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Monomeric GLP-1/GIP/glucagon triagonism
corrects obesity, hepatosteatosis, and
dyslipidemia in female mice
Sigrid Jall 1,2, Stephan Sachs 1,6, Christoffer Clemmensen 1,2,3, Brian Finan 1,2,3, Frauke Neff 7,8,
Richard D. DiMarchi 4, Matthias H. Tschöp 1,2,3, Timo D. Müller 1,2,3,*, Susanna M. Hofmann 3,5,6,**
ABSTRACT

Objective: Obesity is a major health threat that affects men and women equally. Despite this fact, weight-loss potential of pharmacotherapies is
typically first evaluated in male mouse models of diet-induced obesity (DIO). To address this disparity we herein determined whether a monomeric
peptide with agonism at the receptors for glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon is
equally efficient in correcting DIO, dyslipidemia, and glucose metabolism in DIO female mice as it has been previously established for DIO male
mice.
Methods: Female C57BL/6J mice and a cohort of fatmass-matched C57BL/6J male mice were treated for 27 days via subcutaneous injections
with either the GLP-1/GIP/glucagon triagonist or PBS. A second cohort of C57BL/6J male mice was included to match the females in the duration
of the high-fat, high-sugar diet (HFD) exposure.
Results: Our results show that GLP-1/GIP/glucagon triple agonism inhibits food intake and decreases body weight and body fat mass with
comparable potency in male and female mice that have been matched for body fat mass. Treatment improved dyslipidemia in both sexes and
reversed diet-induced steatohepatitis to a larger extent in female mice compared to male mice.
Conclusions: We herein show that a recently developed unimolecular peptide triagonist is equally efficient in both sexes, suggesting that this
polypharmaceutical strategy might be a relevant alternative to bariatric surgery for the treatment of obesity and related metabolic disorders.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Obesity and its metabolic comorbidities like type 2 diabetes impose
major threats to global public health and socioeconomic prosperity
[1,2]. Lifestyle modification as a first intervention proves mostly
ineffective to fight excess adiposity [3,4]. The acceptance for ther-
apeutic or surgical intervention is considerably high, albeit con-
strained by substantial side effects [5]. Long-term studies clearly
suggest bariatric surgery as the most effective, yet most cost-
intensive therapy for sustained body weight normalization [6,7].
Approximately 80% of patients undergoing bariatric surgery are
women, although no differences in eligibility criteria between sexes
exist [8,9]. In sharp contrast to this, preclinical obesity studies largely
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neglect female rodents, because of a relative resistance to diet-
induced obesity and glucose intolerance that is typically observed
in most conventional strains [10,11]. A further concern is that sex
hormones and fluctuations in the estrous cycle can have an impact
on key metabolic endpoints and can increase the natural variance of
drug effects, resulting in the necessity for larger group sizes to detect
metabolic benefits [12,13]. Recent evidence shows that some
pharmacological treatment strategies have differing effects in women
and men, as well as higher rates of adverse drug reactions in women
[14,15]. This signifies that detailed pre-clinical investigations of
differences between the sexes are warranted to accurately assess
the therapeutic utility of drug candidates. In line with this notion, an
initiative of the U.S. National Institutes of Health (NIH) recently
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suggested to expand preclinical studies to also include female ro-
dents [16].
Whereas most previous weight-loss pharmacotherapies are hampered
by limited efficacy or unacceptable adverse effects, there is hope
resting on recent advances in the development of single molecules
which promote their biological action through simultaneous agonism
at multiple key metabolic receptors [17,18]. In this regard, a mono-
meric peptide with balanced agonism at the receptors for glucagon-
like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide
(GIP), and glucagon has previously been shown to correct diet-induced
obesity (DIO), dyslipidemia, and insulin resistance in male mice [19].
The principle underlying this molecule is that the anorectic action of
central GLP-1 receptor (GLP-1R) agonism synergizes with the action of
glucagon to increase energy expenditure, resulting in a net loss of body
weight. The combined glycemic action of GLP-1R and GIP receptor
(GIPR) agonism restrains the hyperglycemic effect of glucagon, im-
proves insulin sensitivity, and results in body weight improvements.
While the efficacy of this GLP-1/GIP/glucagon triagonist to correct the
metabolic syndrome has been shown in male mice [19], its metabolic
effects in female mice remain unknown. Accordingly, the aim of this
study was to comparatively evaluate the metabolic efficacy of this triple
agonist in female and male DIO mice.

