed WT mice (B), and exercise largely blunted this diet-induced in-
nd F) and the cortex (G and H) of exercised mice (n=10). ARC, arcuate nucleus; ME,
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Fig. 3. Moderate exercise improves glucose turnover in ldlr−/− mice fed a western
diet. Fasting glucose (A), insulin levels (B) and HOMA Index (C) in sedentary (open
bars, n=6) and exercised (closed bars, n=10) ldlr−/− mice on western diet
(n=6–10). Intraperitoneal glucose tolerance test (D) in sedentary (closed circles)
and exercised (open circles) ldlr−/− mice on western diet. Values are expressed as
means±SEM. *Pb0.05.

Table 1
Circulating cytokines were not changed by exercise regimen in ldlr−/− mice fed a
western diet. Fed cytokine levels in sedentary and exercised ldlr−/− mice after
26 weeks of western diet exposure and treadmill exercise.

Cytokine in pg/ml Sedentary ldlr−/− Exercised ldlr−/−

Interferon gamma 15.84±8.76 14.9±8.74
Interleukin 6 22.76±2.75 25.29±2.19
Interleukin 1 alpha 7.99±0 10.51±5.94
Tumor necrosis factor alpha 2±0 4.67±2.67
Monocyte chemoattractant protein 1 41.1±22.75 50.26±15.1
Plasminogen activator inhibitor type 1 3027±815 4478±1327
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GraphPad Software, La Jolla, CA, USA; SigmaStat, Systat Software, San
Jose, CA, USA).

3. Results

3.1. Moderate regular exercise enhances endurance performance
independently of body mass in ldlr−/− mice on WD

Throughout the study, we determined body weight in sedentary
and exercised ldlr−/− mice fed a WD. As expected, such moderate
exercise did not lead to a significant difference in body weight be-
tween the two groups of animals (Fig. 1A). In addition, based on our
finding that circulating leptin levels, a surrogate marker for body fat
mass, were not changed in exercised mice (Fig. 1B), we assumed
that body composition did not likely differ significantly between the
groups. Furthermore, cumulative caloric intake and energy expendi-
ture was not different between the two groups of mice when they
were not subjected to treadmill running (Fig. 1D and E) although
muscular energy expenditure should have been increased during
the treadmill running in the exercised group. To ascertain whether
our exercise regimen did indeed enhancing muscular function, we
performed exercise-exhaustion tests on treadmills in all mice. As
expected, endurance capacity was significantly increased in exercised
ldlr−/− mice compared to sedentary ldlr−/− mice fed a WD
(Fig. 1C).

3.2. Moderate regular exercise reduces hypothalamic microglial
activation independently of body mass in ldlr−/− mice on WD

For the immunohistological detection of activated microglia we
used the well-established macrophage/microglia-specific calcium-
binding protein allograft inflammatory factor 1 (iba1). This protein
is involved in the Rac signaling pathway and its expression is mark-
edly increased upon microglial activation [28]. Iba1 is specifically
expressed in activated microglia and is regarded a well established
surrogate parameter for microglial activation and commonly used
to detect and compare microgliosis in numerous species [29]. Our
quantitative analysis of brain sections revealed a marked increase
in microglial activation specifically in the ARC of the mediobasal
hypothalami in brains from sedentary ldlr−/− mice fed a WD
(Fig. 2A). As an additional sign of microglial activation, we found
that the iba1-ir positive cells also displayed the typical pro-
inflammatory morphology with enlarged cell bodies and thickened
processes. As a reference for physiologically normal positive iba1
immunohistological staining, we included brain slides from wt
mice fed chow diet (Fig. 2B). Conversely, we found that regular and
moderate treadmill running of ldlr−/− mice fed a WD considerably
decreased the iba1-ir cell number (Fig. 2C) and the morphological
transformation of ARC microglia (Fig. 2C and D). Importantly, we
did not observe exercise-induced differences in microglial activation
in other regions of the brain, including the hippocampus (Fig. 2E and
F) or the cortex (Fig. 2G and H). Thus, our results indicate that regu-
lar and moderate exercise prevents WD-induced inflammation spe-
cifically in hypothalamic ARC regions which play a pivotal role in
regulation of energy balance.

3.3. Moderate regular exercise improves glucose homeostasis
independently of body mass in ldlr−/− mice on WD

To determine whether the body weight-independent improve-
ment in hypothalamic inflammation caused by moderate and regu-
lar exercise is associated with improved systemic glucose
homeostasis, we analyzed glucose metabolism in sedentary and
exercised ldlr−/− mice fed a WD. Although fasting glucose and in-
sulin levels were similar between the two groups (Fig. 3A and B),
we detected a trend towards improved HOMA Index values, a clinical
surrogate marker for insulin sensitivity (Fig. 3C) [26,27]. To further
determine into detail glucose turnover rates, we performed an intra-
peritoneal glucose tolerance test (ipGTT), a commonly clinical test used
to determine insulin sensitivity. We found that the response to ipGTT
was significantly improved in exercised ldlr−/− mice as compared to
sedentary ldlr−/−mice fed aWD (Fig. 3D). Exercise-induced improve-
ment in glucose homeostasis was not associated with changes in circu-
lating inflammatory markers TNF, IL6, INF gamma, INF-1alpha, PAI-1,
and MCP1, which again highlights the moderate character of our exer-
cise challenge (Table 1).

