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Abstract
Recurrent translocations are well known hallmarks of many human solid tumors and
hematological disorders, where patient- and breakpoint-specific information may facilitate
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prognostication and individualized therapy. In thyroid carcinomas, the proto-oncogenes RET and
NTRK1 are often found to be activated through chromosomal rearrangements. However, many
sporadic tumors and papillary thyroid carcinomas (PTCs) arising in patients with a history of
exposure to elevated levels of ionizing irradiation do not carry these known abnormalities. We
developed a rapid scheme to screen tumor cell metaphase spreads and identify candidate genes of
tumorigenesis and neoplastic progression for subsequent functional studies. Using a series of
overnight fluorescence in situ hybridization (FISH) experiments with pools comprised of bacterial
artificial chromosome (BAC) clones, it now becomes possible to rapidly refine breakpoint maps
and, within one week, progress from the low resolution Spectral Karyotyping (SKY) maps or
Giemsa-banding (G-banding) karyotypes to fully integrated, high resolution physical maps
including a list of candiate genes in the critical regions.

Keywords
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1. Introduction
It is becoming increasingly clear that the pathogenesis of radiation-induced tumors is often
distinctly different from that of spontaneous, non-radiation-induced tumors. Our research
focuses on the physical mapping of proto-oncogenes related to tumorigenesis such as the
neurothrophic growth factor receptor 1, NTRK1 (also known as trk-A) [1], the development
of assays to detect chromosomal rearrangements leading to activation of oncogenes [2–5],
and the mapping of translocation breakpoints in spontaneous cases of PTC as well as tumors
in patients with a known history of either therapeutic or accidental exposure to ionizing
radiation [6–8].

While chromosomal rearrangements activating NTRK1 are relatively rare and not a marker
of exposure to ionizing radiation [9–12], the situation is different in cases with mutations
involving the cadherin-family associated cell surface receptor, RET, another receptor-type
tyrosine kinase (rtk) gene, found on Chromosome 10 [2–5,13–16].

Numerous studies could demonstrate a correlation between exposures to ionizing radiation
and particular RET/PTC rearrangements in vivo leading to the expression of chimaeric
proteins [17–22].

Fluorescence in situ hybridization is one of the most powerful tools to detect these genetic
aberrations underlying the expression of chimaeric proteins [23–25]. Such proteins alter the
signaling pathways in cells that have undergone neoplastic transformation [26–28].

Table 1 gives an overview of the most relevant RET/PTC rearrangements analyzed and
described to date.

More recent studies have shown that the most common RET/PTC1 and RET/PTC3
rearrangements map to the known fragile site FRA10G [39] and can be created in vitro with
fragile site-inducing chemicals such as aphidicolin [40].

Despite a high prevalence of mutations or rearrangements activating the rtks NTRK1 or
RET, many phenotypically similar tumors do not show this abnormality. Adding a further
level of complexity, in our studies of post-Chernobyl cases of PTC, only few tumors showed
clonal abnormalities in 100% of metaphase spreads like the case S96T (Figure 1) [7,8,25].
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We hypothesize that these normal-looking metaphase spreads carry small submicroscopic
lesions also known as cryptic translocations that are missed by the conventional methods of
metaphase cell analysis, i.e., G-banding, whole chromosome painting (WCP) or SKY [8,41–
43].

Therefore, we feel that it is necessary to combine a variety of cytogenetic techniques to
comprehensively describe all relevant aberrations. To further explore this, we utilized cell
lines established from three cases of radiation-induced childhood thyroid cancer: S96T, as
mentioned above, and S47T and S48T, as analyzed further in this publication.

Table 2 gives an overview over clinical details and findings from G-banding and FISH
studies in these cell lines.

The RET/NTRK1 status of the cell lines used in this study has been published previously
[17,34,45].

Now, if these oncogenic events arise from balanced intra- or interchromosomal
rearrangements, gene copy numbers remain unchanged compared to normal diploid cells,
and comparative genomic hybridization assays using either metaphase spreads [46],
oligonucleotide (Nimblegen; Affymetrix) or bacterial artificial chromosome arrays [47,48]
will fail to detect the abnormalities.

