
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Bioimage Informatics

fastER: a user-friendly tool for ultrafast and robust
cell segmentation in large-scale microscopy
Oliver Hilsenbeck 1,∗, Michael Schwarzfischer 2, Dirk Loeffler 1, Sotiris
Dimopoulos 1, Simon Hastreiter 1, Carsten Marr 2, Fabian J. Theis 2,3 and
Timm Schroeder 1,∗

1Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
2Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
3Department of Mathematics, Technische Universität München, Garching, Germany

∗To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Quantitative large-scale cell microscopy is widely used in biological and medical research.
Such experiments produce huge amounts of image data and thus require automated analysis. However,
automated detection of cell outlines (cell segmentation) is typically challenging due to, e.g., high cell
densities, cell-to-cell variability and low signal-to-noise ratios.
Results: Here, we evaluate accuracy and speed of various state-of-the-art approaches for cell
segmentation in light microscopy images using challenging real and synthetic image data. The results
vary between datasets and show that the tested tools are either not robust enough or computationally
expensive, thus limiting their application to large-scale experiments. We therefore developed fastER, a
trainable tool that is orders of magnitude faster while producing state-of-the-art segmentation quality. It
supports various cell types and image acquisition modalities, but is easy-to-use even for non-experts: it
has no parameters and can be adapted to specific image sets by interactively labelling cells for training.
As a proof of concept, we segment and count cells in over 200,000 brightfield images (1388 × 1040
pixels each) from a six day time-lapse microscopy experiment; identification of over 46,000,000 single
cells requires only about two and a half hours on a desktop computer.
Availability: C++ code, binaries and data at https://www.bsse.ethz.ch/csd/software/faster.html.
Contact: oliver.hilsenbeck@bsse.ethz.ch, timm.schroeder@bsse.ethz.ch
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Quantitative large-scale cell microscopy has become an indispensable tool
for biomedical research: imaging based high-content screening is widely
used, e.g. for drug discovery (Zanella et al., 2010), and time-lapse imaging
(Schroeder, 2008) provides insights into numerous biological processes
(Cohen et al., 2010; Eilken et al., 2009; Etzrodt et al., 2014; Filipczyk
et al., 2015; Rieger et al., 2009). Accurate detection of cell outlines
in the acquired image data (cell segmentation) is crucial for automated
cell tracking (Magnusson et al., 2015) and to quantify cellular features
like morphologies or fluorescent signals from intracellular markers (Li

et al., 2013). The enormous amounts of data typically generated in such
experiments (up to millions of images per experiment) require efficient
automated analysis (Myers, 2012). Automated cell segmentation, however,
is often challenging, because problems like high cell densities, cell-to-cell
variability, complex cellular shapes, varying image illumination and low
signal-to-noise ratios (SNRs) cannot always be avoided (Peng, 2008). This
holds true especially when imaging mammalian cells (Skylaki et al., 2016),
which typically change their individual morphologies with high frequency
(Schroeder, 2011).

Many methods for automatic cell segmentation have been published
(Eliceiri et al., 2012), but most are limited to specific cell and microscopy
types (Meijering, 2012) or not robust enough for large-scale microscopy

1

Associate Editor: Prof. Robert Murphy

© The Author (201). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

7

2 O. Hilsenbeck et al.

A BExtremal regions in a 2D image Component Tree

a

b
c

d
e

f

a

b

c

e

d

fff

x1

x2

Fig. 1. Definitions. A region is a set of connected pixels, and an extremal region is a region
with maximal size but containing only pixels whose intensities are below or equal to a
specific threshold (see text for formal definitions). (A) A 2D-image with six extremal regions
(a-f). Every extremal region can contain other extremal regions, which are by definition
subsets of their parent extremal regions (e.g. c contains e). (B) Thus, any greyscale image
can be represented as a directed tree (component tree), where each node corresponds to an
extremal region. The top node always corresponds to the extremal region which contains
all pixels and all other extremal regions of the image (a in the example).

(Buggenthin et al., 2013). Here, we evaluate accuracy and speed of several
state-of-the-art approaches for cell segmentation. The results show that
the segmentation quality by each method varies between datasets, that no
method clearly outperforms the others and that lacking efficiency remains
the major challenge for their application to large scale experiments. We
therefore developed the software fastER (fast segmentation with extremal
regions), a new fast and trainable tool for cell segmentation that extracts
texture and shape features from candidate regions, estimates the likelihood
of each to be a cell with a support vector machine (SVM) and calculates
an optimal set of non-overlapping candidate regions using a divide and
conquer approach.

fastER uses extremal regions (Matas et al., 2002), which are
represented as a tree of nested regions (see Methods), as candidates.
Approaches based on merge trees have been used successfully before
for bioimage analysis (Funke et al., 2015; Liu et al., 2012; Schiegg
et al., 2014). Most notably, CellDetect (Arteta et al., 2012) uses extremal
region trees, a structured SVM (Tsochantaridis et al., 2004) and dynamic
programming to extract an optimal set of non-overlapping regions. This
approach has been shown to produce state-of-the-art detection accuracy
even for challenging image data and is also used in subsequent works
(Arteta et al., 2013, 2016). We modify this approach on the algorithmic
level, and as a result, fastER achieves similar detection, but higher
segmentation accuracy in two out of three datasets used for evaluation.
Additionally, we integrate our implementation into the linear time
framework by Nistér and Stewénius (2008) for the calculation of maximally
stable extremal regions (Matas et al., 2002). Overall, fastER is orders
of magnitude faster than the other tools evaluated here, while producing
similar segmentation quality.

