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Background: Chronic immunediseases, suchasasthma, arehighly
prevalent. Currently available pharmaceuticals improve
symptomsbut cannot cure the disease. This prompteddemands for
alternatives to pharmaceuticals, such as probiotics, for the
prevention of allergic disease. However, clinical trials have
produced inconsistent results. This is at least partly explained by
the highly complex crosstalk among probiotic bacteria, the host’s
microbiota, and immune cells. The identification of a bioactive
substance from probiotic bacteria could circumvent this difficulty.
Objective: We sought to identify and characterize a bioactive
probiotic metabolite for potential prevention of allergic airway
disease.
Methods: Probiotic supernatantswere screened for their ability to
concordantly decrease the constitutive CCL17 secretion of a
human Hodgkin lymphoma cell line and prevent upregulation of
costimulatorymolecules of LPS-stimulated humandendritic cells.
Results: Supernatants from 13 of 37 tested probiotic strains
showed immunoactivity. Bioassay-guided chromatographic
fractionation of 2 supernatants according to polarity, followed by
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total ion chromatography and mass spectrometry, yielded
C11H12N2O2 as the molecular formula of a bioactive substance.
Proton nuclear magnetic resonance and enantiomeric separation
identified D-tryptophan. In contrast, L-tryptophan and 11 other
D-amino acids were inactive. Feeding D-tryptophan to mice
before experimental asthma induction increased numbers of lung
and gut regulatory T cells, decreased lung TH2 responses, and
ameliorated allergic airway inflammation and
hyperresponsiveness. Allergic airway inflammation reduced gut
microbial diversity, which was increased by D-tryptophan.
Conclusions: D-tryptophan is a newly identified product from
probiotic bacteria. Our findings support the concept that
defined bacterial products can be exploited in novel preventative
strategies for chronic immune diseases. (J Allergy Clin Immunol
2017;139:1525-35.)

Key words: D-tryptophan, probiotic bacteria, bacterial substance,
screening, immune modulation, allergic airway disease, gut
microbiota

Chronic immune diseases, such as allergies, inflammatory
bowel disease, or diabetes, are highly prevalent in industrialized
countries, and a further increase of burden caused by non-
communicable diseases is expected for the next decades.1

Currently available pharmaceuticals improve symptoms but
cannot cure the disease. Accordingly, there is an increasing de-
mand for proved alternatives to pharmaceutical products from
both health care professionals and consumers.2

Probiotic bacteria have been shown to modify immune re-
sponses in vitro3-5 and in animals6,7 and are defined as ‘‘live mi-
croorganisms which when administered in adequate amounts
confer a health benefit on the host.’’ Accordingly, they have
been proposed as an alternative to classical therapies for the treat-
ment of immune diseases.8 However, apart from acute infectious
diarrhea,9 clinical trials for different indications, such as primary
prevention of allergic diseases10-22 or treatment of chronic inflam-
matory bowel disease,23 were highly inconsistent. Accordingly, a
consensus paper24 and the European Food Safety Authority25

stated that a role for probiotic microbes for prevention of allergic
manifestations is not established.

One important reason for the conflicting results is most likely
the complexity of the reciprocal crosstalk between probiotic
bacteria and the host’s microbiota and immune cells. Even in
healthy subjects, the gut microbiome differs remarkably among
individual patients.26,27 In addition, both the microbiome and im-
munity can be substantially altered under disease conditions.28

Thus it is hard to predict the precise functionality of a probiotic
strain in individual patients. In addition, there is a lack of
1525

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:skrauss-etschmann@fz-borstel.de
http://dx.doi.org/10.1016/j.jaci.2016.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaci.2016.09.003&domain=pdf


J ALLERGY CLIN IMMUNOL

MAY 2017

1526 KEPERT ET AL
Abbreviations used
AAI: A
llergic airway disease
CDM: C
hemically defined medium
DC: D
endritic cell
Foxp3: F
orkhead box p3
IDO: I
ndoleamine 2,3-dioxygenase
LGG: L
actobacillus rhamnosus GG
OTU: O
perational taxonomic unit
SLC6A14: S
olute carrier family 6 amino acid transporter member 14
Treg: R
egulatory T
mechanistic understanding that is important to establish biolog-
ical plausibility for any claimed health effect.