2. MATERIALS AND METHODS

2.1. Animals and diet
Due to the fact that progression of obesity differs between both sexes,
with male mice gaining body fat more rapidly compared to female mice
[20], we determined metabolic effects of the triagonist in age-matched
male and female mice with similar body fat mass as well as in female
and male mice cohorts exposed for equal periods of time to high fat
diet feeding. Eight-week old female and male C57BL/6J mice (Charles
River Laboratories, Wilmington, MA) were fed a high-fat, high-sugar
diet (HFD) comprising 58% kcal from fat (D12331; Research Diets,
New Brunswick, NJ, USA). To match females in body fat mass, another
cohort of male C57BL/6J mice was switched from a regular diet to HFD
at 30 weeks of age. The mice were maintained at 23� 1 �C, constant
humidity, and on a 12-h lightedark cycle with free access to food and
water. At the age of 38 weeks, mice were randomized within the three
cohorts and equally distributed according to body composition. All
procedures were approved by the Animal Use and Care Committee of
Bavaria, Germany in accordance with the Guide for the Care and Use of
Laboratory Animals [21].

2.2. GLP-1/GIP/glucagon triple agonist
The synthesis, purification, and characterization of the GLP-1/GIP/
glucagon triagonist was described previously and was used without
any further chemical modification or change in formulation [19].

2.3. Evaluation of GLP-1/GIP/glucagon triagonist in females and
males in vivo
All female and male mice were treated daily via subcutaneous in-
jections (5 ml/g body weight) at the indicated doses. Vehicle mice
received an equivalent volume of PBS. Whole-body composition was
analyzed using nuclear magnetic resonance technology (EchoMRI,
Houston, TX, USA). In accordance with previous reports, glucose
tolerance was analyzed in 6-h fasted mice that received an intraper-
itoneal injection of 1.5 g glucose per kg body weight [22]. For the
tolerance test, glucose was measured in blood samples from the tail
veins at the indicated time points using a handheld glucometer (Abbott
GmbH & Co. KG, Wiesbaden, Germany).
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2.4. Biochemical analysis
For tissue analysis, mice were injected with the respective treatment
dose of the triagonist or vehicle and immediately fasted for 4 h prior to
sample collection. Plasma levels of insulin (ALPCO Diagnostics, Salem,
NH, USA), cholesterol (Thermo Fisher Scientific, Waltham, MA, USA),
free fatty acids, triglycerides (Wako Chemicals, Neuss, Germany), leptin
(ALPCO Diagnostics), fibroblast growth factor 21 (FGF21) (Merck Milli-
pore, Darmstadt, Germany), L-alanine:2-oxoglutarate aminotransferase
(ALT), and aspartate aminotransferase (AST) (Thermo Fisher Scientific)
were measured with the respective kits according to themanufacturers’
instructions. The homeostatic model assessment of insulin resistance
(HOMA-IR) was calculated using the formula: HOMA-IR ¼ [fasting in-
sulin (mU/l) * fasting glucose (mg/dl)/405] [23]. For lipoprotein sepa-
ration, samples from the different treatment groups were pooled and
analyzed in a fast-performance liquid chromatography gel filtration on
two Superose 6 columns connected in series [24]. For evaluation of
steatosis, formalin fixed liver samples were embedded in paraffin.
Tissue was cut in 4 mm sections and stained with hematoxylin and
eosin. Morphological features were recorded and summarized in an
activity score that is recommended for diagnosis of steatohepatitis in
non-alcoholic fatty liver disease (NAFLD) in humans [25]. The NAFLD
activity score (NAS) is defined as the unweighted sum of the three in-
dividual scores for steatosis, lobular inflammation, and ballooning
degeneration. Steatosis is graded by the presence of fat vacuoles in liver
cells according to the percentage of affected tissue (0: <5%; 1: 5e
33%; 2: 33e66%; 3:>66%). Lobular inflammation is scored by overall
assessment of inflammatory foci per 200� field (0: no foci; 1:<2 foci;
2: 2e4 foci; 3: >4 foci). The individual score for ballooning degener-
ation ranges from 0 (none), 1 (few cells) to 2 (many cells). Thus, NAS
scores range from 0 to 8, with scores �2 considered as non-
steatohepatitis, scores from 3 to 4 considered as possible/borderline
steatohepatitis, scores �5 are diagnostic for definite steatohepatitis.

