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IMPORTANCE The causal direction and magnitude of the association between telomere
length and incidence of cancer and non-neoplastic diseases is uncertain owing to the
susceptibility of observational studies to confounding and reverse causation.

OBJECTIVE To conduct a Mendelian randomization study, using germline genetic variants as
instrumental variables, to appraise the causal relevance of telomere length for risk of cancer
and non-neoplastic diseases.

DATA SOURCES Genomewide association studies (GWAS) published up to January 15, 2015.

STUDY SELECTION GWAS of noncommunicable diseases that assayed germline genetic
variation and did not select cohort or control participants on the basis of preexisting diseases.
Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were
available.

DATA EXTRACTION AND SYNTHESIS Summary association statistics for single nucleotide
polymorphisms (SNPs) that are strongly associated with telomere length in the general
population.

MAIN OUTCOMES AND MEASURES Odds ratios (ORs) and 95% confidence intervals (CIs) for
disease per standard deviation (SD) higher telomere length due to germline genetic variation.

RESULTS Summary data were available for 35 cancers and 48 non-neoplastic diseases,
corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls
(median, 6789 per disease). Increased telomere length due to germline genetic variation was
generally associated with increased risk for site-specific cancers. The strongest associations
(ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for
glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung
adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19
(1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55
(1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer
cancers and at tissue sites with lower rates of stem cell division. There was generally little
evidence of association between genetically increased telomere length and risk of
psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except
for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR,
0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung
disease (OR, 0.09 [95% CI, 0.05- 0.15]).

CONCLUSIONS AND RELEVANCE It is likely that longer telomeres increase risk for several
cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
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A t the ends of chromosomes, telomeres are DNA-
protein structures that protect the genome from dam-
age, shorten progressively over time in most somatic

tissues,1 and are proposed physiological markers of aging.2,3

Shorter leukocyte telomeres are correlated with older age, male
sex, and other known risk factors for noncommunicable
diseases4-6 and are generally associated with higher risk for car-
diovascular diseases,7,8 type 2 diabetes,9 and nonvascular, non-
neoplastic causes of mortality.8 Whether these associations are
causal, however, is unknown. Telomere length has also been
implicated in risk of cancer, but the direction and magnitude
of the association is uncertain and contradictory across ob-
servational studies.10-14 The uncertainty reflects the consid-
erable difficulty of designing observational studies of telo-
mere length and cancer incidence that are sufficiently robust
to reverse causation, confounding, and measurement error.

The aim of the present report was to conduct a Mende-
lian randomization study, using germline genetic variants as
instrumental variables for telomere length, to help clarify the
nature of the association between telomere length and risk of
cancer and non-neoplastic diseases. The approach, which mim-
ics the random allocation of individuals to the placebo and in-
tervention arms of a randomized clinical trial, allowed us to:
(1) estimate the direction and broad magnitude of the associa-
tion of telomere length with risk of multiple cancer and non-
neoplastic diseases; (2) appraise the evidence for causality in
the estimated etiological associations; (3) investigate poten-
tial sources of heterogeneity in findings for site-specific can-
cers; and (4) compare genetic estimates with findings based
on directly measured telomere length in prospective obser-
vational studies.

Methods
Study Design
The design of our study, illustrated in eFigure 1 in Supplement
1, had 3 key components: (1) the identification of genetic vari-
ants to serve as instruments for telomere length; (2) the ac-
quisition of summary data for the genetic instruments from
genomewide association studies (GWASes) of diseases and risk
factors for noncommunicable diseases; and (3) the classifica-
tion of diseases and risk factors into primary or secondary out-
comes based on a priori statistical power. As a first step, we
searched the GWAS catalog15,16 on January 15, 2015, to iden-
tify single-nucleotide polymorphisms (SNPs) associated with
telomere length. To supplement the list with additional po-
tential instruments, we also searched the original study re-
ports curated by the GWAS catalog (using a P value threshold
of 5 × 10−8).17-25 We acquired summary data for all SNPs iden-
tified by our search from a meta-analysis of GWASes of telo-
mere length, involving 9190 participants of European
ancestry.18

The second key component of our design strategy in-
volved the acquisition of summary data, corresponding to the
selected genetic instruments for telomere length, from GWASes
of noncommunicable diseases and risk factors (eFigure 1 in
Supplement 1). As part of this step, we invited principal inves-

tigators of noncommunicable disease studies curated by the
GWAS catalog15,26 to share summary data for our study. We also
downloaded summary data for diseases and risk factors from
publically available sources, including study-specific web-
sites, dbGAP, ImmunoBase, and the GWAS catalog (eFigure 1
in Supplement 1).