The use of specified substances derived from probiotic
microbes could provide an attractive alternative to overcome
these problems. Other than living bacteria with complex fates and
response patterns in the host, they should have definable
properties with a provable mode of action. Thus far, only very
few candidate structures or substances have been demonstrated as
bioactive agents and even less with preclinical evidence for
therapeutic effects.29

Therefore the aim of the present study was (1) to establish a
screening tool for the detection of TH2-decreasing immune activ-
ity in probiotic supernatants, (2) to identify a soluble bacterial
molecule that mediates this activity, (3) to test the putative sub-
stance in a mouse model of allergic airway disease (AAI), and
(4) to obtain insight into potential underlying mechanisms.
METHODS
For detailed information on reagents, culture conditions of bacteria and

human cells, generation of human monocyte-derived dendritic cells (DCs),

structural elucidation of D-tryptophan (Sigma-Aldrich, St Louis, Mo),

cytokine/chemokine quantification, murine T-cell differentiation, flow cy-

tometry, quantitative RT-PCR, microbiota analysis, isolation of intestinal

lamina propria cells, and animal experiments (induction of experimental

asthma and lung function analyses), see the Methods section in this article’s

Online Repository at www.jacionline.org.
Bacterial strains
Bifidobacteria, lactobacilli, lactococci, Escherichia coli Nissle 1917,

Enterococcus faecium, and Streptococcus thermophilus were obtained from

different providers (see Table E1 in this article’s Online Repository at www.

jacionline.org). All strains were grown until stationary phase and a minimum

cell number of 108 colony-forming units/mL. Cell-free supernatants were ob-

tained by means of centrifugation (at 6000 rpm for 5 minutes at 208C), fol-
lowed by filtration through a 0.22-mm pore size surface-modified

Polyethersulfone Membrane (Millipore, Darmstadt, Germany). No bacterial

growth was observed when aliquots from supernatants were cultured in bacte-

rial growth medium. Otherwise, supernatants were stored immediately after

collection in aliquots at 2808C until further use.
Bioassays for screening for immunomodulatory

activity in probiotic supernatants
Two biological assays based on downmodulation of costimulatory

molecules on human DCs and of CCL17 secretion by a human Hodgkin

lymphoma T-cell line (KM-H2) were set up. Human immature DCs were

matured with 0.1 mg/mL LPS from E coli (Sigma-Aldrich) in the presence or

absence of 200mL of bacteria-free supernatants for 24 hours, followed by flow

cytometric analysis of costimulatory molecules.
Similarly, 200-mL supernatants were added to 3 to 53 106 KM-H2 cells for

24 hours. Supernatants were collected from KM-H2 cells by means of centri-

fugation and stored at2808C until quantification of CCL17. The correspond-

ing amount of blank MRS medium was added to control for the dilution of

KM-H2 culture medium with different volumes of bacterial supernatants.

Blank bacterial growth medium and supernatants from Lactobacillus rhamno-

sus DSM 20021, which has no probiotic activity, were used as negative con-

trols in both screening assays.
Animals and oral supplementation with

D-tryptophan
All animal experiments were conducted under the Federal Guidelines for

the Use and Care of Laboratory Animals (Az 55.2-1-54-2532-137-13) and

approved by the Government of the District of Upper Bavaria and Schleswig-

Holstein (V244-13313/2016 [7-1/10]). Six- to 8-week-old female BALB/c

mice were obtained from Charles River (Sulzfeld, Germany) and housed in

individually ventilated cages, with 2 mice each maintained in specific

pathogen-free conditions. A standard extruded pellet diet and sterile filtered

drinking water were provided ad libitum. For quantification of D-Tryptophan

in mouse sera, D-Tryptophan was dissolved in drinking water at concentra-

tions of 1.8 or 18 mg/dL (approximately 0.09 and 0.9 mg/d per mouse). Con-

trol animals received pure water (n5 8 per group). No changes in behavior or

body weight were noted in the supplemented animals compared with control

animals. Animals were killed after 14 days, and sera were immediately stored

at 2808C until analysis.

