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Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants

robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional

BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined

hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 3 10�7

study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated

a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r2 ¼ 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1

reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p <

8.56 3 10�7 at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort

can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized

power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascer-

tained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory

mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting

BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample

size is smaller than that in previous studies.
Introduction

Raised blood pressure (BP) or hypertension [MIM 145500]

is estimated by the World Health Organization to con-

tribute 7.1 million deaths annually and is a major risk

factor for cardiovascular disease (CVD), mainly coronary

heart disease and stroke.1,2 Globally, in 2008 the preva-

lence of hypertension (defined as measured blood pressure

R140mmHg systolic BP [SBP] and/orR90mmHg diastolic

BP [DBP]) was ~40% in adults aged 25 and over.3 Candi-

date-gene and genome-wide association studies (GWAS)

for continuous BP traits in general population samples

and for case-control hypertension (HTN), have previously

identified 47 distinct genetic variants at 40 loci robustly

associated with BP and hypertension,4–15 but collectively

these explain only a few percent of the heritability for

BP phenotypes.16 To find additional BP loci, we used an

independent discovery sample of 25,118 individuals,

combining hypertensive case-control and general popula-

tion samples. We genotyped our discovery sample at
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47MRC Unit for Lifelong Health and Ageing, LondonWC1B 5JU, UK; 48Centre

College London, Rayne Building, 5 University Street, London WC1E 6JF, U

40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; 50Department of Gene

Office Box 30001, 9700 RB Groningen, the Netherlands; 51Department of Pat

University of Groningen, University Medical Center Groningen, Post Office

Unit, Richard Doll Building, Old Road Campus, Roosevelt Drive, Oxford OX

Via La Masa 19, Milano 20156, Italy; 54The Wellcome Trust Centre for Huma

Cardiovascular Medicine, University of Oxford, Level 6 West Wing, John Radc

sclerosis Research Unit, Department of Medicine Solna, Karolinska Institute

Hospital Solna, S-171 76 Stockholm, Sweden; 57Centre National de Génotypage
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49,452 SNPs by using the HumanCVD BeadChip (Illu-

mina, San Diego, CA), which is a bespoke gene-centric

array providing dense coverage of ~2,000 genes considered

a priori more likely to have functional effects on cardiovas-

cular traits, including BP.17 We tested genotypes at each

SNP for association with four continuous BP phenotypes

(SBP, DBP, mean arterial pressure [MAP] ¼ 1/3 SBP þ 2/3

DBP, and pulse pressure [PP] ¼ SBP � DBP) and also for

association with HTN and followed-up top signals in

a further 59,349 individuals by using a combination of

single SNP targeted genotyping and look-ups in pre-exist-

ing GWAS results. The five BP traits are correlated but

measure partly distinct physiological features, including

cardiac output, vascular resistance, and arterial stiff-

ness,18 and their distinct clinical and epidemiological roles

are a subject of current research. Because relatively little is

known about the genetic basis of interindividual variation

in these traits, or which traits are most powerful for detect-

ing genetic associations, we tested all five traits for associ-

ation in parallel. We discovered (at our study-specific
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significance threshold of p < 8.56 3 10�7) and replicated

a SNP at LSP1/TNNT3, a SNP atMTHFR-NPPB independent

(r2 ¼ 0.33) of previous reports,4,6,11 and replicated SNPs at

ATP2B1 and AGT that were reported previously;5,12 all

were associated with at least one phenotype. In an analysis

of combined discovery and follow-up data, we found eight

genetic associations with BP, at the MTHFR-NPPB, AGT,

NPR3, HFE, NOS3, LSP1/TNNT3, SOX6, and ATP2B1 loci,

at our study-specific significance threshold of p < 8.56 3

10�7 for at least one phenotype. To screen for candidate

functional mechanisms, we looked for copy-number

variant tagging SNPs (CNV-tSNPs), nonsynonymous SNPs

(nsSNPs), SNPs in transcription factor binding sites identi-

fied by chromatin immunoprecipitation followed by tag

sequencing (ChIP-Seq) performed by the ENCODE consor-

tium19–24, and expressed transcript-level-associated SNPs

(eSNPs) in two independent tissue resources (a whole-

blood and tissue panel and monocytes). Our results

provide candidates for further study to help dissect mech-

anisms affecting BP and highlight the utility of studying

SNPs and samples that are independent of those studied

previously, even when the sample size is smaller than

that in previous studies.
Material and Methods

Phenotyping, Genotyping, and Quality Control
Written informed consent and approval by local research ethics

committees and/or institutional review boards were obtained for

all participating studies. Cohort recruitment, sample acquisition,

BP and expression-level phenotyping, sample sizes, and demo-

graphics are described in detail in Tables S1 and S2, available

online. All analyses used data only on individuals of European

ancestry. For all of the discovery cohorts (the Allied Irish Bank

[AIBIII] study, the Anglo-Scandinavian Cardiac Outcomes Trial

[ASCOT], the BRItish Genetics of HyperTension [BRIGHT] study,

the British Womens Heart and Health Study [BWHHS], the

Genetic Regulation of Arterial Pressure of Humans In the Commu-

nity [GRAPHIC] cohort, the Malmö Diet and Cancer [MDC] study,

controls from the National Blood Service [NBS], the NORdic

DILtiazem [NORDIL] trial, the PRecOcious Coronary ARtery

DISease [PROCARDIS] study, and the WhiteHall II [WHII] study),

we genotyped individuals by using the Illumina HumanCVD

BeadChip array (version 1 or version 2) and applied quality control

(QC) exclusions and checks as described in Table S3. For analyses

that combined hypertensive cases and control samples that had

been recruited or processed separately (i.e., AIBIII þ ASCOT þ
NBS, BRIGHT, and MDC þ NORDIL), there are potential stratifica-

tion artifacts that might be induced by differences in sample

handling or by DNA extraction or preparation,25 and therefore

particularly stringent QC procedures were used (Table S3).