The third key component of our design strategy was the
classification of diseases and risk factors into either primary
or secondary outcomes, which we defined on the basis of a
priori statistical power to detect associations with telomere
length. Primary outcomes were defined as diseases with suf-
ficient numbers of cases and controls for greater than 50% sta-
tistical power, and secondary outcomes were defined as dis-
eases with 50% or less statistical power to detect odds ratios
(ORs) of 2.0 or higher per standard deviation (SD) change in
genetically increased telomere length (α assumed to be .01).
All risk factors were defined as secondary outcomes. Risk fac-
tors with less than 50% statistical power were excluded.

Further details on our design strategy can be found in
Supplement 1.

Comparison With Prospective Observational Studies
We searched PubMed for prospective observational studies of
the association between telomere length and disease (see
eTables 3 and 4 in Supplement 1 for details of the search strat-
egy and inclusion criteria). Study-specific relative risks for dis-
ease per unit change or quantile comparisons of telomere
length were transformed to an SD scale using previously de-
scribed methods.27 Hazard ratios, risk ratios, and ORs were as-
sumed to approximate the same measure of relative risk. Where
multiple independent studies of the same disease were iden-
tified, these were combined by fixed effects meta-analysis, un-
less there was strong evidence of between-study heteroge-
neity (Cochran Q P < .001), in which case they were kept
separate.

Statistical Analysis
We combined summary data across SNPs into a single instru-
ment, using maximum likelihood to estimate the slope of the
relationship between βGD and βGP and a variance-covariance
matrix to make allowance for linkage disequilibrium be-
tween SNPs,28 where βGD is the change in disease log odds or

Key Points
Question What is the causal relevance of telomere length for risk
of cancer and non-neoplastic diseases?

Findings In this Mendelian randomization study, genetically
longer telomeres were associated with higher odds of disease for 9
of 22 primary cancers tested but with reduced odds of disease for
6 of 32 primary non-neoplastic diseases, including cardiovascular
diseases.

Meaning It is likely that longer telomeres increase risk for several
cancers but reduce risk for some non-neoplastic diseases,
including cardiovascular diseases. This trade-off in risk should be
carefully considered in any diagnostic, prognostic, or therapeutic
applications based on telomere length.
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risk factor levels per copy of the effect allele, and βGP is the SD
change in telomere length per copy of the effect allele (see eAp-
pendix 1 in Supplement 1 for technical details). The slope from
this approach can be interpreted as the log OR for binary out-
comes, or the unit change for continuous risk factors, per SD
change in genetically increased telomere length. P values for
heterogeneity among SNPs in the estimated associations of ge-
netically increased telomere length with disease and risk fac-
tors were estimated by likelihood ratio tests.28 Associations be-
tween genetically increased telomere length and continuous
risk factors were transformed into SD units. For 5 secondary
disease outcomes where only a single SNP was available for
analysis, we estimated associations using the Wald ratio: βGD/
βGP, with standard errors approximated by the delta method.29

Inference of causality in the estimated etiological asso-
ciations between telomere length and disease depends on sat-
isfaction of Mendelian randomization assumptions (eFigure
7 in Supplement 1; also see eTable 5 in Supplement 1 for a glos-
sary of terms).30,31 The assumptions are that (1) the selected
SNPs are associated with telomere length; (2) the selected SNPs
are not associated with confounders; and (3) the selected SNPs
are associated with disease exclusively through their effect on
telomere length. If these assumptions are satisfied, the se-
lected SNPs are valid instrumental variables, and their asso-
ciation with disease can be interpreted as a causal effect of telo-
mere length. We modeled the impact of violations of these
assumptions through 2 sets of sensitivity analyses: a weighted
median function32 and MR-Egger regression (see eAppendix
1 in Supplement 1 for technical details).30 We restricted our sen-
sitivity analyses to diseases showing the strongest evidence
of association with genetically increased telomere length (de-
fined as Bonferroni P ≤ .05).

We used meta-regression to appraise potential sources of
heterogeneity in our findings for cancer. The association of ge-
netically increased telomere length with the log odds of can-
cer was regressed on cancer incidence, survival time, and me-
dian age at diagnosis (downloaded from the National Cancer
Institute Surveillance, Epidemiology, and End Results [SEER]
Program33), and tissue-specific rates of stem cell division from
Tomasetti and Vogelstein.34 As the downloaded cancer char-
acteristics from SEER correspond to the United States popu-
lation, 77% of which was of white ancestry in 2015,35 [Please
provide exact URL at which data for this specific report were
found at ref 35 rather than the US Census home page.] the
meta-regression analyses excluded genetic studies con-
ducted in East Asian populations.

All analyses were performed in R, version 3.1.2,36 and Stata
release 13.1 (StataCorp LP). P values were 2-sided, and evi-
dence of association was declared at P < .05. Where indi-
cated, Bonferroni corrections were used to make allowance for
multiple testing, although this is likely to be overly conserva-
tive given the nonindependence of many of the outcomes
tested.