An additional complication in the definition of candidate genes for thyroid tumorigenesis is
the great variety in levels of heterogeneity found in primary cell cultures and even
established cell lines. Figure 2 illustrates this by presenting the results of our SKY analysis
of case S47T, a childhood case of post-Chernobyl PTC [8]. Roughly half of the S47T
metaphase spreads that we analyzed by SKY showed a balanced, reciprocal translocation
t(5;7)(q23;p15). The other spreads did not show chromosome 7 material translocated to the
der(5) (Figure 2, insert).

Similar challenges have been identified in previous publications analyzing PTC-associated
rearrangements with and without exposure to ionizing radiation.

Thus, we have to accept that no single cytogenetic technique will reliably detect all potential
aberrations found in the pathogenesis of radiation-induced (or indeed spontaneous) tumors.

In this communication we propose an algorithm utilizing a combination of cytogenetic
techniques of increasing resolution to comprehensively, expeditiously and cost-effectively
delineate chromosomal breakpoints in radiation-induced papillary thyroid carcinomas. By
utilizing publicly available resources, our aim was the development of a replicable, targeted
approach to breakpoint analysis which can be used by non-specialist laboratories worldwide.

2. Results and Discussion
Where significant heterogeneity is observed in cultured cell lines, such as in the case of
S47T, the possibility of contamination has to be considered. However, we exclude the
possibility of a contamination of these 2 cell lines (S47T and S96T) based on the fact that all
10 out of 10 G-banded metaphases showed the identical translocation (Table 2). Therefore,
the fact that individual metaphase spreads prepared from S47T showed two different der(7)
chromosomes in subsequent passages of S47T must be due to a deletion event that followed
the reciprocal t(5;7) translocation.
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Instead of immunofluorescence characterization of cell lines, we performed comprehensive
cDNA hybridization experiments. This elucidated DNA changes not visible by SKY or G-
banding techniques. Results from these studies have been published [7,17,45].

To develop and validate our algorithm, we focused our attention on cell line S48T.

Extensive G-banding analysis performed in the laboratories in Munich had indicated that
primary cultures derived from case S48T carried multiple chromosomal abnormalities. The
rearrangements were large in number and mostly unbalanced, which greatly complicated
conventional karyotyping based on G-banding analysis (Figure 3) [49]. The cloning of cell
line S48T has been described previously [42].

Our Spectral Karyotyping analysis (SKY), shown in Figure 3 below the G-banding results,
provided some additional clues to the origin of marker chromosomes.

Cell line S48T did not display signs of rearranged chromosomes 10, but a number of marker
chromosomes carrying material from either chromosome 1 or 9 caught our attention. The
long arm of chromosome 1 harbors the neurotrophic growth factor receptor kinase-1
(NTRK1) gene [1], which has been reported to be aberrantly expressed in various solid
tumors among them post-Chernobyl PTC [9,50].

In all S48T metaphase spreads, we found several marker chromosomes containing genetic
material from either chromosome 1 or 9. These common markers, three of which are derived
from chromosome 1 (Figure 4A) and four types derived from chromosome 9 (Figure 4B),
are shown in Figure 4.

Protein tyrosine kinases have been implicated in tumor initiation and progression [51–53]. In
gene expression studies reported elsewhere, we were able to demonstrate that cell line S48T
expresses the tyrosine kinase domain of NTRK-1 [44], which is normally located on the
long arm of chromosome 1, band q12–21 [1] at position 156,830,671–156,851,642 bp in the
UC Santa Cruz (UCSC) genome browser. For the analysis of chromosome 1
rearrangements, we pooled three individual BAC probes, since this has resulted in more
reliable FISH signals [45,54,55]. Hybridization of a combination of a biotinylated probe
DNA pool that maps close to NTRK1 at chromosome 1q12–21 (clones RP11-37N10,
RP11-71P2 and RP11-315I20) and a digoxigenin–labeled probe pool comprised of probes
RP11-262A11, RP11-299D6 and RP11-243J18 that bind close to non-muscle tropomyosin 3
(TMP3) (UCSC position 1: 154,127,780–154,155,725), a known translocation partner of
NTRK1 in solid tumor cell lines [50,56], revealed complex translocation and genome
amplification in line S48T (Figure 5). Two derivative chromosomes each carried 1 copy of
the ~10 Mbp region flanked by our probe pools (arrowheads in Figure 5), while a large
marker chromosome contained about 2.5 copies (arrow in Figure 5).