2 Methods

Definitions

A 2D-greyscale image can be defined as a mapping I : D ⊂ Z2 → S,
where D is the image domain and S is the range of possible greylevels,
e.g. S = [0, .., 255] for 8-bit greyscale images. Connectivity defines
neighbourhoods between pixels: 4-connectivity specifies that each pixel
is adjacent only to its four horizontal and vertical neighbours, while 8-
connectivity specifies that each pixel is also adjacent to its four diagonal
neighbours. Formally, connectivity defines an adjacency relation A ⊂
D × D: two pixels p and q are adjacent to each other if and only if
(p, q) ∈ A, which can also be written as pAq.

With this, regions (= connected components), extremal regions and
component trees can be defined (Fig. 1). A region x ⊆ D is a set of pixels
fulfilling that for each pair of pixels p, q ∈ x a path of adjacent pixels
exists in x that connects p and q. Let N(x) denote the set of pixels that are
not in region x but adjacent to it: N(x) = {q ∈ D\x : ∃p ∈ x : pAq},
where \ denotes the set difference. Then, region x is extremal if and only
if:

∀ q ∈ N(x) : I(q) > tx, (1)

where tx denotes the maximal pixel intensity in x, i.e. tx =

max ({I(p) : p ∈ x}). Equation 1 specifies that the intensities of all
pixels that are adjacent to x (but not contained in x) have to be greater
than tx. From equation 1 it follows that any extremal region x can be
specified by a single seed pixel, i.e. any pixel p ∈ x with I(p) = tx: x
is the set of pixels that can be reached from p through a path of adjacent
pixels without exceeding the pixel intensity I(p). Extremal regions can be
used to define component trees (Najman and Couprie, 2006): a component
tree is a directed tree representation of a greyscale image with one node
for each extremal region, and a directed edge from the node corresponding
to an extremal region a to the node corresponding to an extremal region b

exists if and only if b is a true subset of a (i.e. b ⊂ a) and no other extremal
region exists that contains b and also is a true subset of a.

A

B Training images

with manual labels

Positive and negative

sample candidate regions

Image to

segment

Divide and

conquer

F(b)

F(c)

F(e)

F(d)

F(f)

Possible solution:

{b1, b2}

F(a)

a

c
b1

b

b2 d
f

e

Fig. 2. Method overview. (A) For segmentation, all extremal regions (a to f) and, under
certain conditions, split extremal regions ({b1 , b2}) are used as candidate regions. From
each, a feature vector (Table 1) is extracted and processed by a support vector machine
(SVM) to estimate its likelihood to be a cell. Based on these likelihoods, an optimal set of
non-overlapping regions is calculated with a divide and conquer approach (e.g. {b1 , b2}).
(B) For training, the user marks cells (red) and background regions (blue) in one or more
training images. Candidate regions best fitting to the markings are then extracted from the
images (red and blue outlines) and used as positive (i.e. corresponding to single cells) or
negative (i.e. corresponding to background or multiple cells) samples for training of the
SVM.

Segmentation algorithm

We can now formally describe the segmentation algorithm used by fastER
(Fig. 2A), including the modifications to the approach used by CellDetect.
Given an image to segment, our aim is to extract a set of non-overlapping
regions that is most likely to correspond to single cells. In fluorescence
microscopy - and, when optimized image acquisition protocols are used
(Supplementary Fig. 1), also in transmitted light microscopy - cells appear
as regions that are darker or brighter than background. This fits the

fastER 3

definition of extremal regions (equation 1), and we therefore consider all
extremal regions in the image as candidate regions for cell segmentation
(to detect regions that are brighter than background, the image has to
be inverted first). Additionally, each extremal region x is split in two
distinct sub-regions x1 and x2 (i.e. x1 ∪ x2 = x ∧ x1 ∩ x2 = ∅) if
x has exactly two child nodes c1 and c2 in the component tree: x1 and
x2 then contain the extremal regions corresponding to the child nodes
c1 and c2, respectively, and each remaining pixel of x is added to the
closest sub-region. Additional constraints are required to ensure that the
sub-regions remain connected (see Supplementary Note 1.1 for details).
The two sub-regions x1 and x2 are then also used as candidate regions
to increase segmentation accuracy, e.g. regions b1 and b2 in Fig. 2A.
This is an extension to CellDetect, which considers only maximally stable
extremal regions as candidates, i.e. a subset of all extremal regions. The
latter, however, can impair segmentation accuracy, e.g., for cells with low
contrast (compare Supplementary Fig. 1).

To estimate the likelihood (or score) S(x) that a candidate region x

corresponds to a single cell, a feature vector is extracted from it (Table 1).
It is used as input for a support vector machine (SVM) with a Gaussian
kernel (Burges, 1998), which is trained in a separate step (see Training
algorithm). A positive score S(x) > 0 indicates that the candidate region
x corresponds to a single cell, whereas a negative scoreS(x) ≤ 0 indicates
that it corresponds to background or multiple cells. We use LIBSVM
(Chang and Lin, 2011) in our implementation of fastER. Any machine
learning method or mathematical model that allows calculation of scores
from feature vectors could be used, but the SVM allows comparably fast
calculation of scores, and the Gaussian kernel avoids assumptions about the
distribution of features that may not hold (e.g. linear separability). Unlike
CellDetect, which uses 92 features, fastER uses only nine features (Table 1)
that describe texture, gradient and shape of candidate regions and are
informative for their classification. This small set of features enables high
segmentation quality, but also high training and segmentation efficiency
(see Results).