Results

We selected 16 SNPs as instruments for telomere length (eFig-
ure 1 in Supplement 1 and Table 1). The selected SNPs corre-
spond to 10 independent genomic regions that collectively ac-
count for 2% to 3% of the variance in leukocyte telomere length,
which is equivalent to an F statistic of approximately 18. This
indicates that the genetic instrument constructed from these
10 independent genomic regions is strongly associated with
telomere length (details in eAppendix 1 in Supplement 1).37

Summary data for the genetic instruments were available for
83 noncommunicable diseases, corresponding to 420 081 cases
(median, 2526 per disease), 1 093 105 controls (median, 6789
per disease), and 44 risk factors (eFigure 1 and eTable 1 in
Supplement 1; Table 2). The median number of SNPs avail-
able across diseases was 11 (minimum, 1; maximum, 13) and
across risk factors was 12 (minimum, 11; maximum, 13). Of the
83 diseases, 56 were classified as primary outcomes and 27 as
secondary outcomes (Table 2; eFigure 1 and eTable 1 in
Supplement 1). For 9 of the 83 noncommunicable diseases, ad-
ditional summary data were available from 10 independent
studies for replication analyses, corresponding to 40 465 cases
(median, 1416 per disease) and 52 306 controls (median, 3537
per disease) (eTable 1 in Supplement 1).

The results from primary analyses of noncommunicable
diseases are presented in Figure 1 and the eTable in Supplement
2; results from secondary analyses of risk factors and dis-
eases with low a priori power are presented in eFigures 2, 5,
and 6 in Supplement 1. Genetically increased telomere length
was associated with higher ORs (95% CIs) of disease for 9 of
22 primary cancers (P < .05): glioma (5.27 [3.15-8.81]), endo-
metrial cancer (1.31 [1.07-1.61]), kidney cancer (1.55 [1.08-
2.23]), testicular germ-cell cancer (1.76 [1.02-3.04]), mela-
noma (1.87 [1.55-2.26]), bladder cancer (2.19 [1.32-3.66]),
neuroblastoma (2.98 [1.92-4.62]), lung adenocarcinoma (3.19
[2.40-4.22]) and serous low-malignancy-potential (LMP) ovar-
ian cancer (4.35 [2.39-7.94]) (Figure 1). The associations were,
however, highly variable across cancer types, varying from an
OR (95% CI) of 0.86 (0.50-1.48) for head and neck cancer to
5.27 (3.15-8.81) for glioma. Substantial variability was also ob-
served within tissue sites. For example, the OR (95% CI) for
lung adenocarcinoma was 3.19 (2.40-4.22) compared with 1.07
(0.82-1.39) for squamous cell lung cancer. For serous LMP ovar-
ian cancer, the OR (95% CI) was 4.35 (2.39-7.94) compared with
1.21 (0.87-1.68) for endometrioid ovarian cancer, 1.12 (0.94-
1.34) for serous invasive ovarian cancer, 1.04 (0.66-1.63) for
clear-cell ovarian cancer, and 1.04 (0.73-1.47) for mucinous
ovarian cancer. The strongest evidence of association was ob-
served for glioma, lung adenocarcinoma, neuroblastoma, and
serous LMP ovarian cancer (Figure 1). Results for glioma and
bladder cancer showed evidence for replication in indepen-
dent data sets (independent data sets were not available for
other cancers) (eFigure 3 in Supplement 1).

Genetically increased telomere length was associated with
reduced OR (95% CI) of disease for 6 of 32 primary non-
neoplastic diseases (P < .05): coronary heart disease (0.78 [0.67-
0.9]), abdominal aortic aneurysm (0.63 [0.49-0.81]), Alzhei-
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Table 2. Study Characteristics for Primary Noncommunicable Diseases