2.5. Statistics
Differences between treatment groups were assessed by two-way
ANOVA followed by Tukey’s post hoc analysis as appropriate or an
unpaired two-tailed Student’s t-test. All results are presented as
mean � s.e.m. P < 0.05 was considered statistically significant.

3. RESULTS

3.1. Triagonist treatment normalizes body weight with equal
efficiency in DIO female and male mice matched for fat mass
Because of the well-known delay in diet-induced body weight gain
in female mice, and in order to achieve a single cohort of mice matched
for age and body composition, we delayed the introduction of HFD
to male mice relative to female mice in this single cohort study. To
achieve a comparable body fat mass of 16.05 � 0.79 g and
15.10 � 0.87 g (p > 0.05) in females and males respectively, the
duration of HFD exposure before treatment initiation was 30 weeks for
females and 8 weeks for males. Female and male DIO mice (age 38
weeks) were randomized by body fat mass and injected daily for 27 days
with either vehicle or the triagonist at doses of 5 or 10 nmol/kg.
Treatment with the triagonist resulted in a dose-dependent decrease
in body weight with identical relative weight loss in both sexes
(Figure 1A). The triagonist-induced weight loss was accompanied by a
dose-dependent decrease in food intake (Figure 1B) and body fat mass
(Figure 1C) with negligible inter-sexual variation at both doses tested.
The weight loss induced by the triagonist slightly decreased lean tissue
mass in male mice with no effect in females (Figure 1D). In line with the
marked reduction in body weight and body fat mass, plasma levels of
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Figure 1: Equal efficiency of the monomeric triagonist to normalize body weight in female and fat mass-matched male mice (A-G). Effects on body weight change
(A), daily food intake (B), fat mass change in females and in males in gram and percent (C), and lean mass change in females and males in gram and percent (d0 - d20) (D). Effects
of triagonist treatment on fasted blood glucose change (d0 - d22) in female and male mice (E), plasma insulin levels (d22) (F), HOMA-IR (d22) (G) of fat mass-matched female and
male mice (age 9 months; \ n ¼ 6e10; _ n ¼ 6e8 per group) treated daily with vehicle and the GLP-1/GIP/glucagon triagonist at 5 nmol/kg or 10 nmol/kg. Data represent
mean � s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001, determined by two-way ANOVA comparing vehicle with compound injections in both sexes. #P < 0.05, ##P < 0.01,
###P < 0.001 determined by two-way ANOVA comparing 5 nmol/kg and 10 nmol/kg doses of the triagonist in both sexes. $P < 0.05, $$P < 0.01, $$$P < 0.001 determined by
two-way ANOVA comparing both sexes. ANOVA was followed by Tukey post hoc multiple comparison analysis to determine statistical significance.
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leptin were dose-dependently decreased in both sexes (Suppl. Table 1).
In female mice, but not male mice, we observed an increase in plasma
levels of free fatty acids (p < 0.001) and FGF21 (p < 0.05) following
treatment with 10 nmol/kg and 5 nmol/kg of the triagonist, while levels
of triglycerides were unchanged (Suppl. Table 1).