Given the candidate regions contained in an image and their scores, our
aim is to select a high-scoring, but non-overlapping subset of them. For this
purpose, we use a recursive formulaF (x). Given the component tree of the
image, F (x) selects a set of non-overlapping candidate regions contained
in extremal region x with a divide and conquer approach. To segment an
image, F (x) is applied on the whole image, which is an extremal region by
definition (equation 1). Let S(x) denote the score of candidate region x,
S̄(X) the average score of the set of candidate regions X (we furthermore
define that S̄(∅) = 0) and C(x) the set of extremal regions corresponding
to child nodes of x in the component tree. With this, F (x) can be defined
as follows:

F (x) = argmax
X∈∆(x)

S̄(X), (2)

where ∆(x) is defined as follows if x has sub-regions x1 and x2 with
positive scores (i.e. S(x1) > 0 ∧ S(x2) > 0):

∆(x) = {{x}, {x1, x2},
∪

c∈C(x)

F (c)}, (3)

and otherwise as:

∆(x) = {{x},
∪

c∈C(x)

F (c)} (4)

When applied on an extremal region x, F (x) thus selects the set
of candidate regions with the highest average score among up to three
possibilities: x itself; the sub-regions x1 and x2 created by splitting x (if
the conditions to split x are met, and if S(x1) > 0 and S(x2) > 0);
and the regions obtained by applying F (x) to each extremal region
corresponding to a child node of x in the component tree (which is either
a set of regions with positive scores or an empty set, e.g. if x has no

Table 1. Features used to classify candidate regions. For formal definitions,
see equations 6 to 14 or Supplementary Note 1.2.

Feature Description

Size Number of pixels in the candidate region

Major axis length
Major axis length of an ellipse with the same
second order moments as the candidate region

Minor axis length
Minor axis length of an ellipse with the same
second order moments as the candidate region

Avg. intensity Mean pixel intensity in the candidate region

Heterogeneity
Standard deviation of the pixel intensities
in the candidate region

Avg. gradient
Mean absolute pixel intensity difference to
pixels adjacent to the candidate region

Std. dev. of
gradient

The standard deviation of the absolute pixel intensity
differences to pixels adjacent to the candidate region

Eccentricity
Number of pixels adjacent to the candidate
region divided by the number of pixels adjacent
to a perfect circle with the same area

Avg. background
Average intensity of pixels adjacent to the
candidate region

nested extremal regions). In Figure 2A, for example, F (b) could resolve
to F (b) = argmaxX∈∆(b) S̄(X) with ∆(b) = {{b}, {b1, b2}, F (c)∪
F (d)}. Thus, the formula F (x) extracts a set of set of non-overlapping
candidate regions and maximizes its average score under the constraint
that for any extremal region y ⊆ x with S(y) > 0, it holds that either
y itself, a parent extremal region containing y or at least one child region
contained in y is included in the solution. This also holds for any pair
of sub-regions y1 and y2 with S(y1) > 0 and S(y2) > 0. Without this
constraint, only one region with the highest score would be returned in most
cases. There can be cases, where the solution extracted by fastER does not
have globally maximal average score under the additional constraint - this
prevents undesirable segmentation results (see Supplementary Note 1.3 for
an example). This is an important difference to CellDetect, which extracts
a set of non-overlapping regions with globally maximal sum of scores. The
latter, however, favours solutions with many regions and can thus increase
the risk of over-segmentation (Supplementary Fig. 2).

Efficient calculation

In the previous section, we defined our segmentation algorithm with a
recursive formula based on the component tree (equation 2), which can be
calculated in quasi-linear time, i.e. O(n log(n)), where n is the number
of pixels in the image (Najman and Couprie, 2006). There is, however, a
faster way: Nistér and Stewénius (2008) have proposed an algorithm to
calculate maximally stable extremal regions that is linear in the number of
pixels (i.e. O(nm), where n is the number of pixels and m the number
of greylevels (Carlinet and Geraud, 2014)) and has proven to be fast in
practice. It processes each node of the component tree beginning at a leaf
node and ending at the root node containing the whole image (see Nistér
and Stewénius (2008) for implementation details). When the algorithm
processes a node, all its pixels are known and all its child nodes have been
processed already. Therefore, it is perfectly suited to apply our recursive
segmentation formula (equation 2), and we now summarize the changes
that are required to adapt it for this purpose (see Supplementary Note 1.4
for complete details).

The algorithm processes all nodes of the component tree without ever
fully calculating it: at most one branch of it is constructed at a time. To
enable this, each component has to be merged into its parent component
after it has been processed. We could thus adapt the algorithm for our

4 O. Hilsenbeck et al.

segmentation by storing a list of contained pixels in each component,
and, after the component has been processed, merging this list into the
parent component’s pixel list. Additionally, it would then be required for
every component to iterate over all its pixels in order to calculate the
features for classification of the corresponding candidate regions. Both
operations would be computationally expensive. Therefore, we derived a
set of variables with constant size that is stored in each component and is
sufficient to calculate the features, so that a list of pixels is not required
(these variables are therefore sufficient statistics). Given a region x ⊆ D,
letG(x) denote all pairs of pixels in x andD\x that are adjacent: G(x) =

{(p, q) : p ∈ x, q ∈ D\x, pAq}. With this, the sufficient statistics si(x),
with i = 0, .., 11, for candidate region x are defined as follows:

s0 = |x|, s1 =
∑
p∈x

I(p), s2 =
∑
p∈x

I(p)2, s3 =
∑
p∈x

px,

s4 =
∑
p∈x

py, s5 =
∑
p∈x

px
2, s6 =

∑
p∈x

py
2, s7 =

∑
p∈x

pxpy ,

s8 = |G(x)|, s9 =
∑

(p,q)∈G(x)

|I(p)− I(q)|,

s10 =
∑

(p,q)∈G(x)