Disease Cases, No. Controls, No. SNPs, No.
Statistical
Power Pop Source

Cancer

Bladder cancer 1601 1819 10 0.62 EUR NBCS38

Breast cancer 48 155 43 612 13 1.00 EUR BCAC17,39

ER− 7465 42 175 13 1.00 EUR BCAC17,39

ER+ 27 074 41 749 13 1.00 EUR BCAC17,39

Colorectal cancer 14 537 16 922 9 1.00 EUR CORECT/GECCO40,41

Endometrial cancer 6608 37 925 12 1.00 EUR ECAC42,43

Esophageal SCC 1942 2111 11 0.64 EA Abnet et al44

Glioma 1130 6300 12 0.72 EUR Wrensch et al45 and Walsh et
al46

Head & neck cancer 2082 3477 12 1.00 EUR McKay et al47

Kidney cancer 2461 5081 12 0.99 EUR KIDRISK48

Lung cancer 11 348 15 861 13 1.00 EUR ILCCO49

Adenocarcinoma 3442 14 894 13 1.00 EUR ILCCO49

SCC 3275 15 038 13 1.00 EUR ILCCO49

Skin cancer

Melanoma 12 814 23 203 13 1.00 EUR MC50

Basal cell carcinoma 3361 11 518 13 1.00 EUR NHS/HPFS51

Neuroblastoma 2101 4202 12 0.87 EUR Diskin52

Ovarian cancer 15 397 30 816 13 1.00 EUR OCAC17,53

Clear cell 1016 30 816 13 0.76 EUR OCAC17,53

Endometrioid 2154 30 816 13 0.98 EUR OCAC17,53

Mucinous 1643 30 816 13 0.94 EUR OCAC17,53

Serous invasive 9608 30 816 13 1.00 EUR OCAC17,53

Serous LMP 972 30 816 13 0.73 EUR OCAC17,53

Pancreatic cancer 5105 8739 12 1.00 EUR PanScan (incl. EPIC)54

Prostate cancer 22 297 22 323 11 1.00 EUR PRACTICAL55,56

Testicular germ-cell cancer 986 4946 11 0.52 EUR Turnbull et al57 and Rapley et
al58

Autoimmune/inflammatory diseases

Alopecia areata 2332 5233 7 0.60 EUR Betz59

Atopic dermatitis 10 788 30 047 13 1.00 EUR EAGLE60

Celiac disease 4533 10 750 3 0.82 EUR Dubois61

Inflammatory bowel disease

Crohn disease 5956 14 927 11 1.00 EUR IIBDGC62

Ulcerative colitis 6968 20 464 12 1.00 EUR IIBDGC62

Juvenile idiopathic arthritis 1866 14 786 11 0.87 EUR Thompson et al63a

Multiple sclerosis 14 498 24 091 3 1.00 EUR IMSGC64

Aggressive periodontitis 888 6789 13 0.63 EUR Schaefer et al65

Rheumatoid arthritis 5538 20 163 11 1.00 EUR Stahl et al66

Cardiovascular diseases

Abdominal aortic aneurysm 4972 99 858 13 1.00 EUR AC67-72

Coronary heart disease 22 233 64 762 13 1.00 EUR CARDIoGRAM73

Heart failure 2526 20 926 13 0.99 EUR CHARGE-HF74

Hemorrhagic stroke 2963 5503 12 0.96 EUR METASTROKE/ISGC75

Ischemic stroke 12 389 62 004 13 1.00 EUR METASTROKE/ISGC76,77

Large-vessel disease 2167 62 004 13 0.99 EUR METASTROKE/ISGC76,77

Small-vessel disease 1894 62 004 13 0.97 EUR METASTROKE/ISGC76

Cardioembolic disease 2365 62 004 13 0.99 EUR METASTROKE/ISGC76

Sudden cardiac arrest 3954 21 200 13 1.00 EUR Unpublished

Diabetes

Type 1 7514 9045 6 0.95 EUR T1DBase78,79

(continued)
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mer disease (0.84 [0.71-0.98]), celiac disease (0.42 [0.28-
0.61]), interstitial lung disease (0.09 [0.05-0.15]) and type 1
diabetes (0.71 [0.51-0.98]) (Figure 1). The strongest evidence
of association was observed for coronary heart disease, ab-
dominal aortic aneurysm, celiac disease, and interstitial lung
disease (Figure 1). The associations with coronary heart dis-
ease and interstitial lung disease showed evidence for repli-
cation in independent data sets (eFigure 3 in Supplement 1).

Our genetic findings were generally similar in direction and
magnitude to estimates based on observational prospective
studies of leukocyte telomere length and disease (Figure 2).10,97

Our genetic estimates for lung adenocarcinoma, melanoma,
kidney cancer, and glioma were, however, stronger than the
observational estimates.

In sensitivity analyses, we appraised the potential im-
pact of confounding by pleiotropic pathways on our results.
Associations estimated by the weighted median and MR-
Egger were broadly similar to the main results for glioma, lung

adenocarcinoma, serous LMP ovarian cancer, neuroblas-
toma, abdominal aortic aneurysm, coronary heart disease, and
interstitial lung disease (eFigure 4 in Supplement 1). In the sec-
ond set of sensitivity analyses, implemented by MR-Egger re-
gression, we found little evidence for the presence of pleiot-
ropy (eFigure 4 in Supplement 1). The MR-Egger analyses were,
however, generally underpowered, as reflected by the wide
confidence intervals in the estimated odds ratios (eFigure 4 in
Supplement 1).

In meta-regression analyses, we observed that geneti-
cally increased telomere length tended to be more strongly as-
sociated with rarer cancers and cancers at tissue sites with
lower rates of stem cell division (Figure 3). The associations
showed little evidence of varying by percentage survival 5 years
after diagnosis or median age at diagnosis.

