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ABSTRACT

Due to modeling and experimental imperfections, multispectral optoacoustic tomography images are often af-
flicted with negative values, which are further amplified when propagating into the spectrally unmixed images
of chromophore concentrations. Since negative values have no physical meaning, accuracy can potentially be
improved by imposing non-negativity constraints on the initial reconstructions and the unmixing steps. Herein,
we compare several non-negative constrained approaches with reconstruction and spectral unmixing performed
separately or combined in a single inverse step. The quantitative performance and sensitivity of the differ-
ent approaches in detecting small amounts of spectrally-distinct chromophores are studied in tissue-mimicking
phantoms and mouse experiments.

Keywords: Optoacoustic/photoacoustic tomography, multispectral imaging, spectral unmixing, non-negative
constraint

1. INTRODUCTION

Multispectral optoacoustic tomography (MSOT) renders the distribution of spectrally-distinctive optical ab-
sorbers deep inside scattering tissues.1–5 Images representing the distribution of absorbing substances are
commonly obtained via a two-step procedure.6 First, the optical absorption distribution within the tissue is
separately reconstructed for each illumination wavelength. Subsequently, contributions of the different absorbers
(chromophores) are separated via a multispectral unmixing algorithm.

Due to experimental and modeling imperfections, negative values often appear in both the reconstructed
optical absorption images and the spectrally unmixed images. Since negative values have no physical meaning,
accuracy and quantitativeness can potentially be improved by imposing non-negativity constraints on the recon-
struction and unmixing steps. With these additional constraints, the reconstruction and unmixing problems can
no longer be considered linear transformations, thus the final result greatly depends on the particular model and
on the imposed constraints.

Herein, we compare several non-negative constrained approaches where reconstruction and unmixing are
either combined in a single inverse step or solved as separate problems. The results are further compared to
the equivalent unconstrained approaches. The quantitative reconstruction performance and sensitivity of the
different methods in detecting small chromophore concentrations is tested in tissue-mimicking phantoms and
with real mouse imaging data. Our results allow establishing the most efficient methods for resolving the spatial
distribution of spectrally-distinct absorbing substances.
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2. THEORY

In this section, we describe the theoretical basis of MSOT. We introduce the linear forward model used for the
reconstruction of the optical absorption and the linear unmixing model used for multi-spectral unmixing. Based
on these forward models, we formulate least-squares problems which can be solved with and without additional
non-negativity constraints.

2.1 Model-based Reconstruction

Model-based reconstruction makes use of a discrete linear model that maps the energy absorbed at different
pixel locations after excitation with a laser pulse to the time-sampled pressure signals observed at the ultrasonic
transducers. This linear model is derived from the optoacoustic wave equation, which under the thermal and
stress confinement conditions and for excitation with a Dirac impulse, is given by7

∂2p(r, t)

∂t2
− c2∇2p(r, t) = ΓH(r)

∂δ(t)

∂t
, (1)

where Γ is the dimensionless Grüneisen parameter, c is the speed of sound in the medium and H(r) is the amount
of energy absorbed in the tissue per unit volume. The analytical solution of the wave equation (1) is given by
the Poisson-type integral7

p(r, t) =
Γ

4πc

∂

∂t

∫
S(r,ct)

H(r′)

|r − r′|
dr′, (2)

where S(r, ct) denotes the sperical surface with center r and radius ct. That is, integration is performed along
the spherical surface for which |r − r′| = ct. For a cross-sectional (two-dimensional) acquisition geometry, the
solution simplifies to8

p(r, t) ≈ Γ

4πc

∂

∂t

∫
L(r,ct)

H(r′)

|r − r′|
dr′, (3)

where L(r, ct) is a circumference with radius ct.

The linear relationship between pressure and absorption in (3) needs to be discretized to apply numerical
reconstruction methods. One discretization approach which allows for efficient implementation of the reconstruc-
tion has been proposed recently in.9 The discretization procedure leads to the desired discrete linear forward
model

p = Ah, (4)

with a model matrix A that relates the optical absorption at all pixels in h to the time-discrete, stacked pressure
signals at all transducers in p. To reconstruct the absorption h from actually measured pressure signals pm, we
solve the least-squares problem

ĥ = arg min
h

‖Ah− pm‖22. (5)

A regularization term might be added to the cost function in (5), but is usually unnecessary for a two-dimensional
setup with sufficient angular coverage.10 The solution to the least-squares problem is given by

ĥ = A+pm, (6)

where A+ denotes the Moore-Penrose pseudoinverse of A.