(I(p)− I(q))2, s11 =
∑

(p,q)∈G(x)

I(q), (5)

wherepx andpy denote the x- and y-coordinate of pixelp, respectively.
From the sufficient statistics, the features (Table 1) can be calculated in
O(1):

Size = s0 (6)

C1,1 =
1

s0 − 1

(
s5 −

s32

s0

)
C1,2 = C2,1 =

1

s0 − 1

(
s7 −

s3s4

s0

)
C2,2 =

1

s0 − 1

(
s6 −

s42

s0

)
Major axis length = Major eigenvalue of C (7)

Minor axis length = Minor eigenvalue of C (8)

Avg. intensity =
s1

s0
(9)

Heterogeneity =
1

s0 − 1

(
s2 −

s12

s0

)
(10)

Avg. gradient =
s9

s8
(11)

Std. dev. of gradient =
1

s8 − 1

(
s10 −

s92

s8

)
(12)

Eccentricity =
s8

8
√

s0/π
(13)

Avg. background =
s11

s8
(14)

Note that C is the 2× 2 covariance matrix of the x- and y-coordinates
of the pixels inx. Also note that the definition of Eccentricity (equation 13)
is specific to 4-connectivity: in that case, if a region x is a perfect circle,
G(x) contains approximately 4d = 8r = 8

√
A/π elements, where d, r

and A denote the diameter, radius and size of x, respectively.
In each component, sufficient statistics are stored for the extremal

region x corresponding to the component and, if available, for its two
sub-regions x1 and x2. They are updated when a pixel is added to
the component, and to merge a component into its parent component,
their sufficient statistics are simply added together (see Supplementary
Note 1.4 for details); both operations are in O(1). Additionally to the

sufficient statistics, the list of regions obtained by applying the recursive
segmentation formula (equation 2) is stored in each component together
with their sum of scores. This has little impact on runtime, because
every extremal region can be specified by a single seed pixel as described
previously, so it is not required to store a list of all contained pixels for each
extracted region (this also holds for sub-regions). The concept of sufficient
statistics has previously been used in computer vision (Cipolla et al., 2013).
Our contribution is the definition of such statistics (including the update
rules required to maintain them) for the extraction of all features used by
fastER from extremal regions. This is not trivial for features involving
the neighbouring pixels of candidate regions (equations 11 to 14) and
the corresponding sufficient statistics s8 to s11 (compare Supplementary
equations 4 to 7). To the best of our knowledge, this has not been described
before for extremal regions.

With this, we can efficiently enumerate the nodes of the component tree
and the corresponding candidate regions, extract their features, calculate
their scores, and apply our recursive segmentation formula (equation 2).
The complexity of our implementation is O(nm), where n is the number
of pixels and m the number of possible greylevels in the image (see
Supplementary Note 1.4 for runtime analysis and Results for evaluation
of practical runtime).

Training algorithm

In this section, we describe how to adapt our segmentation algorithm
to specific datasets without manual specification of parameters. For this
purpose, we developed an algorithm to extract positive and negative sample
extremal regions from an image that fit best to cell and background labels
added by the user to train fastER (Fig. 2B). From these, feature vectors
(Table 1) are extracted and used to train the SVM. For a training image
I , let Pi (with i = 1, .., n) denote the set of positive labels (i.e. a set of
regions labelled as corresponding to single cells) and N the set of pixels
marked as negative. As negative training samples, we use all extremal
regions in I that overlap with more than 20 % of pixels with N , or with
multiple positive regions. To extract positive training samples, we consider
for each positive label Pi a set of candidate regions Ci(I):

Ci(I) = {x ∈ ER(I) : (x ∩ Pi ̸= ∅) ∧

¬ (∃ j ̸= i : x ∩ Pj ̸= ∅) ∧

(x ∩N = ∅)}, (15)

where ER(I) denotes the set of all extremal regions in I . Thus, Ci(I)

is the set of extremal regions in I that overlap with Pi, but with no other
positive label and with no negatively labelled pixel. For each positive label
Pi, we then count for each corresponding candidate region x in Ci(I) true
positives tpx (i.e. pixels in x and in Pi), false positives fpx (i.e. pixels
in x, but not in Pi) and false negatives fnx (i.e. pixels in Pi, but not in
x). Based on this, we calculate for every candidate region x sensitivity,
specificity and F-score:

sex =
tpx

tpx + fnx
, spx =

tpx

tpx + fpx
, Fx =

2 ∗ sex ∗ spx

sex + spx
(16)

Finally, we select for each positive label Pi the candidate region with
the highest F-score, and the union of these regions is used as positive
training samples SP (I):

SP (I) =
∪

1≤i≤n

argmax
x∈Ci(I)

(Fx) (17)

For efficient calculation, the training algorithm can also be integrated
into the framework described in Nistér and Stewénius (2008).

fastER 5

A B C D E

Fig. 3. fastER is robust against challenges for automated image segmentation that are typical in large-scale cell microscopy and supports various cell and image acquisition types. The upper
row shows image patches from different cell microscopy experiments and the lower row the corresponding segmentation results obtained with fastER (see Table 3 for quantitative evaluation
of segmentation quality). Each image patch illustrates one typical problem (contrast of all images was enhanced for display only). (A) Phase-contrast image of HeLa cells from (Arteta
et al., 2012) with high cell densities. (B) Brightfield image of differentiating murine blood progenitor cells with varying cellular morphologies. (C) Brightfield image of murine embryonic
stem cells with complex cellular shapes. (D) Brightfield image of murine blood progenitor cells with varying image illumination. (E) Fluorescence image of murine embryonic stem cells
expressing NanogKATUSHKA fusion proteins (Filipczyk et al., 2013) with low and varying signal-to-noise ratios.