For testing prevention of AAI, mice received 50 mmol/L D-Tryptophan

starting at least 3 days before the first sensitization until death on day 25. For

microbiome analyses, the cecumwas cut off and immediately stored at2808C
until further processing.

Statistical analyses
Bioassays and animal experiments. Results of bioassays

and animal experiments are presented as means with SDs. The Student t test

with the Dunnmultiple comparison test or 2-way ANOVAwith the Bonferroni

posttest was used, where appropriate. Tests applied are presented in the respec-

tive figure legends. P values of less than .05 were considered significant

(version 5.0; GraphPad Prism Software, La Jolla, Calif).

Microbial diversity. Bacterial diversity was assessed by means of

molecular barcoding of 16S rRNA genes in cecum samples of 6 animals per

group. To this end, DNAwas directly extracted from the cecum by using a kit-

based protocol (PowerSoil DNA Isolation Kit; MO BIO Laboratories,

Carlsbad, Calif). Fragments of 315 bp were amplified within the

variable regions V5 and V6 of the 16S rRNA gene by using S-D-Bact-0785-

a-S-18 (59-GGMTTAGATACCCBDGTA-39) and S-*-Univ-1100-a-A-15 (59-
GGGTYKCGCTCGTTR-39) as primers.30 Sequencing of amplicons was

performed on the IlluminaMiSeq platform (Illumina, San Diego, Calif) by us-

ing paired-end technology (see theMethods section in this article’s Online Re-

pository for details). Sequences were deposited in National Center for

Biotechnology Information accession no. PRJNA304109.

Reads were analyzed with the software package QIIME (http://qiime.org).

Operational taxonomic units (OTUs) were picked within the 13_8 version of

the Greengenes reference database31 at a similarity level of 95% sequence

identity. Sequences were subsampled to 15,000 reads per sample, which re-

flects the number of reads obtained in the sample with the lowest number of

reads after quality control. This number was still sufficient to reach a plateau

when collectors’ curves were calculated based on of OTU95. The taxonomy

assignment was done with the RDP classifier 2.2.32 Principal coordinate anal-

ysis was generated on the unweighted UniFrac distance matrix by using the

ape package within the R software environment (http://www.r-project.org),

and statistical significancewas determinedwith the Student t test. Thea-diver-

sity of each sample was measured by using the Chao1 metric33 and compared

between treatments by using the nonparametric 2-sample t test (ie, withMonte

Carlo permutations for significance testing).b-Diversity was calculated by us-

ing the phylogenetic method UniFrac.34 The nonparametric analysis of simi-

larity was performed to examine the b-diversity distancematrix for significant
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FIG 1. Screening of supernatants from different probiotic strains for immune activity on human cells.

A, Dose-dependent capacity of bacterial supernatants from LGG (fx1), Bifidobacterium BB-420 (fx2), and
Lactobacillus casei W56 (fx3) to lower CCL17 secretion of human Hodgkin lymphoma KM-H2 cells. The

negative control was nonprobiotic Lactobacillus rhamnosus DSM-20021 (fx4). Three independent experi-

ments in duplicates are shown (mean 6 SD percentages relative to CCL17 secretion of untreated KM-H2

cells). LGG: **P < .005 and ***P < .0005, L casei W56: ##P < .005, ###P < .0005, BB-420: §§P < .005, §§§P
< .0005, Student t test. B, Capacity of supernatants from LGG, Bifidobacterium BB-420, Lactobacillus casei
W56, or nonprobiotic Lactobacillus rhamnosus DSM-20021 to prevent full upregulation of costimulatory