Table 2. Study Characteristics for Primary Noncommunicable Diseases (continued)

Disease Cases, No. Controls, No. SNPs, No.
Statistical
Power Pop Source

Type 2 10 415 53 655 11 1.00 EUR DIAGRAM80

Eye disease

AMD 7473 51 177 13 1.00 EUR AMD Gene81

Retinopathy 1122 18 289 12 0.75 EUR Jensen et al82

Lung disease

Asthma 13 034 20 638 4 1.00 EUR GABRIEL / Ferreira et al83,84

COPD 2812 2534 12 0.85 EUR COPDGene85

Interstitial lung disease 1616 4683 9 0.60 EUR Fingerlin86

Neurological/psychiatric disease

ALS 6100 7125 12 1.00 EUR SLAGEN/ALSGEN87

Alzheimer disease 17 008 37 154 12 1.00 EUR IGAP88

Anorexia nervosa 2907 14 860 9 0.93 EUR GCAN89

Autism 4949 5314 7 0.82 EUR PGC90

Bipolar disorder 7481 9250 9 1.00 EUR PGC91

Major depressive disorder 9240 9519 8 0.99 EUR PGC92

Schizophrenia 35 476 46 839 12 1.00 EUR PGC93

Tourette syndrome 1177 4955 13 0.74 EUR TICG/TSAICG94

Other

Chronic kidney disease 5807 56 430 13 1.00 EUR CKDGen95

Endometriosis 4604 9393 11 1.00 Mix Nyholt et al96

Abbreviations: ALS, amyotrophic lateral sclerosis; AMD, age-related macular
degeneration; COPD, chronic obstructive pulmonary disease; EA, East Asian;
ER, estrogen receptor; EUR, European; LMP, low malignant potential; Pop.,
population; SCC, squamous cell carcinoma; SNP, single-nucleotide
polymorphism.

Study acronyms: AC, the Aneurysm Consortium; ALSGEN, the International
Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, Age-related
Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association
Consortium; CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication
and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in
Genomic Epidemiology Consortium – Heart Failure Working Group; COPDGene,
The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; CKDGen,
Chronic Kidney Disease Genetics consortium; CORECT, ColoRectal
Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And
Meta-analysis; EAGLE, EArly Genetics & Lifecourse Epidemiology Eczema
Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association
Consortium; EPIC, European Prospective Investigation into Cancer and
Nutrition study; GABRIEL, Multidisciplinary Study to Identify the Genetic and

Environmental Causes of Asthma in the European Community; GCAN, Genetic
Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of
Colorectal Cancer Consortium; IGAP, International Genomics of Alzheimer
Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung
Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic
Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics
Consortium; KIDRISK, Kidney cancer consortium; MC, the melanoma
meta-analysis consortium; METASTROKE/ISGC, METASTROKE project of the
International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer
Study; NHS, Nurses’ Health Study; OCAC, Ovarian Cancer Association
Consortium; PanScan, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric
Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to
Investigate Cancer Associated Alterations in the Genome; SLAGEN, Italian
Consortium for the Genetics of Ayotrophic Lateral Sclerosis; T1DBase, type 1
diabetes database; TICG (Tourette International Collaborative-Genetics);
TSAICG (Tourette Syndrome Association International Consortium for
Genetics).
a Plus previously unpublished data.
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Figure 1. The Association Between Genetically Increased Telomere Length and Odds of Primary Noncommunicable Diseases

P Valueb
Lower Risk
of Disease

Higher Risk
of Disease

Odds Ratio (95% CI) Per Standard Deviation
Change in Genetically Increased

Telomere Length

Tumor/disease
subtype

No. of
Cases

No. of
SNPsDisease

Cancer

OR
(95% CI) P Valuea

.01<.001NA 1130 12Glioma 5.27 (3.15-8.81)

.08<.001Serous LMP 972 13Ovarian cancer 4.35 (2.39-7.94)
<.001<.001Adenocarcinoma 3442 13Lung cancer 3.19 (2.40-4.22)

.38<.001NA 2101 12Neuroblastoma 2.98 (1.92-4.62)

.25.003NA 1601 10Bladder cancer 2.19 (1.32-3.66)

.09<.001Melanoma 12 814 13Skin cancer 1.87 (1.55-2.26)

.30.04NA 985 11Testicular germ-cell cancer 1.76 (1.02-3.04)

.25.02NA 2461 12Kidney cancer 1.55 (1.08-2.23)

.14.01NA 6607 12Endometrial cancer 1.31 (1.07-1.61)

.04.20Basal cell carcinoma 3361 13Skin cancer 1.22 (0.90-1.65)

.33.25Endometriod 2154 13Ovarian cancer 1.21 (0.87-1.68)
<.001.25Serous invasive 7465 13Breast cancer 1.14 (0.91-1.43)

.04.21NA 9608 13Ovarian cancer 1.12 (0.94-1.34)
<.001.15NA 22 297 11Prostate cancer 1.12 (0.96-1.30)

.02.34NA 14 537 9Colorectal cancer 1.09 (0.91-1.31)

.90.62Squamous cell carcin 3275 13Lung cancer 1.07 (0.82-1.39)

.02.29ER 27 074 13Breast cancer 1.06 (0.95-1.17)

.32.87Clear cell 1016 13Ovarian cancer 1.04 (0.66-1.63)

.31.84Mucinous 1643 13Ovarian cancer 1.04 (0.73-1.47)

