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Abstract: Human endogenous retroviruses (HERVs) represent approximately 8% of our 

genome. HERVs influence cellular gene expression and contribute to normal physiological 

processes such as cellular differentiation and morphogenesis. HERVs have also been 

associated with certain pathological conditions, including cancer and neurodegenerative 

diseases. As HTLV-1 causes adult T-cell leukemia and HTLV-1-associated myelopathy/tropical 

spastic paraparesis (HAM/TSP) and has been shown to modulate host gene expression 

mainly through the expression of the powerful Tax transactivator, herein we were 

interested in looking at the potential modulation capacity of HTLV-1 Tax on HERV 

expression. In order to evaluate the promoter activity of different HERV LTRs,  

pHERV-LTR-luc constructs were co-transfected in Jurkat T-cells with a Tax expression 

vector. Tax expression potently increased the LTR activity of HERV-W8 and HERV-H 

(MC16). In parallel, Jurkat cells were also stimulated with different T-cell-activating 
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agents and HERV LTRs were observed to respond to different combination of Forskolin, 

bpV[pic] a protein tyrosine phosphatase inhibitor, and PMA. Transfection of expression 

vectors for different Tax mutants in Jurkat cells showed that several transcription factors 

including CREB appeared to be important for HERV-W8 LTR activation. Deletion 

mutants were derived from the HERV-W8 LTR and the region from −137 to −123 was 

found to be important for LTR response following Tax expression in Jurkat cells, while a 

different region was shown to be required in cells treated with activators. Our results thus 

demonstrated that HTLV-1 Tax activates several HERV LTRs. This raises the possibility 

that upregulated HERV expression could be involved in diseases associated with  

HTLV-1 infection. 

Keywords: HTLV-1; HERVs; Tax; CREB 

 

1. Introduction 

An estimated 8% of our genome is derived from Human Endogenous Retrovirus (HERV), 

sequences which are resulting from integration events that took place millions of years ago. HERVs 

are known to have endogenized from ancestral exogenous retroviruses during primate evolution. 

HERVs are classified into 3 classes (class I, II, and III) based on their sequence similarities to different 

infectious retroviruses. Each class is divided in subgroups, based on the specificity of the tRNA 

primer-binding site (PBS) [1], i.e., HERV-W uses the tryptophan (W) tRNA as its primer whereas 

HERV-K uses the lysine (K) tRNA. While most HERVs are defective and unable to produce infectious 

particles, some of them have retained the capacity to encode viral proteins [2]. In addition, most 

HERVs have lost their entire coding sequences by homologous recombination between the two LTRs, 

leaving solitary LTRs [3]. These LTRs remain active in their promoter and can thereby modify the 

expression of adjacent cellular genes. 

HERV genes play an important role in many physiological events such as placental development 

[4,5], in which HERV-derived syncytin-1 and syncytin-2 genes seem to be the two major players by 

promoting the cellular fusion of trophoblasts [4,6]. On the other hand, HERVs have also been 

associated with several human autoimmune diseases and cancer. For instance, evidences suggest that 

syncytin-1 is involved in breast cancer [7,8] and multiple sclerosis [9]. In addition, a reduction in the 

expression of the capsid protein of HERV-W was observed in neurons and glial cells from brains of 

patients with schizophrenia, bipolar disorder and major depression [10], while HERV-W transcripts 

were more abundant in cerebrospinal fluid and plasma from patients with schizophrenia [11]. 

Human T-cell lymphotropic virus type-1 (HTLV-1) is the causative agents of adult T-cell leukemia 

(ATL) and has also been associated with a chronically progressive neuro-inflammatory disease known 

as HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP). However, the majority 

of HTLV-1-infected patients remain asymptomatic throughout their lifetime. The HTLV-1 Tax protein 

is a powerful transactivator strongly suggested to be determinant in the development of ATL as well as 

HAM/TSP [12,13]. These links likely result from the capacity of this protein to activate several 
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transcription factors such as CREB, NF-B and SRF, which leads to upregulation or downregulation 

of a number of cellular genes [14–18]. 

Previous studies have shown that viruses such as HSV-1 and the Influenza virus could modulate 

HERV LTR activity [19–21]. Given that HERV overexpression has been associated with multiple 

sclerosis, a disease resembling HAM/TSP, we thereby tested whether the Tax protein could modulate 

HERV gene expression. Our results indeed confirm, that alike T cell activators, Tax significantly, yet 

selectively, induced LTR activity of several HERV family representatives. 

2. Results and Discussion  

2.1. Different HERV LTRs Are Activated upon T Cell Activation 

We first tested whether the activation of T lymphocytes could modulate the expression of HERVs. 