For follow-up of top signals, individual SNPs were genotyped

with the KASPAR assay in independent samples from seven

cohorts (the British Regional Heart Study [BRHS], the Edinburgh

Artery Study [EAS], the English Longitudinal Study of Ageing

[ELSA], the HYPertension in ESTonia [HYPEST] study, the study

of the INTERplay between GENEtic susceptibility and environ-

mental factors for the risk of chronic diseases [INTERGENE], the

Medical Research Council National Survey of Health and Develop-
690 The American Journal of Human Genetics 89, 688–700, Decemb
ment [MRC NSHD] and the Northwick Park Heart Study

[NPHSII]; Table S3). In addition, for two cohorts with GWAS

data (HYPERGENES and the Ottawa Heart Genomic Study

[OHGS]) and one GWAS meta-analysis consortium (Global BPgen

[GBPG]), results were looked up (where available) for SNPs we tar-

geted for follow-up (Table S3).

The whole-blood and tissue panel eSNP data set is derived from

a combination of peripheral whole-blood samples and a tissue

panel including subcutaneous and visceral adipose tissue, liver,

and muscle. The monocyte eSNP data set is derived from mono-

cytes from 395 healthy blood donors and 363 patients with

premature myocardial infarction. For both eSNP data sets, we

measured transcript levels with whole-genome expression micro-

arrays, and we genotyped samples by using standard GWAS plat-

forms (Tables S2 and S3).
Statistical Analyses
Within-Study Association Analyses

All association analyses assumed a normal linear regression model

for continuous phenotypes (DBP, MAP, PP, and SBP) and a logistic

regression model for HTN. For BP measurements from individuals

on antihypertensive or BP-lowering treatment, off-treatment

values were imputed by adding fixed constants of 15 mmHg SBP

and 10 mmHg DBP.6,26

In our analyses, we distinguished between nonascertained

studies (defined as those that selected individuals for inclusion

without reference to BP phenotypes) and ascertained studies

(defined as those that selected or enriched for individuals accord-

ing to their BP phenotype). Thus nonascertained studies include

random population samples and samples from specific demo-

graphic groups, and ascertained studies include hypertensive

case-control studies and population studies enriched for hyperten-

sive individuals). For the ascertained cohorts, HTN analyses

were performed separately with (1) ASCOT versus AIBIII þ NBS

combined, (2) BRIGHT cases versus controls, (3) NORDIL versus

MDC. Continuous BP measures were not available in the NBS

cohort and hence continuous trait analyses were performed

separately with (1) AIBIII þ ASCOT þ BRIGHT combined and (2)

MDC þ NORDIL combined in order to obtain both similar

ancestry and balance of high and low BP individuals in each asso-

ciation analyses. Genetic association tests aremore powerful when

individuals ascertained from both extremes of the phenotype

distribution are genotyped, compared with genotyping an equal

number of nonascertained (randomly sampled) individuals.27

However, both within-study association analysis, and also meta-

analysis combining nonascertained and ascertained samples,

require special analytical considerations as described below.

In studies with nonascertained samples, the joint distribution

of BP and phenotypic covariates follows a population distribution,

and therefore we included sex, age, age2 and body mass index as

covariates.6 In studies that combined ascertained samples (from

AIBIII, ASCOT, BRIGHT, MDC, NBS, and NORDIL), the various

ascertainment schemes mean that the joint distribution of BP

and phenotypic covariates is not like a population distribution.

For example, in the combined MDC and NORDIL data sets, both

SBP andHTN are negatively correlatedwith age; differential partic-

ipation in the BRIGHTstudy was female-biased, but recruitment in

the ASCOTstudy deliberately enriched for males. Therefore we did

not use phenotypic covariates in analyses of these samples,

because to do so would have biased the resulting effect-size

estimates.
er 9, 2011



Asymptotic approximations that rely on large sample size and

minor allele frequency (MAF) not close to zero were used to

estimate standard errors for within-study association analyses.

An a priori decision was made not to use HTN analyses for

SNPs with MAF < 0.01. For all analyses, the goodness of asymp-

totic approximations was checked empirically by examining

quantile-quantile plots of the association test statistics after

preliminary exclusions (Figures S1–S5). For all quantitative trait

analyses, there was a clear departure from the expected uniform

distribution of p values for SNPs with MAF < 0.01 for the two

cohorts with related individuals (GRAPHIC and PROCARDIS),

and these SNPs were therefore excluded for these studies. There

was no departure from the expected distribution of p values for

ascertained studies despite their nonnormal continuous trait

distributions.