.45.91Squamous cell carcin 1942 8Esophageal cancer 1.03 (0.62-1.72)

.002.50Adenocarcinoma 5105 12Pancreatic cancer 0.86 (0.56-1.32)

.08.48NA 2082 12Head and neck cancer 0.86 (0.57-1.30)
Cardiovascular diseases

.53.89NA 2526 13Heart failurec 1.02 (0.77-1.35)

.24.71Small vessel diseas 1894 13Ischemic stroke 0.94 (0.66-1.33)

.54.62NA 3954 13Sudden cardiac arre 0.92 (0.68-1.26)
<.001.67NA 2973 12Haemorrhagic strok 0.92 (0.61-1.37)

.04.45Cardioembolic 2365 13Ischemic stroke 0.88 (0.64-1.22)

.24<.001NA 22 233 13Coronary heart dise 0.78 (0.67-0.90)

.16.08Large vessel disease 2167 13Ischemic stroke 0.74 (0.52-1.04)

.06<.001NA 4545 13Abdominal aortic aneurysm 0.63 (0.49-0.81)
Neurological/psychiatric diseases

.18.44NA 2907 9Anorexia Nervosa 1.14 (0.82-1.58)

.14.32NA 7481 9Bipolar disorder 1.13 (0.89-1.44)

.63.40NA 6100 12Amyyotrophic lateral sclerosis xxx (xxx-xxx)

.50.69NA 1177 13Tourette syndrome 1.10 (0.68-1.78)

.25.56NA 9240 8Major depressive disorder 1.07 (0.84-1.37)

.82.95NA 4949 7Autism 1.01 (0.73-1.39)

.005.92NA 9379 12Schizophrenia 1.01 (0.90-1.12)

.15.03NA 17 008 12Alzheimer's disease 0.84 (0.71-0.98)
Autoimmune/inflammatory diseases

.95.50NA 2332 7Alopecia areata 1.15 (0.76-1.75)

.06.36Crohn's disease 5956 11Inflammatory bowe disease 1.12 (0.87-1.45)

.01.67NA 888 13Periodontitis 1.12 (0.67-1.87)

.12.61NA 10 788 13Atopic dermatitis 1.05 (0.88-1.24)

.10.83Ulcerative colitis 6969 12Inflammatory bowe disease 1.03 (0.81-1.29)

.15.89NA 14 498 3Multiple sclerosis 0.98 (0.70-1.36)

.18.32NA 5538 11Rheumatoid arthrit 0.87 (0.65-1.15)

.92.37NA 1866 11Juvenile idiopathic arthritis 0.85 (0.59-1.21)

Other diseases
.38.15NA 1126 12Retinopathy 1.39 (0.89-2.16)
.21.12NA 7473 13Age-related macula 1.19 (0.96-1.48)
.68.98NA 10415 11Type 2 diabetes 1.00 (0.84-1.20)
.06.86NA 4604 11Endometriosis 0.98 (0.75-1.27)
.70.59NA 5807 13Chronic kidney disease 0.94 (0.77-1.16)
.38.56NA 2812 12Chronic obstructive 0.90 (0.64-1.27)
.32.08NA 13034 4Asthma 0.81 (0.64-1.02)
.06.04NA 7514 6Type 1 diabetes 0.71 (0.51-0.98)
.001<.001NA 1616 9Interstitial lung disease 0.09 (0.05-0.15)

.003<.001NA 4533 3Celiac disease 0.42 (0.28-0.61)

0.01 101.00.1

COPD indicates chronic obstructive pulmonary disease; ER, estrogen receptor;
LMP, low malignancy potential; NA, not applicable; SNP, single-nucleotide
polymorphism.
a P value for association between genetically increased telomere length and

disease from maximum likelihood.

b P value for heterogeneity among SNPs within the instrument.
c The effect estimate for heart failure is a hazard ratio (all others are odds

ratios).
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Figure 2. Comparison of the Present Genetic Study and Prospective Observational Studies of the Association
Between Telomere Length and Disease

Lower Risk
of Disease

Higher Risk
of Disease

Odds Ratio (95% CI) per Standard Deviation
Increase in Telomere Length

No. of
CasesCancer

Breast cancer

OR
(95% CI)

48 155Genetic study 1.08 (0.99-1.19)
1716Observational studya 1.02 (0.99-1.05)

101.00.1

Prostate cancer
22 297Genetic study 1.12 (0.96-1.30)

1340Observational studya 1.07 (1.01-1.14)
Ovarian cancer

15 397Genetic study 1.09 (0.94-1.27)
96Observational study 1.13 (0.98-1.32)

Colorectal cancer
14 537Genetic study 1.09 (0.91-1.31)

1447Observational studya 1.04 (0.97-1.11)
Lung cancer

11 348Genetic study 1.71 (1.44-2.04)
522Observational studyb 0.94 (0.87-1.02)
847Observational studyc 1.28 (1.12-1.46)