3.2. Triagonist treatment does not further enhance normal glucose
tolerance in DIO female mice in contrast to male mice matched for
body fat mass
In line with previous findings (19), we observed a dose-dependent
improvement in glucose metabolism, in particular in male mice, re-
flected by lower fasting levels of blood glucose (Figure 1E), decreased
levels of fasting insulin (Figure 1F), an improved glucose tolerance
(Suppl. Fig. 1A,C), and insulin sensitivity, as indicated by the HOMA-IR
(Figure 1G). Triagonist treatment did not further enhance an already
normal glucose tolerance in female mice (Suppl. Fig. 1B,C). Although
female mice are known to be largely protected from the development of
diet-induced glucose intolerance and insulin resistance [10,26], we still
observed a mild improvement of diet-induced hyperinsulinemia in DIO
females (Figure 1F,G).

3.3. Triagonist treatment improves diet-induced
hypercholesterolemia in both sexes with a pronounced effect on
steatohepatitis in female mice
As previously reported in obese male mice [19], treatment with the
triagonist potently improves diet-induced dyslipidemia and NAFLD.
442 MOLECULAR METABOLISM 6 (2017) 440e446 � 2017 The Authors. Published by Elsevier
Thus, it was of great interest to investigate potential sex differences in
changes of NAFLD and hypercholesterolemia following triagonist
treatment. In females, plasma cholesterol levels were only significantly
decreased in high-dose triagonist treated mice (p < 0.05), whereas in
males, both doses significantly reduced plasma cholesterol (p< 0.001)
(Figure 2A). This decrease in plasma cholesterol was attributed to a
substantial reduction in LDL in the high-dose treated mice and a slight
reduction in HDL (Figure 2B,C) in both sexes.
Histological analysis of the liver showed that 88.9% of the vehicle
treated females and 62.5% of the vehicle treated males were
diagnosed with a definite steatohepatitis (Figure 2D). Treatment with
the triagonist dose-dependently improved steatohepatitis. The ma-
jority of mice that have been treated with 10 nmol/kg of the triagonist
showed either a complete resolution of steatohepatitis (females) or
only a borderline steatohepatitis (males) at the end of the study
(Figure 2DeF). We observed a pronounced effect on lowering hepatic
lipid content and hepatocellular vacuolation in females that have
been treated with the higher dose of the triagonist (Figure 2D,E).
Although hepatic lipid content was diminished also in males treated
with the same dose of the triagonist, they displayed a greater vari-
ability in reactive changes like hepatocyte ballooning, polyploidy (red
dotted arrow, Figure 2F), and sustained inflammatory process (black
arrow, Figure 2F), resulting in mild periportal fibrosis (black dotted
arrow, Figure 2F). Moreover, treatment with the highest dose of the
triagonist lowered plasma levels of ALT to a larger extent in female
mice than in males (Suppl. Table 1). Levels of AST in the plasma of
GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
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Figure 2: GLP-1/GIP/glucagon triple agonism reverses dyslipidemia and NAFLD in female and fat mass-matched male mice (A-F). Plasma cholesterol (d22) (A), plasma
lipoprotein fractions in females (B) and males (d27) (C). Hepatic steatosis score of liver samples (D), effects on hepatocellular vacuolation after 27 days of treatment in female (E)
and male mice (F) (age 9 months; \ n ¼ 7e10; _ n ¼ 7e8 per group) treated daily with vehicle and the GLP-1/GIP/glucagon triagonist at 5 nmol/kg or 10 nmol/kg. Scale bars in E
and F, 200 mm. Beginning fibrosis periportal (black, dotted arrow), inflammatory intraparenchymal cells (black arrow), microgranuloma (red arrow), focal hepatocyte ballooning and
polyploidy (red, dotted arrow). Data represent mean � s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001, determined by two-way ANOVA comparing vehicle with compound injections in
both sexes. #P < 0.05 determined by two-way ANOVA comparing 5 nmol/kg and 10 nmol/kg doses of the triagonist in both sexes. ANOVA was followed by Tukey post hoc multiple
comparison analysis to determine statistical significance.
female and male mice remained unaltered by the treatment with the
triagonist (Suppl. Table 1).