We verified independence across studies for our discovery anal-

ysis by computing robust estimates of the pairwise interstudy test

statistic correlations. For each pairwise study comparison and for

each trait in turn, we calculated the Spearman correlation between

association test statistics, by using 12,025 SNPs for continuous

traits and 11,832 SNPs for HTN, obtained by pruning SNPs in

strong linkage disequilibrium (LD) with other SNPs and excluding

SNPs where study results failed QC. Themaximum correlation (for

all pairs and all phenotypes) was r ¼ 0.038 (for AIBIII þ ASCOT þ
BRIGHT versus BWHHS for MAP). Although formally statistically

significant (p ¼ 3.2 3 10�5) after adjusting for the number of

phenotypes and number of pairwise cohort comparisons, we do

not regard this as indicative of substantial cryptic sample overlap

or double counting because (1) the absolute value of the correla-

tion is very low, (2) residual LD exists within the pruned set of

SNPs used to calculate these correlations, and (3) the correlation

we calculated cannot be made completely robust to inflation

because of truly associated SNPs.

Discovery Meta-Analysis Weighting Scheme

For each continuous trait in turn (DBP, MAP, PP, SBP) and for each

single SNP, we meta-analyzed the effect-size estimates and stan-

dard errors obtained from within-study association analyses. We

developed a meta-analysis approach intended to maximize power

in our specific application, namely when combining results

from a mixture of nonascertained studies (BWHHS, GRAPHIC,

PROCARDIS, and WHII) and studies ascertained on the basis of

the phenotypes that are the subject of the association analysis

(from AIBIII, ASCOT, BRIGHT, MDC, NORDIL). Our approach is

motivated by the observation that effect-size estimates from ascer-

tained studies tend to be inflated, relative to effect-size estimates

that would be obtained from a nonascertained population, but

also that, for any given sample size, standard errors for ascertained

studies are inflated relative to those for nonascertained studies

(Figure S6).28 These larger standard errors mean that if a standard

inverse-variance weighting scheme was used, information from

ascertained studies would be inappropriately downweighted. To

avoid this problem, for each ascertained study we estimated an

inflation correction factor (Table S4), which rescales the effect-

size estimates and standard errors, to obtain estimates of the corre-

sponding effect sizes in the populations from which these studies

were ascertained. After rescaling, all studies (ascertained and

nonascertained) are unbiasedly estimating equivalent population

parameters, and inverse-variance weighting of the rescaled

effect-size estimates is therefore asymptotically most powerful.

Intuitively, the effect of rescaling standard errors for ascertained

studies means that those studies then have increased weights in

the meta-analysis of rescaled effect-size estimates.
The American
For HTN, for each single SNP we meta-analyzed the effect-size

estimates across studies by using inverse-variance weighting.

Multiple Testing Correction

We estimated the significance threshold that would provide a 5%

overall false-positive rate control (strictly, a 5% family-wise error

rate [FWER]) when five correlated phenotypes (DBP, SBP, MAP,

PP, and HTN) are tested for association with genotypes at the

~50,000 correlated SNPs on the HumanCVD BeadChip with the

spectralmethods of Nyholt29 and Li and Ji.30 The high correlations

between the five phenotypes imply only Meff ¼ 2.7577 effective

tests (Table S5), and the correlations between the ~40,000 poly-

morphic SNPs imply Meff ¼ 21,180 effective tests (Table S6).

Hence, analyzing five phenotypes at ~40,000 polymorphic SNPs

corresponds to a total of Meff ¼ 58,409 effective tests, and we

therefore used a significance threshold of p < 0.05/(58,409) ¼
8.56 3 10�7 for our discovery analysis.

Follow-Up Analysis

We selected ten independent SNPs at ten distinct loci for follow-up

on the basis of results from our discovery analysis; four SNPs

with p < 8.56 3 10�7 and six SNPs with suggestive association

(p < 1/58,409 ¼ 1.71 3 10�5). Where there was no previous or

concurrent report of association with BP phenotypes (at the

NOS3, LSP1/TNNT3, SOX6, NUCB2/KCNJ11/ABCC8, and

CACNA1C loci), we followed up the most significant SNP at

each locus by using a combination of direct genotyping in inde-

pendent samples and look-ups in results from several GWAS data

sets. (We subsequently became aware of a concurrent discovery

of the association at the NOS3 locus.) For the other five loci

(MTHFR-NPPB, AGT, NPR3, HFE and ATP2B1), association with

BP phenotypes had been reported previously4–7,11,12,31 or were

being validated with direct genotyping in a concurrent work.14

For these loci we performed look-ups in results from previously

published meta-analysis (GBPG,6 n ¼ 33,638, except for AGT

where results from GBPG, Cohorts for Heart and Aging Research

in Genomic Epidemiology [CHARGE] and Women’s Genome

Health Study [WGHS], n ¼ 86,588 were previously published12).

We tested each SNP with a single one-tailed test by using the direc-

tion of effect and phenotype with the smallest p value observed in

our discovery meta-analysis. Using a Bonferroni correction for ten

independent tests, we declared successful replication for SNPs with

one-tailed p < 0.05/10 ¼ 0.005. For analysis of combined dis-

covery and replication data, we used a p < 8.56 3 10�7 threshold

as for our discovery analysis because testing the ten SNPs in

combined analysis is slightly conservative compared to analyzing

all SNPs for association in the full discovery plus follow-up sample

size.32,33

Low-Frequency Variant Analyses

For our study, low-frequency variants were defined as SNPs with

0 < MAF % 0.05 and passing our other QC thresholds used for

meta-analysis (Table S3). To test association with individual low-

frequency SNPs, we simply used our meta-analysis results calcu-

lated as described in Within-Study Association Analyses and

Discovery Meta-Analysis Weighting Scheme and classified accord-

ing to the observed MAF by using the weighted average across

cohorts.