Different T-cell-activating agents known to activate many transcription factors in T-cells were thus 

first tested. Jurkat cells were transfected with luciferase reporter vectors harboring 5'LTR from 

different HERV families. LTRs from HERV-W4, HERV-W8, HERV W18, HERV-H (MC16), 

HERV-K (TD47) and HERV-E (E2) were thus tested individually for their responsiveness to T-cell 

activators. As shown in Figure 1A, HERV-W8 and HERV-H (MC16) LTRs were highly responsive to 

a combination of Forskolin and bpV[pic], a cAMP pathway activator and an inhibitor of protein 

tyrosine phosphatases, respectively and to the bpV[pic]/PMA combination. Both LTRs were also 

significantly responsive to the addition of bpV[pic] alone. While HERV-E and HERV-K representative 

LTRs were not activated by any tested agents, HERV-W4 and HERV-W8 presented a significant 

induction of LTR activity only in the presence of the Forskolin/bpV[pic] combination, although the 

response was more modest. To confirm these results, RNA from Jurkat cells was analyzed by RT-PCR 

for transcript levels of gag or pol genes from HERV-H, HERV-K, HERV-W and HERV-E families 

(Figure 1B). In bpV[pic]/Forskolin-stimulated cells, we confirmed that activation indeed led to an 

increase in HERV-W gag and HERV-H pol transcript levels when compared to untreated cells. A 

limited modulation of HERV-K gag and HERV-E pol expression was noted upon stimulation, again 

confirming the results obtained with the LTR constructs. The induction mediated by the 

bpV[pic]/PMA combination was also specific to HERV-H and HERV-W LTRs and was again less 

pronounced than the one observed with the Forskolin/bpV[pic] combination.  

We and others have previously indicated that the PTP inhibitor bpV[pic] in T-cells can activate a 

multitude of transcription factors, such as NF-B, NFAT, STAT, AP-1 and CREB [22–25]. Our results 

thereby first indicated that activation of T cells and activation of some of these transcription factors led 

to induction of HERV gene expression. Interestingly, we have previously demonstrated that 

Forskolin/bpV[pic] strongly induced the LTR of syncytin-1 (HERV-W) and syncytin-2 (HERV-FRD) 

genes in the choriocarcinoma BeWo cell line [4]. Other studies in T lymphocytes have indicated that 

HERV-H transcripts could be induced in T-cell leukemia cell lines by PHA [26] Our studies in the 

T-cell context are thus in line with the induction potential of HERV LTRs [27]. 
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reports had indeed indicated that HSV infection mediates LTR activation through Oct-1- and AP-1-

binding sites, respectively [19,20]. More specific studies focused on a HERV-W representative 

encoding for syncytin-1 have revealed that several transcription factors were acting on basal and 

cAMP-mediated LTR activation in trophoblast cells, such as GCMa, Sp1, GATA transcription factors 

and other potential transcription factors [5,32–34]. A potential NF-B-binding site has also been 

identified for its importance in TNF--mediated activation of syncytin-1 expression in astrocytes [35]. 

Our results suggest that different transcription factors act upon the induction of HERV-W8 LTR by  

T-cell activators and Tax. We are currently conducting experiments to more precisely identify these 

LTR regions. 

3. Experimental Section 

3.1. Plasmids 

pBL-based constructs containing different HERV LTRs (HERV-W4, HERV-W8, HERV-W18, 

HERV-E2, HERV-H (MC16), and HERV-K (TD47) inserted upstream of the firefly luciferase reporter 

have been previously described [36]. The Tax expression vector pHPr.1neoTax and the empty vector 

pHPr.1neo were generously provided by Dr. M. Nakamura (Tokyo Medical and Dental University, 

Tokyo, Japan) [37]. Vectors expressing wild-type and mutated Tax [38] were kindly provided by 

Dr. J.M. Mesnard (Université Montpellier 1, Montpellier, France). The CREB dominant negative 

mutant KCREB and the control empty vector [39] were provided by Dr. R.H. Goodman (Vollum 

Institute for Advanced Biochemical, Research, Portland, OR, USA). The pRcActin-LacZ vector 

contains the -galactosidase gene under the control of the -actin. 

3.2. Generation of Deletions Mutants by Exonuclease III 

The pHERV-W8 LTR-Luc construct was first digested with BstX1 and BamHI and subsequently 

incubated in the presence of exonuclease III at 37 °C. At 15 s intervals, an aliquot was taken and added 

to a tube containing S1 nuclease. At the end of the time course, the S1 nuclease reaction was 

completed at 30 °C. Each samples were heat inactivated and after religation, transformed in DH5. 