3.4. Triagonist treatment normalizes body weight without inducing
excessive fat mass loss in male and female mice matched for the
duration of HFD exposure
To evaluate whether the duration of HFD exposure affects the efficacy
of the triagonist to improve metabolic disease, we also compared
female mice to a cohort of age-matched male mice, which were
kept on a HFD for the same duration as the female mice (30 weeks).
Body weight and body fat mass substantially differed between
these cohorts with female mice weighing 39.63 � 0.92 g and
having 16.05 � 0.79 g body fat mass and male mice weighing
54.20 � 0.59 g and having 22.44 � 0.53 g body fat. Relative
weight-loss induced by 5 nmol/kg of the triagonist was remark-
ably similar between both sexes (\ �18.55� 1.28% and
_ �25.33� 1.67% relative to baseline, Figure 3A). When treated
with 10 nmol/kg of the triagonist, male mice had significantly greater
relative weight-loss compared to female mice with females losing
29.64� 1.29% compared to baseline and males 42.82� 1.56%
(Figure 3A). The enhanced relative weight loss in males was
accompanied by a greater reduction in food intake compared to
vehicle treated controls (Figure 3B) and was reflected by a greater
absolute and relative loss of fat and lean mass (Figure 3C,D). As
shown in Figure 3A, the slopes of body weight loss curves flattened
MOLECULAR METABOLISM 6 (2017) 440e446 � 2017 The Authors. Published by Elsevier GmbH. This is an
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in both, male and female mice after 15 days of treatment with
10 nmol/kg indicating that normal healthy body composition was
achieved and no excessive fat mass loss was observed. As stated
earlier, due to the fact that female mice are protected against diet-
induced insulin resistance [10], improvement in glucose meta-
bolism relative to vehicle controls was evident only in male mice
(Figure 3E,F).