We tested for associations between BP phenotypes and the total

dose of low-frequency alleles, counting alleles at all low-frequency

SNPs within 50 kb of any known transcript for each gene. We

included in our analyses all genes with R20 low-frequency vari-

ants, plus genes near a common variant association discovered

here or previously and genes where rare variant associations

were reported previously.34 We tested the association between
Journal of Human Genetics 89, 688–700, December 9, 2011 691



the phenotype and total dose (count) of low-frequency alleles

separately for each of our five BP phenotypes by using normal

linear and logistic regression models with ten ancestry PCs as

covariates and then meta-analyzed by using inverse-variance

weighting to combine results from the UK and Irish ancestry

samples and the Nordic ancestry samples.

Identification of Credibly Causal SNPs

We used LD observed in samples resequenced for the 1000

Genomes Project (1000G),35 annotation of encoded protein

sequence changes in known transcripts, and data on transcription

factor binding site (TFBS) peak regions identified by chromatin

immunoprecipitation followed by tag sequencing (ChIP-Seq)

performed by the ENCODE consortium19–24 to determine whether

there were candidate functional SNPs that could potentially be

causally responsible for the observed genotype-phenotype associ-

ations.

Because pairwise LD measures do not directly convey in-

formation about relative strength of association, for candidate

functional SNPs included in our association meta-analysis, we

conducted a model selection analysis. This analysis is motivated

by the knowledge that, even if the true causal variant is a geno-

typed SNP, a different SNP in LD might have a more significant

association and a smaller p value simply by chance. The model

selection analysis does not address the question of whether

a causal relationship exists. Rather, assuming that a sole causal

genetic variant exists at each locus, the analysis discriminates

between a set of mutually exclusive hypotheses about which

genetic variant is the causal one and measures the relative support

for each with the aim of eliminating SNPs that could not credibly

be the sole causal variant at each locus.

Our model selection analysis is different in purpose to condi-

tional analyses, which ask whether two or more SNPs might

jointly be responsible for the observed genotype-phenotype asso-

ciation. Because the models being compared are not nested, clas-

sical model selection criteria such as the likelihood ratio test are

not appropriate. We use a Bayesian model selection criterion, the

Bayes Factor (BF) relative to the SNP with the highest marginal

likelihood at each locus.36 SNPs with BF < 0.05 are not credible

candidates for being the sole causal variant at a locus, and we

use the specific term ‘‘credibly causal’’ to describe SNPs that are

not eliminated by this criterion. This elimination is conservative:

Because marginal likelihoods cannot be calculated for SNPs not

included in our association meta-analysis, BFs are not calculated

for all SNPs, and the BFs that are calculated are upper bounds.

eSNP Analysis and Determination of Coincident Signals

We performed cis-eSNP analyses for loci with SNPs significantly

associated with BP in our analysis of combined discovery and

replication data. For each locus, we used an index SNP that was

most significantly associated with BP or a r2 R 0.9 proxy when

that SNPwas not available in the eSNP data set. At each locus, tran-

script levels for all genes 500 kb on either side of the index SNP

were tested for association with the index SNP genotype in both

eSNP data sets (Table S3). Transcript levels significantly associated

with the index SNP might be mediators of the effect on BP but

might also be artifacts of much stronger transcript associations

at genetic variants that are in only weak LD with an index SNP.

We follow Voight et al.37 and use the term ‘‘coincident’’ when

the data are consistent with the same genetic variant being respon-

sible for the BP association and transcript association signals (and

hence the transcript being a plausible mediator). For each signifi-

cantly associated transcript, we identified the top eSNP (the SNP

with the most significant cis association for the transcript) and
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performed conditional analyses when the index SNP and the top

eSNP were not the same. For the index SNP at SOX6, we also per-

formed a trans-eQTL analysis because functional annotation of

SOX6 suggests its product might regulate the expression of other

genes.
Results

For our discovery analysis, we successfully genotyped

25,118 individuals, and 38,069 SNPs passed QC in our

meta-analysis. All five traits analyzed (SBP, DBP, MAP, PP,

and HTN) showed an excess of significant associations at

SNPs with MAF > 5% (Figure 1 and Figures S7 and S8). In

our discovery analyses, four distinct loci (MTHFR-NPPB,

AGT, LSP1/TNNT3, and ATP2B1) had significant associa-

tions at our study-specific significance threshold of p <

8.56 3 10�7 (Table 1, Table S7, and Figure S8). We targeted

our top ten distinct and independent association signals

for follow-up analysis in a further 59,349 individuals, and

eight of these signals had one-tailed p < 0.05/10 ¼ 0.005

with directions of effect concordant with the discovery

analysis (Table 1, Figure 2, and Table S8). In an analysis of

discovery and follow-up data combined, the eight SNPs

(at the MTHFR-NPPB, AGT, NPR3, HFE, NOS3, LSP1/

TNNT3, SOX6, and ATP2B1 loci) were all associated with

more than one BP trait at our study-specific significance

threshold of p < 8.56 3 10�7 (Figure 3, Figure S9, and

Table S9). PP and MAP are not simply correlated with SBP

and DBP but are calculated as linear functions of SBP and

DBP, and therefore for these four continuous BP traits

there are only two underlying phenotypic degrees of free-

dom. Hence, all truely associated SNPs must be truely asso-

ciated with at least three (and probably all four) of these BP

traits, and which particular traits were significantly associ-

ated at any given significance threshold conveys little

biologically relevant information beyond that conveyed

by continuous measures of effect size (Figure 3).