2.2 Linear Unmixing

In MSOT, image acquisition is done for multiple wavelengths. For different wavelengths, we get different images
of the optical absorption. The absorption coefficient µa(λ, r) at a location r for a wavelength λ is given by the
molar extinction coefficients of the absorbing substances εj(λ), j = 1, . . . , S, weighted by their concentration
cj(r) at that location

µa(λ, r) =

S∑
j=1

εj(λ)cj(r). (7)
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The optical absorption is then given by

h(λ, r) = Φ(λ, r)µa(λ, r), (8)

where Φ(λ, r) is the local light fluence for wavelength λ. Since the light fluence is difficult to measure or estimate,
we use the common simplification to assume that the spectral variations in Φ(λ, r) are negligible compared to
those in the εj(λ). That is Φ(λ, r) = Φ(r).

Let Φ denote the vector containing the light fluence at all pixel locations, H = [h(λ1), . . . ,h(λW )] the matrix
that contains the optical absorption images for different measured wavelengths λi and cj the vector that contains
the concentrations of substance j at all pixel locations. With the matrix of all extinction coefficients

E =

ε1(λ1) · · · ε1(λW )
...

. . .
...

εS(λ1) · · · εS(λW )

 (9)

and the matrix that contains the Hadamard products of fluence and concentration C = [c1�Φ, . . . , cS �Φ], we
can finally write the optical absorption as

H = CE. (10)

To perform unmixing of the (weighted) concentration images of the different substances given the previously
reconstructed images of the optical absorption, we solve another least squares problem

Ĉ = arg min
C

‖CE − Ĥ‖22 (11)

with the solution
Ĉ = ĤE+ = A+PmE+, (12)

where Pm = [pm(λ1), . . . ,pm(λW )] collects the pressure signals measured at different wavelengths.

Note that, since matrix multiplication is associative, the order of unmixing and reconstruction can be ex-
changed. In fact, the reconstructed absorption in (12) is the solution to the combined (reconstruction and
unmixing) least-squares problem

Ĉ = arg min
C

‖ACE − Pm‖22. (13)

Thus, directly solving the combined problem based on linear model that maps the concentrations to the pressure
signals

P = ACE (14)

or solving reconstruction and unmixing separately yields equivalent results. However, if additional constraints
are taken into account, such as a non-negativity constraint, the results are no longer the same.

2.3 Non-negative Constrained Approaches

Since negative values have no physical meaning, we can apply non-negative constraints to any of the previ-
ously introduced inversion problems to improve the reconstruction quality. For example, for the tomographic
reconstruction problem, we simply add a non-negativity constraint to the least-squares problem to get

Ĥ = arg min
H>0

‖AH − Pm‖22. (15)

The subsequent non-negative constrained unmixing problem is given by

Ĉ = arg min
C>0

‖CE − Ĥ‖22. (16)

On the other hand, we can also formulate the combined problem as a non-negative constrained inversion problem

Ĉ = arg min
C>0

‖ACE − Pm‖22. (17)
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Note that C > 0 implies that H = CE > 0 since all entries in E are non-negative. The results of (16) and (17)
will be different due to the non-linearities resulting from the non-negativity constraints. The total residual,
i.e., ‖ACE − Pm‖22 will be lower with the solution to (17) since this solution actually minimizes the residual
for all non-negative concentrations. Separate processing, however, has advantages in terms of computational
complexity and is easily parallelized. As hybrid approach, non-negative constraints can be imposed solely on
certain columns of C corresponding to the optical absorbers of interest.

Note that, the non-negative constraint is not applicable for the purpose of signal unmixing prior to recon-
structions since P and PE+ might indeed have negative entries.

3. METHODS

In the previous section we have seen that non-negativity constraints can be added to different reconstruction and
unmixing problems. If those constraints are introduced and unmixing and reconstruction are done consecutively,
also the order matters. The relevant combinations are

• Constrained reconstruction followed by constrained unmixing (CR-CM)

• Constrained reconstruction followed by unconstrained unmixing (CR-UM)

• Unconstrained reconstruction followed by constrained unmixing (UR-CM)

• Unconstrained reconstruction followed by unconstrained unmixing (UR-UM), which is identical to solving
combined unconstrained problem

• Unmixing of the pressure signals followed by constrained reconstruction (UM-CR)

• Combined and constrained reconstruction and unmixing (CB1)

• Combined reconstruction and unmixing with a non-negative constraint only imposed on the contrast agent
of interest (CB2)

The unconstrained reconstruction problems are solved with the iterative LSQR method11 while the unconstrained
unmixing problems are solved directly, which is possible due to the small size of E. The constrained problems
with large dimensionality, i.e., the combined problems and the constrained reconstruction, are solved using an
efficient method for large non-negative constrained least-squares problems12 and the low-dimensional constrained
unmixing problems are solved with the fnnls method.13

The reconstruction performance of the given methods was analyzed experimentally in different setups with
different chromophores and contrast agents. The experiments were done with a commercial small animal multi-
spectral optoacoustic tomography scanner (Model: MSOT256-TF, iThera Medical GmbH, Munich, Germany)
which contains a wavelength-tunable (680-950nm) laser.