The results shown in Figure 5 confirm comparative genomic hybridization results that
indicated genomic amplification of the proximal long arms of chromosome 1 and
chromosome 9 in S48T [42].

The abnormal staining pattern of the large marker chromosome (arrows in Figure 6A,B)
prompted us to investigate the distribution of centromeric heterochromatin in this cell line.
Considered a rather rare event, some of the S48T metaphase spreads hybridized with the
alpha satellite DNA probe showed not just one, but two large dicentric chromosomes
(Figure 7, arrows).

Our strategy to rapidly map chromosomal breakpoints in metaphase spreads is based on
hybridization of increasingly smaller BAC-derived DNA probe pools. Figure 8 shows

Weier et al. Page 4

Genes (Basel). Author manuscript; available in PMC 2011 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



chromosome 9-specific examples: the top in (Figure 8A, B) shows the results obtained with
normal metaphase chromosomes, whereas the bottom shows chromosomes in S48T.

It should be noted that BAC-FISH is a very sensitive approach to detect translocations [57].

A single BAC clone is sufficient to highlight a small translocation as shown in the example
in Figure 9. Here, the BAC clone set contained one sub-telomeric clone that had been
assigned by mistake to chromosome 9ptel in one of the databases. As the hybridization
experiments showed, this clone maps to the telomere on the short arm of chromosome 8
instead (Figure 9).

Once a minimal breakpoint interval defined by a single BAC clone or a contig of 2–3 clones
is defined, genome databases can be consulted to search for candidate tumor-related genes.
For the small insertion into the t(8;9;15) chromosome in S48T this approach is illustrated in
Figure 10. This screen dump from the Genome browser web page at the University of
California, Santa Cruz (UCSC), shows a region of roughly 1.5 Mbp, which was found
inserted into the marker chromosome. Clones that were used in our hybridization
experiments are included in the set of FISH mapped clones shown in this Figure (i.e.,
RP11-92C4, RP11-91D7)

Interestingly, this region from the long arm of chromosome 9 contains the tumor growth
factor (TGF) beta receptor 1 (TGFBR1) gene, which when mutated or duplicated, alters the
transmission of the subcellular TGF beta signal and has been reported to cause a dominant
disease phenotype [48,58]. While these findings do not support a notion that TGF beta
duplications have a causal relationship to post-Chernobyl PTC, the observed gain might very
well alter the cells phenotype increasing their chances of survival and increased proliferation
in the tumor microenvironment. Conversely, this metabolomic change might become a
tumor s Achilles heel in efforts to devise more efficient anti-tumor therapies.

3. Experimental Section
3.1. Cell Cultures and Preparation of Metaphase Spreads

Normal human control metaphase spreads were made from phytohemagglutinin-stimulated
short-term lymphocyte cultures of blood obtained from a healthy male according to the
procedure described by Harper and Saunders [59]. Acetic acid-methanol fixed lymphocytes
were dropped on ethanol-cleaned slides in a CDS-5 Cytogenetic Drying Chamber
(Thermatron Industries, Inc, Holland, MI) at 25 °C and 45–50% relative humidity.

The PTC cultures were established as described by Lehmann et al. and Zitzelsberger et al.
[7,8]. All procedures followed protocols approved by the LBNL/UC Berkeley Institutional
Review Board (IRB) Committee on protection of Human Subjects in Research regarding use
of surplus surgical tissues for research. S48T lines were obtained from the tumor tissue of a
14 year old patient (7 years at time of exposure to elevated levels of radiation) undergoing
surgery at the Center for Thyroid Tumors in Minsk, Belarus, following the diagnosis of
Hashimoto s thyroiditis and PTC. Initial chromosome preparations were carried out after an
in vitro culture of S48T cells for 8–21 days. Later, clones were isolated by limiting dilution
and cultured for more than 20 passages. After G-banding with Wright s staining solution,
karyotypes were recorded according to the International System for Human Cytogenetic
Nomenclature [60].