Though not providing genome-wide coverage, the

HumanCVD BeadChip specifically targets low-frequency

SNPs17 and so might have an advantage over standard

GWAS platforms to detect association with low-frequency

variants (Figure S10). However, despite our substantial

discovery sample size, we observed no significant associa-

tion with either individual low-frequency SNPs (MAF %

5%) across the whole array (Figure 1 and Figure S7) or

with the total dose of low-frequency alleles in the 93 genes

with the most dense coverage of low-frequency SNPs

(Table S10). We also checked whether CNV-tSNPs were

correlated with our association signals because CNVs are

strong candidate functional alleles, but none of the cred-

ibly causal SNPs at the eight BP loci were found to be

CNV-tSNPs (Table S11).

Several SNPs associatedwith BP previously are genotyped

or tagged by the HumanCVD BeadChip (Table S12). In

our data, we confirmed (at p < 0.05) associations for all

SNPs previously robustly associated with BP in samples of

European ancestry.4,6,7,9,12,14,15
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Figure 1. Quantile-Quantile Plots of Meta-Analysis Results
Each panel shows common (MAF> 5% shown in blue) and low-frequency (MAF% 5% shown in red) SNPs separately. Shaded regions are
99% probability envelopes for no association, which depend on the number of SNPs and hence are different sizes for common and low-
frequency SNPs. The horizontal dashed line indicates our overall study-specific significance threshold p < 8.56 3 10�7.
At the LSP1/TNNT3 locus containing genes for leuko-

cyte-specific protein 1 (LSP1 [MIM 145500]) and troponin

T type 3 (TNNT3 [MIM 600692]), the most significantly

associated SNP was rs661348 in intron 6 of LSP1 in an

~170 kb LDblock (Figure 2).We directly genotyped a nsSNP

(rs621679, LSP1 [p.Ala38Thr (c.112G>A), p.Ala100Thr

(c.298G>A)]) that was not on the HumanCVD BeadChip

and is not in HapMap (CEU [Utah residents with Northern

andWestern European ancestry from the CEPH collection]

release 22), which we identified by using phased haplo-

types from 1000G as being in moderate LD with

rs661348 (r2 ¼ 0.57; Table S13). Although this nsSNP alone

can explain the observed association and is a candidate on

a priori functional grounds, the statistical evidence for

association was equivocal between rs621679 and

rs661348 (Table S14). At a second locus, SOX6, the most

significantly associated SNP was rs2014408 in intron 3 of
The American
the transcription factor SRY-Box6 (SOX6 [MIM 607257])

in an ~160 kb LD block (Figure 2). This SNP is independent

of a BP-associated SNP (rs381815, r2 ¼ 0.026) reported

previously,7 which is located 537 kb away at the PLEKHA7

locus (Figure S11). The genes at both the LSP1/TNNT3 and

SOX6 loci have no reported connections with BP. At the

SOX6 locus, two SNPs in high LD with rs2014408 (r2 ¼
0.96 with rs1155685 and r2 ¼ 0.87 with rs1701502) might

lie within regions bound by transcription factors (Tables

S13 and S15). If future functional studies can definitively

identify the causal mechanisms underlying the associa-

tions at LSP1/TNNT3 and SOX6 loci, this promises insights

into the basic biology of BP determination.

We also found significant associations at the AGT and

NOS3 loci, consistent with recent reports for AGT.12,31

At these loci, angiotensinogen (AGT [MIM 106150]) and

nitric oxide synthase 3 (NOS3 [MIM 163729]) encode
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Table 1. Results for the Ten Association Signals Targeted for Follow-Up Analysis

