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Table A: Sequences of simulated Axin segments.
first residue sequence

381 VRVEPQKFAE

391 ELIHRLEAVQ

401 RTREAEEKLE

411 ERLKRVRMEE

421 EGEDGDPSSG

431 PPGPCHKLPP

441 APAWHHFPPR

451 CVDMGCAGLR

461 DAHEENPESI

471 LDEHVQRVLR

481 TPGRQSPGPG
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Figure A: Helicity compared to dRMSD. DSSP Helicity of peptides with in-
creasing R for different water force fields. The average is taken over all segments
and all replicas for each force field.

A B

Figure B: Snapshots of diverging typical segment conformations. Snap-
shots from the lowest R replica of segment 401. A shows two stable double-
H-bonds between Arg401-Glu404 and Arg403-Glu410 typically sampled with
TIP3P water. B shows a typical snapshot from TIP4P-D water where neither
contact is formed.
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Figure C: Time evolution of PMFs. Time evolution of all PMFs for all water
force fields. Simulation data was evaluated after 10ns of equilibration. Global
shapes of the PMFs barely change after the first quarter of evaluated simulation
time.
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1 Implementation of the dRMSD

1.1 Distance Deviations as a Reaction Coordinate

Intrinsically disordered proteins can be in a stable conformation for microsec-
onds. Classic continuous MD simulations can access this timescale for the de-
sired system size and thus could capture the transition from one conformation
to another. Reliable statistical averages and population probabilities, however,
cannot be extracted if transitions between the states are rare. To gain any in-
sight on the statistics of disordered proteins, advanced sampling techniques like
Hamiltonian Replica exchange (H-REMD)[1] have to be used.

The crucial choice for any H-REMD method is the selection of a reaction
coordinate. In the case of unfolding proteins or peptides, the coordinate should
reliably distinguish between the folded state and unfolded states. The RMSD
from the folded state, as used in the method of Woo & Roux[2], is a possible
choice. It does, however, require a fit to the reference structure for each frame.
Instead of taking the RMSD of the coordinates of atoms, here we used the
RMSD of a chosen set of distances compared to respective reference distances,
which can be taken from the reference structure (exemplary bonds in Figure
D). This dRMSD R is defined as

R(d1, . . . , dN ) =

√√√√ 1

N

N∑
i

(di − di,0)2 (A)

Using distances avoids any fitting as the intra-molecular distances are ro-
tation and translation invariant. In addition, the area where conformational
freedom is of interest can be freely chosen by the definition of the dRMSD-
pairs. With the same mechanism a single helical fragment of a protein can be
unfolded or entire domains can be moved with respect to one another.

To enhance sampling along the dRMSD, harmonic potentials force the sys-
tem to sample specific regions of R around a reference value R0. The potentials
with a force constant k0 are of the form

V (d1, . . . , dN ) =
1

2
k0 (R(d1, . . . , dN )−R0)

2
(B)

which for pair i between atoms a and b creates a force of

~Fa(di) = −k0
N
· R(di)−Ri,0

R(di)
· (di − d0) · ~ra − ~rb

di
(C)

pointing, depending on the sign of the R deviation, towards or away from the
bond partner.

Replica exchange between Hamiltonians with different positions of the um-
brella minimum further enhances sampling of different conformations and allows
the system to overcome artificial barriers introduced by the additional poten-
tials. Note that the phase space volume is not constant with respect to R.
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Figure D: Free energy along the dRMSD reaction coordinate. With harmonic
potentials the system is forced to sample all regions of the dRMSD reaction
coordinate that describes the average deviation of a chosen set of distances from
a respective reference distance. The contribution of the potentials is treated by
the WHAM method[3].

While, depending on the number of defined distances, only one or possibly few
structures can fulfill R = 0, a larger R represents a vast number of conforma-
tions.

Equations of the dRMSD potential

The dRMSD is defined as

R(d1, . . . , dN ) =

√√√√ 1

N

N∑
i

(di − di0)2 (D)

Where index i runs over all distances between the N atom pairs that contribute
to the dRMSD.
The harmonic potentials along R are of the form

V (d1, . . . , dN ) =
1

2
k0
(
R(d1, . . . , dN )−R0

)2
(E)

with a specific reference dRMSD R0 and the distance di being a function of the
coordinates ~ri1, ~ri2 of the two atoms of the pair:

di ≡ di(ri1, ri2) = |~ri1 − ~ri2| =
√

(~ri1 − ~ri2)2 (F)
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The forces on atom coordinate x of atom i1 is then calculated from