3.1 Phantom Experiment

In our first experimental, we imaged a cylindrical agar phantom with an diameter of 19mm, which contained
India Ink and Intralipid to mimick tissue background. We inserted two tubings at different depths, with varying
concentrations of AlexaFluor 750 (InvitrogenTM) measured by a spectrophotometer. We captured pressure
signals at 11 different wavelengths from 700 to 800 nm.

3.2 In Vivo Mouse Experiments

To assess the reconstruction performance in more realistic conditions, we use a similar setup but replace the
phantom with a mouse. All procedures involving animal care and experimentation were conducted according to
the guidelines of the Helmholtz Center Munich and the government of Upper Bavaria and complied with German
federal and international laws and regulations. The in vivo mouse experiment was terminal.

In the in vivo experiment, we inserted a polyethylene tubing into the rectum of the mouse. Then analogously
to the phantom experiment, we injected AlexaFluor 750 with different concentrations into the tubing. For each
concentration, cross-sectional images were taken at 10 different positions. Pressure signals were recorded at 22
wavelengts from 690 to 900 nm.
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Figure 1. Unmixing results for the phantom with background ink absorption and two insertions (tubes) containing the
AF750 dye. a)Spectra of AF750 and ink. b) Optoacoustic image acquired at 740 nm with 2.5 OD of AF750 insertion. c)
Unmixed image corresponding to the ink component obtained with the CR-CM method. d) Unmixed image corresponding
to the AF750 component obtained with the CR-CM method. e)-f) Pixel values of the unmixed image within the tubes
as a function of the optical density of AF750. g) The R2 values, representing quality of the linear fit in e) and f).

4. RESULTS

Results from the phantom experiment are summarized in Fig. 1. Fig. 1a) shows the normalized extinction
coefficients of the background (Ink) and the contrast agend (AF750). The reconstructed optical absorption at a
wavelength of 740 nm is depicted in Fig. 1b) and the unmixed concentrations are depicted in Fig. 1c) and d).
Here we show the result of unmixing for the CR-CM method, i.e., separate constrained reconstruction followed
by constrained unmixing.

The distribution of AF750 is confined within the tubings and no cross-talk artifacts are visible. The deeper
tubing exhibits a lower amplitude due to the light fluence attenuation. In the unmixed image of the Ink concen-
tration, we get a non-zero concentration at the position of the tubings, i.e., cross-talk artifacts are visible. To
evaluate the accuracy of the unmixing without knowledge of the light-fluence, we inject different concentrations
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Figure 2. Unmixing results for the in vivo mouse experiment. a) Unmixed distribution of AF750 obtained with the
CR-CM method. b) Unmixed optoacoustic signal within the tubes as a function of the optical density of AF750. c) Mean
R2 value of the linear fit of the curves in b) averaged over all 10 imaged cross-sections.

of the contrast agent into the tubing and then evaluate how close the resulting unmixed concentration comes to
the desired linear behavior. In Figures 1e) and f) we show the average unmixed concentration inside the two
tubings with respect to the actual concentration for the different unmixing/reconstruction methods. We observe
that all methods show similar linear behavior, with exception of the UR-CM method which shows strongly
non-linear behavior for low concentrations. This assessment is confirmed by the goodness of a linear fit to the
concentration curves which is depicted in Fig. 1g). We note that the result for the deeper tubing is always worse
due to the lower signal strength. The CB2 method exhibits the best linearity, however, the difference to most
other methods is minor.

The results of the in vivo mouse experiment are shown in Fig. 2. In short, the conclusions are similar as
for the phantom experiment. A representative unmixed image of AF750 is shown in Fig. 2a) superimposed
onto the image of the optical absorption taken at 800 nm. Same as for the phantom experiment, we show the
concentrations within the tubing obtained from the different methods with respect to the actual concentrations
in Fig. 2b). The unmixed concentrations are averaged over the ten different cross-sections of the mouse. The
goodness of the linear fits is presented in Fig. 2c). Again the UR-CM method clearly shows the worst performance.

5. DISCUSSION AND CONCLUSIONS

In model-based reconstruction for optoacoustic tomography, errors in the forward model due to approximations
and simplifications as well as noise lead to artifacts in the resulting images, such as physically meaningless
negative values. For multispectral optoacoustic tomography, the negative values appear in both the optoacoustic
reconstruction and the spectral unmixing steps. In this work, we analyzed multiple methods which impose
non-negativity constraints on the reconstructed optical absorption as well as the unmixed concentrations.

For an accurate model where the acquisition noise is the main detrimental factor for image quality, the method
that yields the lowest residual should also yield the most accurate images. However, while the method that solves
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the constrained combined problem in (17) (CB1) yields the lowest residual for any non-negative concentration,
it does not consistently outperform the other approaches. In our experiments, all methods except the UR-CM
method perform similarly. The combined approach (CB1) might be preferable once various remaining issues with
the forward model, such as the light fluence calculation have been solved in future work. Another interesting
aspect for future work would be to analyse other performance measures and see if we come to the same conclusion.
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