4. Discussion

We report for the first time that very moderate amounts of regular
exercise are effective in reducing diet-induced hypothalamic inflam-
mation in mice. During the study exercised mice covered an approx-
imate total distance of 19.5 km, averaging about 0.15 km/day. This
exercise regimen is significantly below the threshold of 0.5 km/day,
which has been established as necessary for the running-induced ac-
tivation of signaling molecules that influence learning and memory in

image of Fig.�3
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rodents [30]. Furthermore, the fact that exercised mice exhibited sim-
ilar energy intake and expenditure, body weight and fat mass com-
pared to sedentary mice, underscored the importance of exercise on
normal hypothalamic function independently of changes in energy
balance and body composition. We thus postulate that even sub-
threshold levels of regular exercise unable to affect energy balance
or hallmark signaling pathways may be beneficial for the prevention
of diet-induced hypothalamic dysfunction.

We also observed that the exercise regimen used within this study
enhanced insulin-action at target tissues such as skeletal muscle, ad-
ipose tissue and liver, independently of changes in body weight. Sev-
eral underlying causes may be responsible for the improved response
to ipGTT in the exercised animals: since in our study this finding was
associated with a reduction in diet-induced hypothalamic inflamma-
tion it is plausible that restored hypothalamic function had led to an
improved control over systemic metabolic processes such as insulin
sensitivity in liver, muscle and adipose tissue. However, a parallel
possibility would be that a similar reduction of macrophage presence
and activation in other tissues had similar impact on these endpoints.
Kawanishi et al. have recently reported that exercise training inhibits
inflammation in adipose tissue of mice by suppressing macrophage
infiltration and phenotype switching from the inflammatory M1 sub-
type to the anti-inflammatory M2 subtype [31]. In humans it has been
shown that low-intensity exercise (such as walking 10,000 steps a
day, three times a week) also increased M2 markers like PPARγ/
PGC-1α/β, and Th2 cytokines of circulating leucocytes [32]. Thus,
exercise-mediated reduction in macrophage/microglial activation
may constitute a novel anti-inflammatory benefit of low-intensity ex-
ercise. However, our results do show that circulating inflammatory
markers were not changed in our just moderately exercised mice
pointing to a more hypothalamo-centric mechanism as the more like-
ly explanation.

For these intervention studies, we chose the forced-treadmill
running regimen for its advantageous resemblance to human phys-
ical training and objective outcome measures as it allows for more
precise determinations of the correlation between amounts of exer-
cise and potential benefits. Since treadmill running also forces activ-
ity, it reflects more realistically the attitude of many human subjects
toward exercise, which is more often driven by health demands as a
rationale decision rather than spontaneous action or pleasure. Since
voluntary running often results in extreme distances covered and
speeds maintained by rodents [33,34], voluntary wheel running
may model only those exceptional humans who are highly motivat-
ed to engage in frequent, sustained physical activity, such as endur-
ance athletes or leisure exercise “addicts”. Our results suggest that
even very moderate levels of regular forced exercise may have a
beneficial effect on WD-induced dysregulation of hypothalamic
functions [5].

The fact that by covering the same distance, the forced-running
paradigm enhances significantly more neurogenesis in rodents as
compared to the voluntary running paradigm [33], indicates not
only that these two forms of exercise have inherently different effects
on brain and behavior, but also that the therapeutic potential of the
forced-running paradigm for hypothalamic dysfunction may be
broader than that of the voluntary regimen. Among other consider-
ations, our choice was based on the recent finding that forced, but
not voluntary exercise, effectively induces neuroprotection in rodent
stroke models [35]. The authors of that study argue that exercise with
a stressful component, rather than voluntary exercise or stress alone,
may be better able to improve clinical outcome. Although forced ex-
ercise acutely elevates corticosterone levels to a greater extent than
voluntary exercise [36], there is a mounting body of evidence that
the hypothalamic-pituitary-adrenal axis (HPA) adapts to chronic run-
ning, such that either voluntary or forced running no longer elevates
corticosterone levels compared to non-runners after several weeks of
training [33,37].
The recent finding that forced exercise does not enhance micro-
glial activation in the dentate gyrus of the hippocampus has been of
particular interest for this study [33]. Based on the finding that
stress-induced elevation of glucocorticoids actually increases micro-
glial activation [38] and proliferation [39], our findings underscore
the possibility that chronic forced exercise may actually not affect
HPA-mediated microglial activation. A very recent report suggesting
that cancer-induced anorexia may lead to a pro-inflammatory state
in the hypothalamus, which is prevented by treadmill endurance
training [40], underscores the pivotal role of physical activity in the
maintenance of normal hypothalamic function. This is supported by
the present finding where we observed no differences in the hippo-
campus when comparing sedentary and exercised mice, while pre-
venting WD-induced microglial activation in the ARC. Wu et al.
have recently reported that the unfolded protein response (UPR), an
adaptive response pathway that maintains endoplasmatic reticulum
(ER) homeostasis upon luminal stress, is activated in skeletal muscle
during exercise and adapts skeletal muscle to exercise training [41].
Since ER stress appears to represent a crucial player in the develop-
ment of hypothalamic inflammation [7–11], we hypothesize that ad-
aptation to exercise-induced UPRmay offer an alternative mechanism
to improve hypothalamic inflammation and prevent dysfunction of
hypothalamic control over systems metabolism.

5. Conclusions

A sedentary lifestyle and omnipresent exposure to high-caloric
“western diets” (WD) are thought to be responsible for a massive
rise in the prevalence of obesity and diabetes. WD feeding induces in-
flammatory signaling not only in several peripheral tissues such as
adipose depots, but also in the hypothalamus, causing local resistance
to both insulin and leptin. Interventions that prevent or even reverse
hypothalamic inflammation during WD feeding therefore offer op-
portunities for the prevention and treatment of obesity and diabetes.
The present results underscore the potential of regular moderate ex-
ercise to protect against diet-induced metabolic damage by prevent-
ing diet-induced hypothalamic inflammation.
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