Sequencing of plasmid DNA from resulting colonies was conducted for positioning the resulting 5' end 

of the LTR. Five deletion mutants were chosen for subsequent experiments. 

3.3. Transfection and Assay for Luciferase Activity  

Transfection of Jurkat cells was carried out by electroporation for 24 hours with a total of 15 µg of 

DNA (250 V and 950 µF) according to the Hughes and Pober’s protocol (Hughes and Pober, 1996). 

Transiently transfected cells were seeded at a density of 106 cells/well in 6-well plates and left 

unstimulated or treated for 8 h with PHA (3 µg/mL), PMA (20 ng/mL) (Sigma), ionomycin (1 µM) 

(Calbiochem), anti-CD3 antibody (clone OKT3) (3 µg/mL), anti-CD28 antibody (clone 9.3) (1 

µg/mL), Forskolin (100 µM) (BioMol, Plymouth Meeting, PA) and bpVpic (10 µM)  

in a final volume of 3 mL. Cells were then lysed in a 1× lysis buffer (25 mMTris phosphate, pH 7.8, 

2 mM DTT, 1% Triton X-100, 10% glycerol). Luciferase activity was determined as follows.  

After a freeze/thaw cycle, 25 µL of cellular extract was transferred to a 96-well luminometer  
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plate and luciferase activity was quantified on a Dynex MLX microplate luminometer (MLX;  

Dynex Technologies, Chantilly, VA, USA) following a single injection of a luciferase buffer  

[137 mM NaCl, 20 mM tricine, 1.07 mM(MgCO3)4·Mg(OH)2·5H2O, 2.67 mM MgSO4, 0.1 mM 

EDTA (ethylenediaminetetraacetic acid), 220 μM coenzyme A, 4.7 μM D-luciferin potassium salt, 530 

μM ATP, 33.3 mM DTT]. β-galactosidase activity was measured using the Galacto-Light™ kit 

(Applied Biosystems, Bedford, MA, USA) according to manufacturer's instructions. Luciferase 

activity was calculated in terms of relative light units (RLU) and represents the mean ±SD of three 

transfected samples normalized for β-galactosidase activity. Fold inductions were calculated by 

dividing the values of activated samples by values of non-stimulated samples.  

3.4. Total RNA Extraction and Semi-Quantitative RT-PCR 

Total RNA was isolated from Jurkat cells using the Trizol reagent (Invitrogen Canada Inc). Prior to 

RT, total RNA was treated with TurboRNAse-Free DNAse (Ambion, Austin, TX, USA) for 5 min at 

70 °C. RNA (1 μg) was then incubated in the presence of oligo(dT) (25 ng/μL), 10 mM DTT, 100 mM 

dNTP (deoxynucleotide triphosphate), SuperScript reverse transcriptase (10 U) (Invitrogen Canada 

Inc.), and SUPERase-In (20 U) at 42 °C for 50 min. Aliquots from the RT reactions were then  

PCR-amplified in the presence of 1U Taq DNA polymerase (New England Biolabs, Pickering, 

Canada), 1× ThermoPol buffer, 100 μM dNTP, and 15 μM of each primer. Primers used for HERV-H 

pol cDNA amplification were 5'-CCTTTATTACCCAATCTGCTCCCGA(CT)AT-3'(forward) and  

5'-TTTAGTGGTGGACAGTCTCTTTTCCA(AG)TG-3' (reverse).  

For HERV-K gag cDNA amplification, the primers were  

5'-TCCCCTTGGAATACTCCTGTTTT(CT)GT-3' (forward) and  

5'-CATTCCTTGTGGTAAAACTTTCCA(CT)TG-3' (reverse).  

For HERV-W gag cDNA, the primers were 5'-GGCCAGGCATCAGCCCAAGACTTG-3' (forward) 

and 5'-CTTTAGGGCCTGGAAAGCCACT-3' (reverse), as for HERV-E pol cDNA amplification, the 

primers were 5'-CATCAACCTACTTGGGATTGTCA(AG)CA-3' (forward) and  

5'-CAATGACCTTTTTCTTTACAGTAGGC(AG)CA-3' (reverse).  

For RT-PCR analyses of β-actin mRNA, the primers 5'-CGTGACATTAAGGAGAAGCTG-3' 

(forward) and 5'-CTCAGGAGGAGCAATGATCTT-3'(reverse) were used. PCR conditions were as 

follows: a first step of denaturation at 95 °C for 3 min. followed by 35 cycles of denaturation (94 °C 

for 30 s), annealing (60 °C for 15 s) and elongation (72 °C for 12 s). 