3 Results
Figure 3 illustrates that fastER supports various cell and image acquisition
types and is robust against common challenges for automated cell
segmentation in large-scale microscopy. For quantitative comparison of
segmentation speed and quality, we chose five state of the art methods:
U-Net (Ronneberger et al., 2015; Çiçek et al., 2016), a recently published
deep learning method using a convolutional neural network (CNN) that
has outperformed other approaches on very challenging light microscopy
images of cells, is comparably fast, and can be trained from sparse
annotations; Ilastik (Sommer et al., 2011), which is a general purpose
segmentation tool that also uses machine learning and supports interactive
training; CellProfiler (Carpenter et al., 2006), which supports various
algorithms and is one of the most widely used tools for cell segmentation;
CellX (Dimopoulos et al., 2014; Mayer et al., 2013), which implements
a recently published method that produces highly accurate segmentation
results when applied on suitable images; and CellDetect because of its
algorithmic similarity with fastER.

For evaluation, we used two sets of real and one set of synthetic
cell microscopy images: dataset PC (Fig. 4A) from Arteta et al. (2012)
contains 22 phase contrast images (each 400× 400 pixels) of HeLa cells;
dataset BF (Fig. 4B) from a long-term time-lapse microscopy experiment
contains 17 brightfield images (each 1388×1040 pixels) of murine blood
stem and progenitor cells; and dataset FL (Fig. 4C) contains 20 synthetic
fluorescence images (each 1200× 1200 pixels) that were generated with
SimuCell (Rajaram et al., 2012) (see Supplementary Note 2.1). Datasets
PC and BF exhibit high cell densities, varying cellular morphologies and
uneven image illumination. While strong gradients of image illumination
as in dataset BF should ideally be prevented during image acquisition,
they often cannot be avoided without excluding typical microscopy and
incubation hardware or discarding large parts of imaging data. The dataset
is a good benchmark for robustness against such problems. The cells
in dataset FL have different sizes as well as low and varying signal-to-
noise ratios (SNRs), which are typical for images of primary cells. We
chose to use synthetic fluorescence images, because the precise manual

Table 2. Evaluation of segmentation speed. The average time required
by each method to segment a single image from dataset BF (Fig. 4B)
was measured (see text for details).

Method
On CPUa

or GPUb

Avg. time per
image [sec.]

Avg. time per image
relative to fastER

fastER CPU 0.363 ± 0.03 ×1

U-Netc GPU 7.13 ± 0.02 ×19.6

CellProfiler CPU 11.8 ± 0.6 ×32.4

CellDetect CPU 47.2 ± 0.8 ×129.9

ilastik CPU 52.5 ± 2.0 ×144.4

CellX CPU 94.9 ± 2.3 ×261.1

aUsing one core of an Intel Core i5 CPU (2.90 GHZ) for all methods.
bUsing an Nvidia GeForce GTX 1080 (8 GB).
cNote, however, that the CPU and GPU times measured here are hardly
comparable: e.g., batch-processing images of the same size with fastER
using all four cores of a Core i7-4790K (4 GHZ) is about 150 times faster
than with U-Net running on the GeForce GTX 1080.

segmentation required for ground truth generation can be difficult for cells
with low SNRs (consider e.g. Fig. 3E).

Evaluation of segmentation speed

To evaluate practical runtime, we selected three images with low, medium
and high cell densities, respectively, from dataset BF and measured for
each method the average segmentation time per image. U-Net requires
GPU acceleration for optimal performance and was run on an Nvidia
GeForce GTX 1080 (8 GB) graphics card. The remaining methods were
run on an Intel Core i5-3380M CPU (2.90 GHZ) ensuring that only one
CPU core could be used by each implementation to make the results
comparable. This was repeated 50 times for each method to average out
random fluctuations. We used the same parameters for each method as for
the evaluation of segmentation quality (see next section). Time for image
pre-processing (i.e. denoising for fastER and illumination correction for
CellProfiler) was included, but time for post-processing (filling of holes

6 O. Hilsenbeck et al.

A

B

C

Fig. 4. Example images from the datasets used for evaluation of segmentation quality
(Table 3). (A) Dataset PC from Arteta et al. (2012) contains 22 phase contrast images of
HeLa cells. (B) Dataset BF from a long-term time lapse microscopy experiment contains 17
brightfield images of blood stem and progenitor cells. (C) Dataset FL contains 20 synthetic
fluorescence images. Contrast of all images was enhanced for display only.

and size filter) was only included for fastER, because it proved negligible
for the other methods. The results (Table 2) show that fastER outperformed
the other methods. U-Net is relatively fast as well when compared with the
single-core CPU speeds of the other methods. However, it is also clearly
outperformed by fastER, especially when batch-processing images using
all cores of a more powerful CPU. It is important to point out that this
evaluation only considered segmentation, but not training speed.

Evaluation of segmentation quality

Each dataset was divided into a training and a test set, and to evaluate
a method on a dataset, it was first tuned using only the corresponding
training set (see Supplementary Note 2.2 for complete details). fastER
first denoises images with bilateral filtering (Tomasi and Manduchi, 1998)
using parameters automatically derived from the training labels. For U-
Net, pixel weight maps required to learn separation of adjacent cells were
generated. The data deformation and value augmentation layers included
with 3D U-Net were added to the 2D U-Net network, and their parameters
were adjusted for each dataset. In dataset BF, the mean was subtracted
from each image, and dropout layers were disabled, as this seemed to
improve results strongly for this dataset. For Ilastik, a foreground and a
background class were created. All features with all sizes were selected
for datasets PC and FL. Features not improving segmentation quality were
excluded for dataset BF to increase segmentation speed since this dataset
was also used for runtime evaluation. Results were exported using the

Table 3. Evaluation of segmentation quality. Detection accuracy (F-score),
segmentation accuracy (Jaccard index) and merge errors (relative to the
total number of cells) were quantified for 3 challenging datasets (n denotes
the total number of cells in each dataset; see text for details).