Endometrial cancer
6608Genetic study 1.31 (1.07-1.61)

382Observational studya 1.06 (0.95-1.19)
Pancreatic cancer

5105Genetic study 0.86 (0.56-1.32)
648Observational studya 1.05 (0.95-1.17)

Lung adenocarcinoma
3442Genetic study 3.19 (2.40-4.22)

288Observational study 1.44 (1.14-1.82)
Skin basal cell carcinoma

3361Genetic study 1.22 (0.90-1.65)
363Observational study 0.96 (0.85-1.09)

Lung squamous cell carcinoma
3275Genetic study 1.07 (0.82-1.39)

163Observational study 1.05 (0.78-1.42)
Kidney cancer

2461Genetic study 1.55 (1.08-2.23)
268Observational studya 0.94 (0.81-1.10)

Head and neck cancer
2082Genetic study 0.86 (0.57-1.30)

76Observational study 0.89 (0.72-1.09)
Melanoma

12 814Genetic study 1.88 (1.54-2.28)
734Observational studya 1.17 (1.06-1.29)

Bladder cancer
1601Genetic study 2.19 (1.32-3.66)

184Observational study 1.28 (1.02-1.61)
Testicular cancer

986Genetic study 1.76 (1.02-3.04)
10Observational study 0.94 (0.56-1.55)

Glioma cancer
1130Genetic study 5.27 (3.15-8.81)

101Observational study 0.90 (0.68-1.18)
Non-neoplastic diseases

22 233Genetic study 0.78 (0.67-0.90)
2272Observational study 0.86 (0.78-0.94)

Ischemic stroke
12 389Genetic study 0.85 (0.73-1.00)

824Observational study 0.94 (0.82-1.08)
Type 2 diabetes

10 415Genetic study 1.00 (0.84-1.20)
2011Observational study 0.90 (0.83-0.97)

Coronary heart disease

Search strategy and characteristics
for observational studies are
described in eTables 3 and 4 in
Supplement 1.
a From fixed-effects meta-analysis of

independent observational studies
described in eTable 3 in Supplement
1.

b From the combination of
Copenhagen City Heart Study
(CCHS) and Copenhagen General
Population Study (CGPS).10

c From the combination of Prostate,
Lung, Colorectal, and Ovarian
(PLCO), Alpha-Tocopherol,
Beta-Carotene Cancer Prevention
Study (ATBC), and Shanghai
Women's Health Study (SWHS).97
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Discussion

In this report, we show that genetically increased telomere
length is associated with increased risk of several cancers and
with reduced risk of some non-neoplastic diseases. Given the
random distribution of genotypes in the general population

with respect to lifestyle and other environmental factors, as
well as the fixed nature of germline genotypes, these results
should be less susceptible to confounding and reverse causa-
tion than those generated by observational studies. Our re-
sults could, however, reflect violations of Mendelian random-
ization assumptions, such as confounding by pleiotropy,
population stratification, or ancestry.98 Although we cannot

Figure 3. The Association Between Genetically Increased Telomere Length and Odds of Cancer as a Function of Selected Characteristics
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A-D, The plotted data show how the strength of the relationship between
genetically increased telomere length and cancer varies by the selected
characteristic: the R2 statistic indicates how much of the variation between
cancers can be explained by the selected characteristic; P values are from
meta-regression models; circle sizes are proportional to the inverse of the
variance of the log OR; the hashed line indicates the null of no association
between telomere length and cancer (ie, an OR of 1). A, Data for average
lifetime number of stem cell divisions were downloaded from Tomasetti and

Vogelstein.34 B-D, Data for percentage survival 5 years after diagnosis, cancer
incidence and median age at diagnosis were downloaded from the Surveillance,
Epidemiology, and End Results Program.33 Not all cancers had information
available for the selected characteristics (hence the number of cancers varies
across the subplots). Information was available for 9 cancers for tissue-specific
rates of stem cell division, 13 cancers for percentage surviving 5 years after
diagnosis, 17 cancers for cancer incidence, and 13 cancers for median age at
diagnosis. OR indicates Odds ratio.
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entirely rule out this possibility, the majority of our results per-
sisted in sensitivity analyses that made allowance for viola-
tions of Mendelian randomization assumptions. Confound-
ing by population stratification or ancestry is also unlikely,
given the adjustments made for ancestry in the original dis-
ease GWASes (see eAppendix 1 in Supplement 1). Our results
are therefore compatible with causality.