Locusa

Index SNP,
Position on
NCBI Build
36 Coordinates

Discovery Data Follow-Up Data

Combined
Discovery and
Follow-Up Data
p Valueb

Coded and
Noncoded
Alleles,
Frequencies

Beta (SE) per
Coded Allele,
p Valueb Phenotype

Coded and
Noncoded
Alleles and
Frequencies

Beta (SE) per
Coded Allele,
One-Tailed
p Valuec

SNPs Followed Up with Direct Genotyping and Look-ups

NOS3 rs3918226,
chr7:150,321,109

T/C 0.08/0.92 þ0.83 (0.18),
p ¼ 2.9 3 10�6þ

DBP T/C 0.09/0.91 þ0.78 (0.21),
p ¼ 9.5 3 10�5***

p ¼ 2.2 3 10�9***

LSP1/TNNT3 rs661348,
chr11:1,861,868

T/C 0.57/0.43 �0.65 (0.11),
p ¼ 7.0 3 10�10***

MAP T/C 0.55/0.45 �0.31 (0.09),
p ¼ 2.0 3 10�4**

p ¼ 3.0 3 10�11***

SOX6 rs2014408,
chr11:16,321,858

T/C 0.21/0.79 þ0.58 (0.13),
p ¼ 9.4 3 10�6þ

MAP T/C 0.19/0.81 þ0.30 (0.10),
p ¼ 1.2 3 10�3*

p ¼ 3.5 3 10�7*

NUCB2/KCNJ11/
ABCC8

rs2074311,
chr11:17,378,436

G/A 0.58/0.42 �0.45 (0.10),
p ¼ 2.6 3 10�6þ

PP G/A 0.58/0.42 �0.10 (0.07),
p ¼ 7.6 3 10�2 NS

p ¼ 6.3 3 10�5 NS

CACNA1C rs3819526,
chr12:2,306,783

T/C 0.61/0.39 þ0.47 (0.10),
p ¼ 1.8 3 10�6þ

DBP T/C 0.61/0.39 þ0.10 (0.07),
p ¼ 6.9 3 10�2 NS

p ¼ 7.5 3 10�5 NS

SNPs Followed Up with Look-up in GBPG Results Only

MTHFR-NPPB4,6,11 rs4846049,
chr1:11,772,952

T/G 0.33/0.67 �0.55 (0.10),
p ¼ 6.7 3 10�8**

DBP T/G 0.31/0.69 �0.34 (0.09),
p ¼ 1.5 3 10�4**

p ¼ 3.0 3 10�10***

AGT12 rs2004776,
chr1:228,915,325

T/C 0.24/0.76 þ0.14 (0.02),
p ¼ 4.3 3 10�9***

HTN T/C 0.23/0.77 0.08 (0.02)d,
p ¼ 1.9 3 10�7***d

p ¼ 6.7 3 10�14***d

NPR313,38 rs1421811,
chr5:32,750,027

G/C 0.39/0.61 �0.67 (0.15),
p ¼ 4.8 3 10�6þ

SBP G/C 0.37/0.63 �0.37 (0.14),
p ¼ 3.5 3 10�3*

p ¼ 3.4 3 10�7*

HFE14 rs1799945,
chr6:26,199,158

G/C 0.15/0.85 þ0.62 (0.14),
p ¼ 7.6 3 10�6þ

DBP G/C 0.14/0.86 þ0.50 (0.12),
p ¼ 2.6 3 10�5***

p ¼ 2.0 3 10�9***

ATP2B15 rs11105354,
chr12:88,550,654

G/A 0.16/0.84 �0.15 (0.03),
p ¼ 2.4 3 10�8**

HTN G/A 0.15/0.85 �0.12 (0.04),
p ¼ 4.5 3 10�4**

p ¼ 1.1 3 10�10***

The following symbols are used: NS, Not significant at 0.05 level after multiple testing correction; þ, suggestive after multiple testing correction (p < 1/58,409 ¼
1.713 10�5); *, Significant at 0.05 level after multiple testing correction; **, Significant at 0.01 level after multiple testing correction; ***, Significant at 0.001 level
after multiple testing correction.
a Loci are named according to nearby gene or genes that are strongest functional candidates, based on the position of the index SNP, of correlated nsSNPs, eSNPs,
and ChIP-Seq analyses. Numerical superscripts indicate literature citations for previous reports of genetic associations at these loci where known.
b Adjustment for 58,409 effective tests required.
c Adjustment for ten tests required.
d Including results from Johnson et al.12
products with known functional effects on BP (Table 2). At

the AGT locus, we observed multiple SNPs in weak and

modest pairwise LD at our study-specific significance

threshold of p < 8.56 3 10�7. However, association

analyses conditioning on the most significantly associated

SNP (rs2004776) revealed no significant secondary signals

(Figure S12), consistent with a previous observation that

no multi-SNP haplotype is more significant than this

single SNP.31 In AGT the nsSNP rs699 (p.Met268Thr

[c.803T>C], previously known as p.Met235Thr) is in

moderate LD with rs2004776 (r2 ¼ 0.56) and cannot cred-

ibly be excluded as responsible for the observed association

signal in our data (Table S13). Several other credibly causal

SNPs are located in overlapping peak binding regions for

multiple transcription factors (Tables S13 and S15), sug-

gesting regulation of AGT as an alternative candidate

mechanism. At the NOS3 locus, the most significantly

associated SNP is rs3918226, which is not genotyped on

most standard GWAS arrays, and is not in HapMap CEU

r22, and hence this association could not have been
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discovered by previous GWAS meta-analyses. This SNP is

located within a region with striking enrichment for

binding by the transcription factor sine oculis homeobox,

Drosophila, homolog of 5 (SIX5 [MIM 600963]; Tables S13

and S15 and Figure S13), which is upstream of the first

coding exon of all common NOS3 transcripts, suggesting

regulation of NOS3 as a candidate functional mechanism.

At the NPR3 and HFE loci, our findings are partly coinci-

dent with those of large GWAS meta-analyses reported

elsewhere. In our data, the most significantly associated

SNP at the NPR3 locus is rs1421811, located in intron 1

of the natriuretic peptide receptor C (NPR3 [MIM

108692]). This SNP is in weak LD with two SNPs reported

elsewhere13,14 (r2 ¼ 0.19 with rs1173771 and r2 ¼ 0.17

with rs1173766). These two SNPs are located 101 kb and

91 kb away from rs1421811, are highly correlated with

each other (r2 ¼ 0.84), and show less significant associa-

tions in our data (Table S12). All of these SNPs are in very

weak LD (r2 < 0.01) with the SNP rs7726475 reported

recently by Zhu et al.38 Thus, our data probably identify
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Figure 2. Regional Association Plots for Eight SNPs thatWere p< 8.563 10�7 for at Least One Phenotype in an Analysis of Combined
Discovery and Follow-Up Data
The top of each plot shows local pairwise LD patterns (r2¼ 0 in white; r2¼ 1 in red) and a fine-scale recombination rate map (cyan lines).
The center of each plot shows association results from the discovery analysis only (to maintain an equal sample size for all points) for the
five phenotypes analyzed (DBP in blue, MAP in magenta, PP in green, SBP in red, and HTN in yellow). The bottom of each plot shows
positions of transcripts of known genes.
an independent variant at the NPR3 locus affecting BP.