3.2. Comparative Genomic Hybridization (CGH)
Comparative genomic hybridization [46] with DNA isolated from the primary culture as
well as cell lines established from case S48T was performed following standard procedures
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as described for a case S42T [6]. In brief, genomic DNA was isolated from the primary
culture as well as from cell lines and labeled with biotin-16-dUTP (Roche Applied Science,
Indianapolis, IN, USA). Normal female reference DNA was isolated from peripheral
lymphocytes of a healthy donor and labeled with dig-11-dUTP. After hybridization to
normal metaphase spreads of a healthy donor, labeled DNA probes were detected with
streptavidin-Cy2 or avidin DCS-FITC (Vector Inc., Burlingame, CA, USA) and anti-
digoxigenin-Cy3/rhodamine conjugates. Slides were counterstained with 4,6-diamidino-2-
phenyl-indole (DAPI, Calbiochem, La Jolla, CA, USA) for chromosome identification. For
CGH analysis, eight or more metaphases were analyzed. Averaged profiles were generated
by CGH analysis software (Vysis, Downers Grove, IL, USA) from 10–15 homologous
chromosomes and interpreted according to published criteria [61,62].

3.3. Spectral Karyotyping Analysis (SKY)
Spectral Karyotyping is a molecular cytogenetic procedure to screen the entire human
genome for interchromosomal translocations by hybridization of 24 different WCP probes
mixtures to metaphase spreads. We applied SKY to case S48T and identified complex
aberration patterns [8]. The SKY analyses followed essentially the recommendations of the
manufacturer of the reagents and the SKY imaging instrumentation (Applied Spectral
Imaging (ASI), Carlsbad, CA). Briefly, fixed cells on slides were pretreated with 50 μg/mL
pepsin (Amresco, Solon, OH) in 0.01N HCl for 10 min at 37 °C before immersion in
phosphate buffered saline (PBS) for 5 min. The slides were then incubated in
paraformaldehyde (PFA) solution (1% in PBS) for 5 min, then in PBS for 5 min. After
immersion in a 70%, 80%, 100% ethanol series for 3–5 min each step, the slides were air
dried. Cells on slides were denatured for 5 min at 76 °C in 70% formamide (FA)(Invitrogen,
Carlsbad, CA, USA)/2 × SSC and then dehydrated in 70%, 80%, and 100% ethanol (2 min
per step) before air drying.

Meanwhile, the hybridization mixture (ASI) containing 24 painting probes, each specific for
one human chromosome type and labeled with combinations of five different reporter
molecules was denatured for 5–6 min at 76 °C, and pre-annealed/-blocked for 30–90 min at
37 °C. The pre-blocked hybridization mixture was then applied to each slide, cover slips
were place on top and sealed with rubber cement. The hybridization reaction proceeded for
18–42 h at 37 °C, before the slides were washed three times for 10 min each at 43 °C in 50%
FA/2 × SSC, then twice in 2 × SSC (10 min each at 43 °C). The slides were mounted with 8
μL of 4,6-diamino-2-phenylindole (DAPI) (0.1 μg/mL) in antifade solution (0.1% p-
phenylenediamine dihydrochloride (Sigma, St. Louis, MO, USA), 0.1× phosphate buffered
saline (Invitrogen), 45 mM NaHCO3, 82% glycerol (Sigma), pH 8.0) and coverslipped.
Metaphases images were acquired with the Spectracube system (ASI) and analyzed with
SKYVIEW software [41,63].