Dataset Method F-scorea Jaccard indexa Merge
ratea

PC
n=1142

fastER 97.2 74.9 ± 11.2 2.01

ilastik 97.2 73.5 ± 10.9 1.93

CellX 86.1 49.4 ± 11.4 3.33

CellDetect 97.1 67.4 ± 11.7 2.01

CellProfiler 76.6 69.5 ± 14.0 0.61

U-Net 97.4 74.4 ± 9.1 2.19

BF
n=1464

fastER 97.5 81.6 ± 9.2 0.48

ilastik 97.6 75.2 ± 8.7 0.41

CellX 87.9 46.3 ± 23.8 0.00

CellDetect 95.8 83.5 ± 6.9 2.32

CellProfiler 78.2 63.0 ± 14.0 0.41

U-Net 97.0 82.7 ± 6.9 1.91

FL
n=5000

fastER 99.8 87.7 ± 9.7 0.14

ilastik 99.9 88.8 ± 5.1 0.04

CellX 92.8 78.7 ± 11.7 0.00

CellDetect 99.8 71.3 ± 12.6 0.00

CellProfiler 99.5 82.1 ± 10.5 0.34

U-Net 99.9 92.1 ± 3.8 0.32

aMultiplied by 100 for better readability.

Simple segmentation option. For CellX and CellDetect, images of dataset
FL were first denoised with Gaussian blurring. For CellProfiler, after
illumination correction in dataset BF and Gaussian blurring in dataset FL,
seeds were detected with IdentifyPrimaryObjects, and the results were
refined with IdentifySecondaryObjects using Watershedding (Vincent and
Soille, 1991). The segmentation results of all methods were post-processed
by filling holes (if not already done) and subsequent size filtering with
mostly identical parameters (these were only adjusted for individual
methods if the detection accuracy would have been impaired otherwise).
The parameters of CellX and CellProfiler were tuned extensively (Ilastik
and CellDetect required only labelled training images). The results of each
method were then compared with a ground truth segmentation (which was
manually created for datasets PC and BF). The additional preprocessing
steps were added to the other methods specifically for each dataset to
optimize their results, if possible, and thus enable fair evaluation of their
segmentation quality. However, this extensive tuning of segmentation
methods requires expert knowledge and is thus not feasible for many
typical users. Additionally, tuning a large numbers of parameters (as
required e.g. for CellProfiler) is very time consuming, but we did not
consider the time required for this in the evaluation.

To quantify detection accuracy, we counted for each method and dataset
true positives (i.e. detected cells containing the centroid of exactly one
of the ground truth cells), false positives (i.e. detected cells containing
no centroids of the ground truth cells) and false negatives (i.e. ground
truth cells whose centroids were not contained in any detected cell). From
this, we calculated precision, recall and F-score, which summarizes the
detection accuracy (formulas shown in equation 16). Since this does not
take into account merge errors, we counted them separately: if a detected
cell contained n > 1 centroids of reference cells, the number of merge
errors was increased by n − 1. To quantify segmentation accuracy, we
calculated the Jaccard index for each detected cellA that contained exactly
one centroid of a ground truth cell B: J(A,B) = |A ∩B|/|A ∪B|.

It quantifies pixel-wise overlap between a detected cell and the
corresponding reference cell and is always between 0 and 1, where 0

fastER 7

0 2 4 6
10

2

10
3

10
4

10
5

Time [days]
0 2 4 6

0

2

4

6

x 10
4

Time [days]

N
u

m
b

e
r

o
f

c
e

lls

A B

Fig. 5. Population dynamics of in-vitro blood formation. Differentiating and proliferating
blood and progenitor cells were cultivated in vitro for six days and imaged every three
minutes with brightfield microscopy. The cells were then segmented and counted with
fastER. The results, shown with regular (A) and logarithmic scale (B), reveal that the
number of cells remained approximately constant for about one day and grew exponentially
afterwards.

indicates no overlap and 1 perfect match. Outlines were only annotated
for a random subset of ground truth cells (i.e. for 465 out of 1142 and
1188 out of 1464 cells in the test sets of datasets PC and BF, respectively)
and only centroids for the remaining cells. All cells in the test sets were
then used to calculate F-scores and merge errors, but in dataset PC and BF
only completely labelled cells were used to calculate Jaccard indexes (the
test set of synthetic dataset FL contained 5000 cells with complete ground
truth).

In Table 3, F-score, average Jaccard index with standard deviation
and merge errors are reported for each method and dataset. For dataset
PC, fastER, ilastik and U-Net achieved the highest F-Scores and Jaccard
indexes, producing nearly identical segmentation quality. CellProfiler
produced fewer merge errors than all other methods, but performed poorly
regarding the other measures. For dataset BF, ilastik achieved the highest
F-score, which was, however, again very similar to the F-scores of fastER
and U-Net. CellDetect achieved the highest Jaccard index, but also a
slightly lower F-score and more merge errors than any other method. U-Net
achieved the second highest Jaccard index, but produced also a comparably
high number of merge errors. For dataset FL, U-Net and ilastik achieved the
highest F-score, but the value was again very similar to that of fastER. U-
Net achieved the highest Jaccard index, but produced again a comparably
high number of merge errors.