At the HFE locus, our most significantly associated SNP

is rs1799945, which is the same nsSNP (p.His63Asp

[c.187C>G]) in the hemochromatosis gene (HFE [MIM

613609]) reported elsewhere.14 In our data this SNP is an

eSNP, associatedwithHIST1H2BK transcript levels inmono-

cytes (p ¼ 8.5 3 10�5) and HIST1H2AA transcript levels in

the whole-blood and tissue panel (p ¼ 2.9 3 10�4; Table

S16). We observed no association between the p.His63Asp
The American
nsSNP and HFE expression levels in monocytes or in the

whole-blood and tissue panel (Table S16). Several other

SNPs in strong LD with HFE p.His63Asp might lie within

regions bound by multiple transcription factors (Tables

S13 and S15), further supporting the possibility of a regula-

tory mechanism at this locus.

Our analyses also identified significant associations at

two previously reported BP loci, ATP2B1 and MTHFR-

NPPB. At the ATP2B1 locus, our most significantly
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Figure 3. Heat Plot Showing Percentage of Phenotypic Variance
Explained in All Available Data for the Eight SNPs
Numeric values are percentage R2 for continuous traits (DBP, SBP,
MAP, PP) and Cox and Snell pseudo-R2 for HTN. Each SNP explains
less than 0.1% of phenotypic variance. Stars indicate significance
levels adjusting for Meff ¼ 58409 tests: *p % 0.05/58,409, **p %
0.01/58,409, ***p % 0.001/58,409.
associated SNP is rs11105354, which is perfectly correlated

with previously reported SNPs (Table 2 and Table S12).5,7

At the MTHFR-NPPB locus, the most significantly associ-

ated SNP in our data is rs4846049 in the 30 UTR of 5-10-

methylenetetrahydrofolate reductase (MTHFR [MIM

607093]). We also observed highly significant associations

at two nearby previously reported SNPs4,6 that are in weak

and moderate pairwise LD with rs4846049 (r2 ¼ 0.08 with

rs5068 and r2 ¼ 0.33 with rs17367504), and therefore we

analyzed association with the three SNPs simultaneously.

Each individual SNP was not significantly associated

when added to a multivariate regression model that

included the other two SNPs (Table S17), and it therefore

appears that any two of these three SNPs are sufficient to

jointly tag the causal variant or variants, which remain

to be definitively identified. We identified a credibly causal

nsSNP rs1801131 (MTHFR p.Glu429Ala [c.1286A>C]) in

high LD with rs4846049 (r2 ¼ 0.9). rs4846049 is also an

eSNP, associated with MTHFR (p ¼ 1.91 3 10�82) and

CLCN6 (p ¼ 1.6 3 10�8) transcript levels in the whole-

blood and tissue panel and MTHFR transcript levels in

monocytes (p ¼ 3.1 3 10�36 for rs1801131, an r2 ¼ 0.94

proxy; Table S16). A gene regulatory mechanism is further
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supported by the observation that rs4846049, and also the

slightly less significantly associated but still credibly causal

SNP rs3818762, lie within a region with striking enrich-

ment for binding by the signal transducer and activator

of transcription 1 (STAT1 [MIM 600555]; Tables S13

and S15 and Figure S13). Our results and previous studies

indicate the MTHFR-NPPB locus contains multiple

nonindependent SNPs associated with BP, suggesting

potentially several causal variants and several potential

functional mechanisms. Our results highlight the MTHFR

p.Glu429Ala nsSNP as one plausible mechanism and regu-

lation of MTHFR and/or CLCN6 as another.
Discussion

In the context of GWAS meta-analyses with larger dis-

covery samples sizes and substantially greater discovery

genotyping effort (n ¼ 34,433 and ~19 billion SNPs geno-

typed;6 n ¼ 29,136 and ~18 billion SNPs genotyped;7 and

n ¼ 69,395 and ~39 billion SNPs genotyped14) than our

discovery sample (n ¼ 25,118 and ~1.3 billion SNPs geno-

typed), it might at first seem surprising that our study

identified BP loci that were not discovered by these

GWAS meta-analyses. However, there was likewise only

modest overlap of the loci that had sufficiently strong

statistical evidence to be claimed as ‘‘discovered’’ by the

two previous GWAS meta-analysis studies with nonover-

lapping samples.16 Similar to other complex disease

phenotypes,39 this observation is consistent with the

hypothesis that the complete genetic architecture of BP

involves a very large number of genetic variants and that

current GWAS or large-scale candidate-gene studies will

discover more-or-less random subsets of this architecture

because their power to detect such variants is low. Our

study can be viewed as an explicit test of a corollary of

this hypothesis, that discovery analyses with samples inde-

pendent of those studied previously will identify BP loci

that have, simply by chance, evaded detection in previous

GWAS with similar or larger sample sizes.