3.4. Preparation of Locus-Specific DNA Probes (LSPs)
Our procedures for preparation of DNA probes from BAC/PAC clones [64,65] have been
described in detail before [1,66,67]. Prior to the chromosome 9-specific FISH studies, 151
BAC clones from the Sanger Center 1 Mbp set [47] were re-arrayed on two 96-well
microtiter plates (Table 3). Using information in publicly available databases
(http://genome.ucsc.edu/ and http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi), we selected
additional BAC clones for the long arm of chromosome 1 from the Roswell Park Cancer
Institute (RPCI) library RP11 [68] and for chromosome 9. A subtelomeric clone placed in
position A1 on Plate 1, GS1-41L13, is not shown in Table 3. This BAC maps to the short
arm of chromosome 8 (Figure 9).
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Individual clones were arranged so that the entire chromosome 9-specific clone set was
contained on two 96-well plates in 15 rows termed “pools” with 9–12 clones per pool in
individual wells (Figure 11). This created pools “9-1” to “9-15”, each of which covers a few
megabase pairs (Mbp) of DNA on chromosome 9 roughly equivalent to chromosomal bands.
Pools 9-1 to 9-5 (a total of 51 clones) and pools 9-6 to 9-15 (a total of 99 clones) map to the
short and long arm of chromosome 9, respectively. The pool coverage ranges from 3.85
Mbp for pool 9-8 to 12.88 Mbp for pool 9-5. When large numbers of clones were grown,
overnight cultures were done individually in 2 mL of Luria broth (LB) medium in 96 deep
well plates (Beckman, City of Hope, CA). Fewer individual clones were grown overnight in
up to 20 mL of Luria broth (LB) medium [69] containing 12.5 μg/mL chloramphenicol
(Sigma) and the DNA was extracted using an alkaline lysis protocol as described [70,71].
For preparation of DNA pools or “super-pools”, i.e., combination of two or more pools,
clones were grown individually and pooled prior to DNA extraction. Quality control and
quantification of the DNA was typically done by agarose gel electrophoresis and
fluorometry, respectively.

All DNA probes were prepared by random priming (BioPrime kit, Invitrogen, Carlsbad, CA,
USA) incorporating biotin-14-dCTP (part of the BioPrime kit), digoxigenin-11-dUTP
(dig-11-dUTP, Roche Applied Science), fluorescein-12-dUTP (Roche Applied Science),
Cy5-dUTP (Amersham, Arlington Heights, IN, USA) or Cy5.5-dCTP (Perkin Elmer,
Wellesley, MA, USA) [3,72,73]. Between 0.5 μL and 3 μL of each probe along with of 4 μL
human COT1 DNA (1 mg/mL, Invitrogen) and 1 μL salmon sperm DNA (20 mg/mL, 3′ -5′,
Boulder, CO, USA) were precipitated with 1 μL glycogen (Roche Applied Science, 1 mg/
mL) and 1/10 volume of 3 M sodium acetate in 2 volumes of 2-propanol, air dried and
resuspended in 3 μL water, before 7 μL of hybridization master mix (78.6% formamide
(FA), 14.3% dextran sulfate in 2.9× SSC, pH 7.0) were added. Thus, the total volume of the
hybridization mixture reached 10 μL. Hybridization and detection of bound probes followed
our published procedures [1–8,43]. Biotinylated and digoxigenin-labeled probes were
detected with avidin-FITC (Vector, Burlingame, CA, USA; green fluorescence) and
rhodamine-conjugated antibodies to digoxigenin (Roche Applied Science; red fluorescence).

In this communication, we will refer to the combination of all 150 BAC-derived DNA
probes as whole chromosome painting (WCP) probe and call combinations of pools 9.1–9.5
and 9.6–9.15 “chromosome arm probes (CAP)” for chromosome 9p and 9q, respectively. To
investigate chromosome 9 rearrangements in S48T with higher resolution, we labeled DNA
extracted from 9p-specific clone pools and chromosome 9q-specific, adjacent pairs of pools
with 5 different fluorochromes, and refer to these probes as “chromosomal rainbow probes
(CRP)”.

4. Conclusions
In many known instances, recurrent chromosomal rearrangements are not just random
events in solid tumors, but become apparent once cells carrying these abnormalities gain
growth advantages over other clones. Thus, knowledge regarding the physical location of
translocation breakpoints, activation of proto-oncogenes or inactivation of tumor suppressor
genes may provide crucial information for a better staging of tumors and/or the definition of
treatment regimens for individualized anti-tumor therapy.