3.5. Western Blot Analyses 

Western blot analyses from total protein isolated from transfected Jurkat cells were performed. 24 h 

post-transfection, cells were washed with PBS 1× and lysed with lysis buffer (50 mM Tris-HCl,  

pH 7.4, 120 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 0.2 mM Na3VO4, 1 mM dithiothreitol,  

1 mM phenylmethylsulfonyl fluoride) in the presence of protease inhibitors (Complete, Roche Applied 

Science), and incubated on ice for 30 minutes. Cell debris were pelleted by centrifugation for 10 min at 

high speed. Protein concentrations were quantified with the bicinchoninic acid (BCA) protein assay 

(Thermo Fisher Scientific Inc., Rochester, NY, USA). Extracts were migrated on a 12% sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred on a polyvinylidene 
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fluoride (PVDF) membrane (Millipore). Membrane was blocked with 5% Bovine Serum Albumin 

(BSA) and incubated with anti-Tax antibody (dilution, 1/100) (or a polyclonal anti-glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) antibody (1/5000; Santa Cruz, CA, USA). Membranes were 

further incubated with a horseradish peroxidase-coupled anti-mouse antibody (1/10,000) (Amersham 

Biosciences, Buckinghamshire, UK), and signals were detected using the BM chemiluminescence 

blotting substrate (Roche Diagnostics). Membranes were subsequently exposed on an ECL high 

performance chemiluminescence film (Amersham Biosciences). Antibodies from the HTLV-I Tax 

hybridoma 168A51-42 (Tab176) was obtained from Dr. J.M. Mesnard [40]. 

3.6. Statistical Analyses 

All experiments were performed in triplicates. Results are expressed as the mean+SEM and 

statistically analyzed using a 2-tailed Student t test for 2-group comparisons. 

4. Conclusions 

We herein have demonstrated that LTRs from different HERV families can both be activated by the 

combination of T-cell activation agent bpV[pic]/Forskolin and bpV[pic]/PMA and by the Tax 

transactivator. Furthermore, we identified a Tax-responsive region different from the region responsive 

to T-cell activators suggesting the implication of different transcription factors. Indeed the use of the 

various Tax mutants reveals that each of them affects this LTR activation at different degrees. Through 

the CREB dominant negative mutant, our results argue that members of the CREB/ATF family are 

playing a role in the upregulation of the LTR activity. The HTLV-1 Tax protein is a powerful 

transactivator, capable of inducing many cellular genes with its activation domains. It is thereby not 

surprising that it also acts on the HERV-W LTRs, which are known to be upregulated by inducing 

agents such as Forskolin and bpV[pic] in human trophoblasts and by HSV-1 and Influenza virus 

infection [4,20,21]. We conclude that Tax can modulate these LTRs in Jurkat cells by activating CREB 

and possibly NF-қB, which can positively regulate the transcription of the HERVs genes or other 

cellular genes in proximity. Transcription factors mediating the upregulation of HERV LTRs by both 

Tax and T-cell activators are likely different and we are currently working on their identification. 

Since our results indicate that Tax can modulate the expression of HERVs, a link between  

HTLV-1-associated diseases and HERV dysregulation is an interesting speculation. Indeed, 

upregulation of HERV gene expression has been associated with various inflammatory and 

autoimmune diseases such as multiple sclerosis and arthritis [9,41]. Interestingly, HTLV-1-associated 

diseases HAM/TSP and HTLV-1-associated arthropathy have been shown to be very similar to these 

latter diseases. In addition, activation of HERV LTR nearby proto-oncogenes may constitute a 

mechanism by which Tax could promote cell transformation via HERV sequences. Alternatively, 

induced expression of near full-length HERV proviral DNA could generate potential substrates for 

reverse transcriptase activity. Newly synthesized proviruses could then reintegrate the host genome in 

infected cells and contribute to genomic instability.  

More advanced studies are needed to clearly determine if HERV expression is increased in 

HTLV-1-infected patients and modulated during the course of HTLV-1-induced pathologies. 

Furthermore, in this study, we have focused on the modulation of HERV-LTR by the viral protein Tax 
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of HTLV-1. Clearly, other viral proteins such as HBZ could impact on the extent of Tax-mediated 

HERV LTR activation or could affect HERV LTR activation. These experiments, as well as the 

analysis of HERV expression in HTLV-I-infected cells are currently ongoing. These studies will 

indicate whether HERVs could become possible new disease markers in HTLV-1-infected patients. 
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