The detection accuracy of fastER was highly comparable with the
best in all datasets. CellDetect and U-Net achieved higher segmentation
accuracies in datasets BF and PC, respectively, but at the expense of more
merge errors. Ilastik produced comparably high segmentation quality in all
datasets, but no method clearly outperformed the others. Which method
to choose for optimal results thus depends on the used cell and image
acquisition type, but also on the purpose of cell segmentation. Automated
cell tracking, for example, is typically stronger affected by merge errors
than by low segmentation accuracy.

Population dynamics of in-vitro blood formation

As proof of concept, we analysed the population dynamics of in-vitro
blood formation using long-term time-lapse microscopy. Primary murine
blood stem and progenitor cells (purified by CD150+ CD34- cKIT+ Sca-
1+ Lin- CD48-/low phenotype from mouse bone marrow) were cultivated
in differentiation conditions for six days and imaged with brightfield
microscopy about every three minutes. This resulted in over 200,000
images (1388× 1040 pixels each), in which cells were then segmented and
counted using fastER (see Supplementary Note 3 for details). The results

(Fig. 5) reveal that the number of cells remained approximately constant
for about one day and grew exponentially afterwards. In total, more than
46,000,000 single cells were segmented and counted, but the analysis
required only 2 hours and 37 minutes on a regular desktop computer (Intel
Core i7-4790K @ 4.00 GHZ, 16 GB RAM, Windows 7 64-bit).

4 Discussion
Reliable and fast automated cell segmentation in high-throughput imaging
data is crucial for many areas of biological and medical research (Etzrodt
et al., 2014; Hoppe et al., 2014). Due to inherent problems (e.g. high
cell density, cell-to-cell heterogeneity, low and variable signal-to-noise
ratios, illumination gradients, changing imaging modalities, etc.) of
typical cell imaging data, unsupervised segmentation solutions working
for many current and future imaging experiments without extensive
parameter tuning do not exist, and will likely remain impossible. Adaptable
algorithms that allow efficient and user-friendly training on new datasets
are therefore crucial to enable cell segmentation not only in individual
specific datasets (Meijering, 2012).

We therefore developed fastER, which can be adapted efficiently to
different imaging datasets and then allows fast and accurate automated
segmentation in large volumes of data. Quantitative evaluation confirmed
that fastER is orders of magnitude faster than existing methods, while
producing state of the art segmentation quality even for challenging image
data. fastER thus enables analysis of large-scale experiments without
access to high performance computing facilities, which are not available in
most typical laboratories. Importantly, it also enables on the fly analysis of
running experiments. fastER does not use the structured SVM framework
(Tsochantaridis et al., 2004) employed by CellDetect and much less
features. It can therefore be trained much faster (e.g., for dataset BF,
training required only about 0.6 seconds for fastER compared to 13

minutes for CellDetect on the computer used for the proof of concept). It
can thus display segmentation results in a real-time live preview when the
user adds, changes or removes a training label (Supplementary Movie 1).
This gives crucial immediate feedback on whether the method is applicable
(i.e. when fitting candidate regions can be found), where to add new
labels (i.e. where segmentation errors occur), and when to stop training
(i.e. when segmentation quality does not improve any more when adding
new labels). The included training algorithm efficiently extracts training
samples from rough user annotations. Importantly, and in contrast to many
other methods, no other parameters or processing steps need to be specified
manually. fastER therefore is efficient and easy-to-use also for non-experts.
U-Net is also applicable to a wide range of analysis problems, but requires
a much larger amount of precisely annotated training data, which is not
available for many typical experiments. In addition, training takes several
hours even with a high-end GPU, thus making iterative labelling and
parameter tuning extremely inefficient. This is a major usability problem,
because training is crucial to obtain optimal results for a specific dataset.

fastER supports images of various cell types from different imaging
approaches, and is robust against common challenges for automated
cell segmentation in large-scale microscopy. fastER works best with
transmitted light images acquired slightly out of focus (Supplementary
Fig. 1), but this does not increase acquisition time or photo-toxicity. As
with other segmentation approaches, limitations remain, e.g. when high
cell densities and blurring in fluorescence microscopy impair accurate
segmentation with extremal regions. However, through interactive training
with immediate feedback, users can quickly determine whether fastER is
applicable to a given dataset.

We have implemented fastER in C++ for optimal speed and usability,
but segmentation results are stored in standard formats and can thus easily
be opened with existing image analysis software for further processing.
fastER supports the experiment structure used by tTt and qTfy (Hilsenbeck

8 O. Hilsenbeck et al.

et al., 2016), but other experiments can be opened as well without requiring
conversion. It includes a batch-processing mode that uses all available CPU
cores for segmentation. We open-source fastER and provide binaries for
Windows and Linux (it can also be compiled for OS X). Early versions
of fastER are successfully used in several research projects of our and
collaborating laboratories (Filipczyk et al., 2015; Hoppe et al., 2016),
where it has become a core software component and will thus be maintained
and extended for many years to come.

Acknowledgements
This work was supported by the SNF to TS. TS and OH acknowledge
financial support for this project from SystemsX.ch.

References
Arteta, C. et al. (2012). Learning to Detect Cells Using Non-overlapping

Extremal Regions. In Medical Image Computing and Computer-Assisted
Intervention, pages 348–356. Springer.

Arteta, C. et al. (2013). Learning to detect partially overlapping instances.
In Proceedings of the IEEE Conference on Computer Vision And Pattern
Recognition, pages 3230–3237.

Arteta, C. et al. (2016). Detecting overlapping instances in microscopy
images using extremal region trees. Medical image analysis, 27, 3–16.