Protein sequence changes encoded by nsSNPs were

specifically targeted in the HumanCVD BeadChip design

because they are strong a priori functional candidates, and

SNPs in transcription factor binding sites can exert

functional effects by modulating transcription factor

binding.40,41 We tested whether such SNPs could be caus-

ally responsible for the observed association signals, explic-

itly taking into account the likelihood of a noncausal SNP

having by chance a smaller p value. Our results are based

on a rigorous analysis and explicit assumptions about the

distribution of the effect sizes (Table S13). The relationship

between our results and those obtained by more ad hoc

approaches (Figures S14 and S15) suggests that the wide-

spread practice of looking only at functional annotation

of SNPs in strong LD (e.g., r2 R 0.8) with index SNPs is

not theoretically well grounded and that previous GWAS

might have overlooked some potential causalmechanisms.
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Table 2. Literature and Functional Annotation for Key Genes at each BP-Associated Locus

Gene Function and References

LSP1 LSP1 encodes leukocyte-specific protein 1, an intracellular F-actin binding protein, primarily expressed in leukocytes and endothelial
cells. Studies of lsp1 knockout mice and other work indicate LSP1 plays a role in signaling, regulating the cytoskeletal architecture
and neutrophil migration.42,43 Recent GWAS meta-analyses have reported polymorphisms in LSP1 to be associated with ulcerative
colitis44 and breast cancer.45

TNNT3 TNNT3 encodes the fast skeletal troponin T protein, also known as Troponin T type 3. Calcium binding to the troponin complex initiates
the process of muscle contraction.46 Mutations in TNNT3 have been found in patients with distal arthrogryposis multiplex congenita
type 2B (DA2B).47

SOX6 SOX6 encodes a transcription factor, which is defined by a conserved high-mobility group DNA binding domain. It is required for
normal development of the central nervous system, chondrogenesis, and maintenance of cardiac and skeletal muscle cells.48

Recent genome-wide association studies show association of polymorphisms in SOX6 with bone mineral density.49

AGT AGTencodes angiotensinogen, which is amember of the renin-angiotensin-aldosterone system (RAAS). Its cleaved products angiotensin
I, angiotensin II and angiotensin III are known regulators of BP and sodium homeostasis.50 There are numerous reports of association of
genetic polymorphisms at the AGT locus associated with hypertension.12,31,51,52

NOS3 NOS3 encodes endothelial nitric oxide synthase, an enzyme that generates nitric oxide (NO). NO plays an important role in the
maintenance of cardiovascular and renal homeostasis.53 Studies of NOS3 knockout mice show heterozygous and homozygous mice
to have increased BP (4 mmHg in þ/� mice and 18 mmHg in �/� mice) compared to wild type.54

NPR3 NPR3 encodes the natriuretic peptide clearance receptor. The protein acts as a clearance receptor for circulating natriuretic peptides
A, B and C, and also elicits a number of vascular, renal, and endocrine effects directly via its coupling to an inhibitory heterotrimeric
G protein, Gi.55 NPR3 knockout mice show reduced clearance of circulating natriuretic peptides and have lower BP.56 Other
polymorphisms in this gene have recently been reported to be associated with height57 and BP.13,14,38

HFE HFE encodes the hemochromatosis protein, a membrane bound protein involved in regulating iron absorption. The p.His63Asp
(the BP-associated variant) and p.Cys282Tyr nsSNPs in this gene cause the classical autosomal form of hemochromatosis.58 The
p.His63Asp variant has recently been reported to be associated with BP in an independent discovery data set.14

HIST1H2BK HIST1H2BK encodes histone H2B type 1-K. This protein forms a structural part of the nucleosome and functions as a regulator of
chromatin organization and stability.59

HIST1H2AA HIST1H2AA encodes histone H2A type 1-A. This protein forms a structural part of the nucleosome and functions as a regulator of
chromatin organization and stability.59

ATP2B1 ATP2B1 encodes a calcium ATPase, isoform 1, which is a membrane bound protein involved in intracellular calcium homeostasis.60

Polymorphisms in this gene have previously been associated with hypertension.5 The polymorphism associated with BP has recently
been shown to be associated with serum magnesium levels.61

MTHFR MTHFR encodesmethylenetetrahydrofolate reductase, an enzyme involved in homocysteinemetabolism.62 Polymorphisms in this gene
have been reported to be associated with many traits including BP and hypertension.6,8,11,63

CLCN6 CLCN6 encodes chloride transport protein 6, a member of the CLC protein family of Cl- channels and transporters.64 Recent data
indicate CLCN6 functions as anion-proton antiporter, and suggest it might have a dual role in vesicular acidification and chloride
accumulation.65
Our discovery and follow-up analyses identified eight

independent genetic variants associated with BP. We attri-

bute the high (80%) success rate to three factors. First, use

of the HumanCVD BeadChip for our discovery analysis

meant that, compared to standard GWAS approaches,

each SNP had higher a priori chances of being truly associ-

ated with BP and also that a less stringent p value threshold

could be used to select SNPs for follow-up because of the

lower multiple testing burden. Second, our discovery

analysis tested five blood pressure phenotypes in parallel,

and we avoided a reduction in power by testing only the

most significantly associated phenotype in our follow-up

analysis. Third, we combined data from population

cohorts and hypertensive case-control cohorts that were

sampled from the extremes of the continuous phenotype

distribution and used a specially developed meta-analysis

weighting scheme that gives appropriately large weights

to the more extreme case-control cohorts that are expected

to yield the greatest information.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes (1000G) Project, http://www.1000genomes.org

ENCODE Project ChIP-Seq Raw Signal Data and TFBS Peak

Regions, http://genome.ucsc.edu/cgi-bin/hgTables

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov

KASPAR Genotyping Systems, http://www.kbioscience.co.uk/

reagents/KASP.html

National Human Genome Resource Institute Catalog of Published

GWAS, http://www.genome.gov/gwastudies

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/
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