4. DISCUSSION

Our data show that chronic treatment of DIO mice with the GLP-1/GIP/
glucagon triagonist potently improves metabolic disease in both
sexes with comparable efficiency in female and male mice when pre-
treatment body composition is considered. Side by side comparisons
between sexes, to determine the efficacy of a pharmacological com-
pound to improve DIO in mouse models, are hampered by the fact that
progression of obesity differs between females and males [20]. Herein,
we thus opted first for a comparison at a time point when fat mass was
similar between male and female mice. In our case, the duration of HFD
exposure to achieve similar fat mass in both sexeswas 8weeks inmales
and 30 weeks in females. With this experimental design we were not
able to determine whether the period of HFD feeding itself may alter
pharmacological effects of the triagonist to improve metabolic disease.
Thus, we included a group of DIO male mice that were fed a HFD for the
same period of time (30 weeks) as the DIO female mice. Treatment with
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ 443
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Figure 3: Efficiency of the monomeric triagonist to normalize body weight and reverse hyperinsulinemia in HFD-matched DIO female and male mice (A-F). Effects on
body weight change (A), average daily food intake (B), fat mass change (C), and lean mass change in HFD-matched DIO male compared to female mice (d0 - d20) (D), plasma
insulin levels (d22) (E), and HOMA-IR (d22) (F) of male DIO mice compared to female mice (age 9 months; \ n ¼ 6e10; _ n ¼ 6e8 per group) treated daily with vehicle and the
GLP-1/GIP/glucagon triagonist at 5 nmol/kg or 10 nmol/kg. Data represent mean � s.e.m. **P < 0.01, ***P < 0.001, determined by two-way ANOVA comparing vehicle with
compound injections in both sexes. #P < 0.05, ###P < 0.001 determined by two-way ANOVA comparing 5 nmol/kg and 10 nmol/kg doses of the triagonist in both sexes.
$$P < 0.01, $$$P < 0.001 determined by two-way ANOVA comparing both sexes. ANOVA was followed by Tukey post hoc multiple comparison analysis to determine statistical
significance.
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10 nmol/kg of the triagonist normalized body weight in both sexes with a
higher weight-lowering potency in the DIO male group due to the fact
that this group had markedly more fat mass at study start than DIO
female mice. DIO male mice lost significantly more body fat than male
mice that matched females with respect to body fat, although food
intake for both male cohorts did not differ. This strongly suggests a
prominent role for the GLP-1/GIP/glucagon triagonist in directly tar-
geting the fat mass in mice. Importantly, throughout our study, we did
not observe excessive body weight or fat mass loss in the triagonist
treated mice suggesting that triagonist treatment normalizes fat mass
up to healthy conditions. These results imply that the triagonist may be a
safe drug to use, because even at high dosages it does not lead to
excessive body weight and fat mass loss.
Similarly to previous studies [19], triagonist treatment potently
improved glycemic control in male DIO mice. Due to the evidence in
literature and in this study showing that DIO female mice of the C57BL/
6 strain do not become as hyperglycemic as male DIO mice and
become only moderately hyperinsulinemic [10,26], triagonist treat-
ment was not able to further improve glucose tolerance in female DIO
mice. Female mice did develop a mild hyperinsulinemia under HFD
feeding, which the triagonist treatment was able to reduce along with
improving HOMA-IR. Based on the fact that one prominent and very
early sign of metabolic disease in men and women is fasting hyper-
insulinemia [27], we propose that the observed insulin lowering effect
of the triagonist in both sexes presents a promising novel therapeutic
option for men as well as for women even before onset of type 2
diabetes.
It has been previously reported that female C57BL/6J mice fed a diet
rich in fructose are more susceptible to develop a NAFLD compared to
male mice [28]. We here extend this finding to DIO female mice, as
nearly 100% of vehicle treated female mice were diagnosed with a
full-blown steatohepatitis after 30 weeks of HFD, while fat mass-
matched male mice were not as severely affected. The male cohort
444 MOLECULAR METABOLISM 6 (2017) 440e446 � 2017 The Authors. Published by Elsevier
was on a HFD for 8 weeks to match females in fat mass content, which
could also have an impact on the observed difference. Conversely,
treatment with the GLP-1/GIP/glucagon triagonist for 27 days
completely resolved NAFLD-associated complications in female mice.
Interestingly, both sexes of the high-dose treated mice displayed a
nearly total diminishment of hepatic lipid content, but, in males,
sustained inflammatory processes resulted in mild periportal fibrosis.
Our results are in line with previous findings by Ganz M. et al. reporting
that obese female mice develop steatosis without inflammation in
contrast to steatohepatitis found in obese male mice [29]. Based on
a recent study showing that astaxanthin reversed advanced non-
alcoholic steatohepatitis (NASH) in male mice after 12 weeks of
treatment [30] we hypothesize that a comparable amelioration of
NAFLD hallmarks may occur in males after an elongation of triagonist
treatment duration. When we measured ALT and AST in plasma of
triagonist treated male and female mice, we detected a significant
reduction in ALT levels in female mice and a clear trend of reduced ALT
levels in male mice. Plasma levels of AST were not significantly altered
in neither sex. These findings are in line with the results published
recently by Finan B. et al. [19] demonstrating a significant reduction in
ALT but not AST in DIO obese male mice upon chronic triagonist
treatment. Compared to AST, ALT is especially expressed in liver and
thus the reduction of ALT plasma levels may reflect a reduction in diet-
induced liver cell injury by the triagonist treatment [31]. Our histo-
logical findings of a significant improvement of NAFLD in triagonist
treated female and male mice, together with the observed reduction of
plasma ALT levels in both sexes, underscore the profound effect of the
triagonist to resolve the HFD induced liver damage

5. CONCLUSION

For translational applicability, the inclusion of female mice in phar-
macological research is indispensible. To this end, we here
GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
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demonstrate equal efficiency of the GLP-1/GIP/glucagon triagonist in
reversing DIO and liver steatosis in female and male rodent models of
adiposity. Reports on body weight loss 4 weeks after bariatric surgery
in comparably obese male and female mice show reductions of
approximately 30% of the starting body weight mirroring the loss in
body weight we observed in the high-dose triagonist treated mice
[32,33]. In conclusion, our findings indicate that triagonist treatment
may reduce body weight as efficiently as bariatric surgery highlighting
the potential of the monomeric triagonist as an effective treatment
option for severe obesity also in women.
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