Comparison With Previous Studies
Our findings for cancer are generally contradictory to those
based on retrospective studies, which tend to report in-
creased risk for c ancer in individuals with shorter
telomeres.11,12,99-102 The contradictory findings may reflect re-
verse causation in the retrospective studies, whereby shorter
telomeres arise as a result of disease, or of confounding ef-
fects, eg, due to case patients being slightly older than con-
trols even in age-matched analyses. Our findings for cancer are
generally more consistent with those based on prospective ob-
servational studies, which tend to report weak or null asso-
ciations of longer leukocyte telomeres with overall and site-
specific risk of cancer,10-13,97,101,103-121 with some exceptions.122

Our results are also similar to previously reported Mendelian
randomization studies of telomere length and risk of mela-
noma, lung cancer, chronic lymphocytic leukemia, and
glioma.40,46,123,124 The shape of the association with cancer may
not, however, be linear over the entire telomere length distri-
bution. For example, individuals with dyskeratosis con-
genita, a disease caused by germline loss-of-function muta-
tions in the telomerase component genes TERC and TERT have
chronically short telomeres and are at increased risk of some
cancers, particularly acute myeloid leukemia and squamous
cell carcinomas arising at sites of leukoplakia,125,126 presum-
ably due to increased susceptibility to genome instability and
chromosomal end-to-end fusions.127 Our results should there-
fore be interpreted as reflecting the average association at the
population level and may not be generalizable to the extreme
ends of the telomere length distribution.

Mechanisms of Association
Our cancer findings are compatible with known biology.127 By
limiting the proliferative potential of cells, telomere shorten-
ing may serve as a tumor suppressor, and individuals with lon-
ger telomeres may be more likely to acquire somatic muta-
tions owing to increased proliferative potential.127 Rates of cell
division are, however, highly variable among tissues,34 and thus
the relative gain in cell proliferative potential, conferred by hav-
ing longer telomeres, may also be highly variable across tis-
sues. This could explain the approximately 6-fold variation in
ORs observed across cancer types in the present study as well
as the tendency of our results to be stronger at tissue sites with
lower rates of stem cell division. For example, the association
was strongest for glioma (OR, 5.27) and comparatively weak
for colorectal cancer (OR, 1.09), and the rates of stem cell di-
vision in the tissues giving rise to these cancers differ by sev-
eral orders of magnitude. In neural stem cells, which give rise
to gliomas, the number of divisions is about 270 million, and
for colorectal stem cells it is about 1.2 trillion over the average
lifetime of an individual.34 The observation that genetically

increased telomere length was more strongly associated with
rarer cancers potentially reflects the same mechanism, since
rarer cancers also tend to show lower rates of stem cell
division.34 For example, the incidence of glioma per 100 000
people per year in the United States is 0.4, and for colorectal
cancer it is 42.4.33

The inverse associations observed for some non-
neoplastic diseases may reflect the impact of telomere short-
ening on tissue degeneration and an evolutionary trade-off for
greater resistance to cancer at the cost of greater susceptibil-
ity to degenerative diseases, particularly cardiovascular
diseases.128,129

Clinical Relevance of Findings
Our findings suggest that potential clinical applications of telo-
mere length, eg, as a tool for risk prediction or as an interven-
tion target for disease prevention, may be subject to a trade-
off in risk between cancer and non-neoplastic diseases. For
example, a number of companies have been established that
offer telomere length measurement services to the public (via
a requesting physician) under the claim that shorter telo-
meres are a general indicator of poorer health status and older
biological age and that such information can be used to mo-
tivate healthy lifestyle choices in individuals. However, the con-
flicting direction of association between telomere length and
risk of cancer and non-neoplastic diseases indicated by our
findings suggests that such services to the general public may
be premature.

Study Limitations
Our study is subject to some limitations, in addition to the Men-
delian randomization assumptions already considered. First,
our method assumes that the magnitude of the association be-
tween SNPs and telomere length is consistent across tissues.
Second, our study assumed a linear shape of association be-
tween telomere length and disease risk, whereas the shape
could be “J” or “U” shaped.104,117,125 Third, our results as-
sume that the samples used to define the genetic instrument
for telomere length18 and the various samples used to esti-
mate the SNP-disease associations are representative of the
same general population, practically defined as being of simi-
lar ethnicity, age, and sex distribution.130 This assumption
would, for example, not apply in the case of the SNP-disease
associations derived from East Asian or pediatric popula-
tions. Generally speaking, violation of these assumptions could
bias the magnitude of the association between genetically in-
creased telomere length and disease but would probably not
increase the likelihood of false positives (ie, incorrectly infer-
ring an association when none exists).131 Our results should
therefore remain informative for the direction and broad mag-
nitude of the average association at the population level, even
in the presence of such violations. Fourth, we cannot rule out
chance in explaining some of the weaker findings. Fifth, our
results may not be fully representative of noncommunicable
diseases (since not all studies shared data, and our analyses
were underpowered for the secondary disease outcomes). The
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diseases represented in our primary analyses probably ac-
count for more than 60% of all causes of death in American
adults.132

Conclusions
It is likely that longer telomeres increase risk for several can-
cers but reduce risk for some non-neoplastic diseases, includ-

ing cardiovascular diseases. Further research is required to re-
solve whether telomere length is a useful predictor of risk that
can help guide therapeutic interventions, to clarify the shape
of any dose-response relationships, and to characterize the na-
ture of the association in population subgroups.
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