Fxi1
= −dV (d1, . . . , dN )

dxi1

= −k0
N
· R(d1, . . . , dN )−R0

R(d1, . . . , dN )
· (di − di0) · xi1 − xi2

di

= −Fxi2

Thus the vectorial force is given by

~F (di) = −k0
N
· R(di)−R0

R(di)
· (di − di0) ·

~di
di

(G)

Finally, the contribution to the Hamiltonian of this distance RMSD potential
is

HdRMSD = V (d1, . . . , dN ) (H)

Lambda Scaling Along the dRMSD

For the application of US typically several windows along the reaction coordinate
are defined via a transition coordinate λ. We defined the λ-dependence of R as

R(di, λ) =

√√√√ 1

N

N∑
i

(
di − (1− λ)dAi0 − λdBi0

)2

(I)

The λ-dependent distance RMSD potential has then the form

V (di, λ) =
k0
2

(
R(di, λ)− (1− λ)RA

0 − λRB
0

)2

(J)

This allows transitions from one state with reference distances dAi0 to another
state with reference distances dBi0. Also, with no dBi0 defined, a continuous sam-
pling of λ in the range [0, 1] allows sampling from the structure defined with
distances dAi0 to unfolded structures up to a dRMSD deviation of RA

0 .
The derivative of the potential with respect to λ then is

dV (di, λ)

dλ
=k0

(
R(di, λ)− (1− λ)RA

0 − λRB
0

)
·(

dR(di, λ)

dλ
+RA

0 −RB
0

)
=k0

(
R(di, λ)− (1− λ)RA

0 − λRB
0

)
·(

1

2NR(di, λ)

(
2

N∑
i

(
di − (1− λ) dAi0 − λdBi0

) (
dAi0 − dBi0

))
+

RA
0 −RB

0

)
(K)
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and the force in direction x for atom i1 is

Fxi1
=− dV (di, λ)

dxi1

=− k0
N
· R(di, λ)− (1− λ)RA

0 − λRB
0

R(di, λ)
·(

di − (1− λ)dAi0 − λdBi0
)
· xi1 − xi2

di
=− F (xi2)

(L)

and thus the vectorial force is

~F (di, λ) =− k0
N
· R(di, λ)− (1− λ)RA

0 − λRB
0

R(di, λ)
·

(
di − (1− λ)dAi0 − λdBi0

)
·
~di
di

(M)

Gromacs Implementation

The dRMSD as a reaction coordinate for umbrella sampling with replica ex-
change has been implemented in GROMACS[4] 4.6.2 and uploaded to github:
https://github.com/enzyx/gromacs-4.6-drmsd

To run a simulation with the adapted GROMACS code the following settings
are required.

MDP Parameters

drmsd-pot: yes/no

Enable/Disable distance based RMSD potential.

drmsd-ref: (0.0) [nm]

Reference distance RMSD for state A

drmsd-refB: (0.0) [nm]

Reference distance RMSD for state B

drmsd-k0: (1000.0) [kJ mol−1 nm−2]

Force konstant of the distance RMSD potential

nstdrmsdpout: (100)

Frequency of writing distance RMSD potential output

bonded-lambdas = 0.00 0.20 0.40 0.60 0.80 1.00

λ values for umbrella windows. (requires further free energy parameters)
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Topology File

The topology needs to include a [ drmsd restraints ] section:

Topology file parameters:

[ drmsd_restraints ]

; ai aj type d0 d0B (optional)

9 39 1 0.5 0.6

19 49 1 0.5 0.6

29 59 1 0.5 0.6

Atom pair ai, aj which forms a distance pair. Default function type 1. d0

is the reference distance of this atom pair. Note that ai, aj are molecule interal
indices. The first atom of each molecule has index 1.

mdrun Parameters

The possible long distance bonds that have to be calculated each step clash
with the domain decomposition principle of Gromacs. Simulations will not
start without the explicit request of particle decomposition:

mdrun [...] -pd

g drmsd

The implementation of the distance restraint can write out the dRMSD cal-
culated during the simulation. Additionally the tool g drmsd can be used to
calculate dRMSDs from a given trajectory. To obtain the distances and applied
forces use g drmsd. g drmsd has to be given at trajectory and a run input file
with all the settings for the dRMSD method. The tool then for each frame of
the trajectory extracts the dRMSD and the resulting potential to a output file.

-f Input, trajectory: .xtc, .trr etc.

-s Input, run input file: .tpr

-o Output file (drmsd.xvg), optional

If g drmsd is given a list of trajectories and tpr files it will calculate the
drmsd and potential for the first given trajectory with the first tpr and so forth.
Non-matching numbers after the last underscore, e.g. traj 1.xtc and topol 2.tpr
will give an error. Output for each trajectory will be written to files with
matching number.
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