Buggenthin, F. et al. (2013). An automatic method for robust and fast cell
detection in bright field images from high-throughput microscopy. BMC
Bioinformatics, 14(1), 297.

Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern
Recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

Carlinet, E. and Geraud, T. (2014). A Comparative Review of Component
Tree Computation Algorithms. IEEE Transactions on Image Processing,
23(9), 3885–3895.

Carpenter, A. E. et al. (2006). CellProfiler: image analysis software for
identifying and quantifying cell phenotypes. Genome Biology, 7(10),
R100.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2(3), 1–27.

Çiçek, Ö. et al. (2016). 3d u-net: Learning dense volumetric segmentation
from sparse annotation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 424–432.
Springer.

Cipolla, R. et al. (2013). Machine Learning for Computer Vision. Springer.
Cohen, A. R. et al. (2010). Computational prediction of neural progenitor

cell fates. Nature Methods, 7(3), 213–218.
Dimopoulos, S. et al. (2014). Accurate cell segmentation in microscopy

images using membrane patterns. Bioinformatics, 30(18), 2644–2651.
Eilken, H. M. et al. (2009). Continuous single-cell imaging of blood

generation from haemogenic endothelium. Nature, 457(7231), 896–900.
Eliceiri, K. W. et al. (2012). Biological imaging software tools. Nature

Methods, 9(7), 697–710.
Etzrodt, M. et al. (2014). Quantitative Single-Cell Approaches to Stem

Cell Research. Cell Stem Cell, 15(5), 546–558.
Filipczyk, A. et al. (2013). Biallelic Expression of Nanog Protein in Mouse

Embryonic Stem Cells. Cell Stem Cell, 13(1), 12–13.
Filipczyk, A. et al. (2015). Network plasticity of pluripotency transcription

factors in embryonic stem cells. Nature Cell Biology, 17(10), 1235–
1246.

Funke, J. et al. (2015). Learning to segment: Training hierarchical
segmentation under a topological loss. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages
268–275. Springer.

Hilsenbeck, O. et al. (2016). Software tools for single-cell tracking
and quantification of cellular and molecular properties. Nature
Biotechnology, 34(7), 703–706.

Hoppe, P. S. et al. (2014). Single-cell technologies sharpen up mammalian
stem cell research. Nature Cell Biology, 16(10), 919–927.

Hoppe, P. S. et al. (2016). Early myeloid lineage choice is not induced by
random PU.1 / GATA1 protein ratios. Nature, 535(7611), 299–302.

Li, F. et al. (2013). Chapter 17: Bioimage Informatics for Systems
Pharmacology. PLoS Computational Biology, 9(4), e1003043.

Liu, T. et al. (2012). Watershed merge tree classification for electron
microscopy image segmentation. In Pattern Recognition (ICPR), 2012
21st International Conference on, pages 133–137. IEEE.

Magnusson, K. E. G. et al. (2015). Global Linking of Cell Tracks Using
the Viterbi Algorithm. IEEE Transactions on Medical Imaging, 34(4),
911–929.

Matas, J. et al. (2002). Robust Wide Baseline Stereo from Maximally
Stable Extremal Regions. In Procedings of the British Machine Vision
Conference 2002, pages 384–393. British Machine Vision Association.

Mayer, C. et al. (2013). Using CellX to Quantify Intracellular Events.
Current Protocols in Molecular Biology, 14, 1–21.

Meijering, E. (2012). Cell Segmentation: 50 Years Down the Road [Life
Sciences]. IEEE Signal Processing Magazine, 29(5), 140–145.

Myers, G. (2012). Why bioimage informatics matters. Nature Methods,
9(7), 659–660.

Najman, L. and Couprie, M. (2006). Building the Component Tree in
Quasi-Linear Time. IEEE Transactions on Image Processing, 15(11),
3531–3539.

Nistér, D. and Stewénius, H. (2008). Linear Time Maximally Stable
Extremal Regions. In ECCV 2008, pages 183–196. Springer.

Peng, H. (2008). Bioimage informatics: a new area of engineering biology.
Bioinformatics, 24(17), 1827–1836.

Rajaram, S. et al. (2012). SimuCell: a flexible framework for creating
synthetic microscopy images. Nature Methods, 9(7), 634–635.

Rieger, M. A. et al. (2009). Hematopoietic cytokines can instruct lineage
choice. Science, 325(5937), 217–8.

Ronneberger, O. et al. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI), volume 9351 of LNCS,
pages 234–241. Springer.

Schiegg, M. et al. (2014). Graphical model for joint segmentation and
tracking of multiple dividing cells. Bioinformatics, 31(6), 948–956.

Schroeder, T. (2008). Imaging stem-cell-driven regeneration in mammals.
Nature, 453(7193), 345–351.

Schroeder, T. (2011). Long-term single-cell imaging of mammalian stem
cells. Nature Methods, 8(4s), S30–S35.

Skylaki, S. et al. (2016). Challenges in long-term imaging and
quantification of single-cell dynamics. Nature Biotechnology, 34(11),
1137–1144.

Sommer, C. et al. (2011). Ilastik: Interactive learning and segmentation
toolkit. In 2011 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, pages 230–233. IEEE.

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color
images. In Sixth International Conference on Computer Vision, pages
839–846. IEEE.

Tsochantaridis, I. et al. (2004). Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the
twenty-first international conference on Machine learning, page 104.

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: an efficient
algorithm based on immersion simulations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(6), 583–598.

Zanella, F. et al. (2010). High content screening: seeing is believing.
Trends in Biotechnology, 28(5), 237–245.