Technical approaches described in this communication outline rapid and thus cost-efficient
ways to analyze a patient s karyotype and reveal abnormalities within a matter of days.
Utilizing resources that have been generated in the course of the International Human
Genome Project, such as BAC libraries providing multi-fold coverage of the human
genome, and avoiding the need for costly equipment, an average lab with basic
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instrumentation will now be able to perform and rapidly conclude high resolution physical
mapping experiments of cancer genomes.
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Figure 1.
G-banding karyotype of the PTC cell line S96T. The arrows point at the chromosomes
involved in the apparently balance reciprocal translocation t(10;22)(q11;q11).
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Figure 2.
Spectral Karyotype analysis of the PTC cell line S47T. The arrowheads point at the
abnormal chromosomes derived from the t(5;7)(q23;p15). The insert shows derivative
chromosomes from a metaphase spread that did not show chromosome 7 material on the
der(5).
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Figure 3.
G-banding and SKY analysis of PTC cell line S48T. Spectral Karyotype analysis of PTC
line S48T. The asterisks point at the abnormal chromosomes derived from the t(7;9;15).
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Figure 4.
(A) SKY classification images of abnormal metaphase chromosomes from S48T containing
genetic material derived from chromosome 1. The images show from left to right a t(1;4), a
t(1;6) and a der(1) chromosome; (B) SKY classification images of abnormal metaphase
chromosomes from S48T containing genetic material derived from chromosome 9. The
arrow points at the small insertion of chromosome 9 material into a der(8)t(8;15)
chromosome that we analyzed in more detail [42].
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Figure 5.
BAC-FISH analysis of the distribution of chromosome 1-derived material in metaphase
spreads from cell line S48T. The arrow points at a larger chromosome that carries an
amplified region derived from the proximal long arm of chromosome 1. The arrowheads
point at the two other der(1) chromosomes.
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Figure 6.
(A) The DAPI image of an interphase and a spread metaphase cell from cell line S48T; (B)
Hybridization of a whole chromosome painting probe specific for chromosome 9 highlights
the chromosomes that carry chromosome 9-derived material. The arrows in Figure 6 (A) and
(B) point at the large t(7;9;15) marker chromosome; arrowheads point at the small insertion
that we analyzed.
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Figure 7.
Pan-centromeric staining via in situ hybridization using an alpha satellite DNA con-sensus
sequence probe reveals the presence of large dicentric chromosomes in this metaphase
spread from cell line S48T. The chromosomes were counterstained with DAPI.
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Figure 8.
Chromosome 9-specific BAC pools for BAC-FISH. (A) Labeling of all clones with the same
reporter molecule creates a whole chromosome painting (WCP) probe; (B–C) Chromosome
arm probes (CAP) provide first clues to the origin of markers. The arrow in the S48T
metaphase in (C) points to the small insertion; (D) Chromosomal rainbow probes for
chromosome 9 (CRB9) allowed us to narrow down the origin of the inserted material to
chromosome 9, pools 10–11 (right) [42].
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Figure 9.
BAC-FISH results suggest a detection-sensitivity in the order of single BAC clones or
translocated genomic regions in the order of a few hundred kb. The yellow arrows point at
the signal generated by a chromosome 8ptel-specific BAC clone that was cohybridized with
the chromosome 9 specific BAC CAP probe sets.
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Figure 10.
Integrating FISH mapping results and genomic databases rapidly leads to the definition of
candidate tumor genes. The figure shows a genomic region of about 1.5 Mbp that was found
inserted into a t(8;15) chromosome.
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Figure 11.
Our BAC probe pooling strategy. Please note that the BAC clone in position A1 on Plate 1
was not used in the study of thyroid tissue described here.
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Table 1

RET/papillary thyroid carcinoma (PTC) rearrangements.

RET type Partner Gene Chromosomal positions Reference

RET/PTC 1 H4 (CCDC6, D10S170) inv10(q11.2;q21) [29]

RET/PTC 2 PRKAR1A t(10;17)(q11.2;q23) [30]

RET/PTC3; RET/PTC4 NCOA4 inv10(q11.2;q10) [18,31]

RET/PTC5 GOLGA5 (RFG5) t(10;14)(q11.2;q32) [32]

RET/PTC6 TRIM24 (HTIF1) t(7;10)(q32–34;q11.2) [20]

RET/PTC7 TIF1G (RFG7,TRIM33) t(1;10)(p13;q11.2) [20]

ELKS-RET ELKS (RAB6IP2) t(10;12)(q11.2;p13.3) [33]

RET/PTC8 KTN1 t(10;14)(q11.2;q22.1) [34]

RET/RFG9 RFG9 t(10;18)(q11.2;q21–22) [35]

PCM1-RET PCM1 t(8;10)(p21–22;q11.2) [36]

RFP-RET RFP (TRIM27) t(6;10)(p21;q11.2) [37]

HOOK3-RET HOOK3 t(8;10)(p11.21;q11.2) [38]
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