molecules and HLA-DR on LPS-stimulated humanmonocyte-derived DCs.1/-, With/without bacterial super-

natant. Five independent experiments are shown (mean 6 SD percentages relative to LPS alone). **P < .01

and ***P < .001, Dunn multiple comparison test.
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differences between groups of samples; differences in OTU abundance be-

tween groups were tested for significance by means of nonparametric

ANOVA.
RESULTS

Identification and characterization of a bioactive

probiotic substance
Screening of crude probiotic supernatants for down-

regulation of CCL17. To develop a high-throughput screening
system for the detection of TH2-downregulatory activity in super-
natants from probiotic bacteria, we made use of high constitutive
secretion of the TH2-associated CCL17 by the human Hodgkin
lymphoma T-cell line KM-H2.

KM-H2 cells were incubated with increasing volumes
of supernatants from Lactobacillus rhamnosus GG (LGG),
BifidobacteriumBB-420, and Lactobacillus caseiW56 to identify
the threshold for downregulation of CCL17. Supernatants from
all 3 probiotic strains led to a significant dose- and time-
dependent reduction of CCL17 concentrations to approximately
30% relative to supernatant from the nonprobiotic Lactobacillus
rhamnosus DSM-20021 (Fig 1, A). The minimum volume
(200 mL) leading to that reduction was used in all subsequent
experiments.

Because the numerous ingredients of the bacterial culture
medium interfered with the detection of specific signals in mass
spectrometry, the bacteria were cultivated in less complex,
chemically defined medium (CDM1). The potency of superna-
tants from probiotic strains cultivated in CDM1 versus standard
medium to decrease CCL17 concentrations was comparable (see
Fig E1 in this article’s Online Repository at www.jacionline.org).
Subsequent testing of supernatants from 37 probiotic strains
revealed that 7 of 21 Lactobacillus species strains, 5 of 10
Bifidobacterium species strains, and 1 of 3 Lactococcus
species strains decreased CCL17 secretion without affecting
cell viability (see Fig E2 in this article’s Online Repository at

http://www.jacionline.org


FIG 2. Overview on the ability of bacterial supernatants from all 37 strains to decrease CCL17 secretion of

KM-H2 cells. Shaded bars, Nonprobiotic Lactobacillus rhamnosus DSM-20021 (negative control); LGG was

included as a positive control in all experiments with strains other than lactobacilli. Open bars, Untreated

KM-H2 cells and medium control cells. Three independent experiments in duplicates are shown

(mean 1 SD percentages relative to CCL17 secretion of untreated KM-H2 cells). **P < .005 and

***P < .0005, Student t test.
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www.jacionline.org). In contrast, none of the Streptococcus
thermophilus,Enterococcus faecium, or E coliNissle 1917 strains
influenced CCL17 levels (Fig 2 and see Table E1).

Verification of results from CCL17-based screening

assays. To confirm the observed immunomodulatory activity,
we evaluated the efficacy of probiotic supernatants to decrease
the expression of costimulatory molecules on human monocyte-
derived DCs. On recognition of antigen, naive DCs undergo a
complex maturation process.35 Although fully activated DCs
induce adaptive immune responses, incomplete activation leads
to tolerance.36 Therefore we screened for reduced expression of
costimulatory molecules in the presence of probiotic superna-
tants. All 13 supernatants that had already been preidentified
as ‘‘immunomodulatory’’ in the CCL17-based screen also
significantly decreased the percentages of LPS-induced
CD83-, CD80-, CD86-, and CD40-expressing mature DCs,
whereas the remaining supernatants were inactive on DCs
(Fig 1, B). None of the supernatants affected the viability of
DCs (see Fig E2). Thus both bioassays produced 100%
concordant results. For a complete overview of the bioactivity
of all strains, see Table E1.

Fractionation of selected probiotic supernatants

yields 3 bioactive fractions of different polarity. LGG
has been most frequently used in clinical studies.37 Therefore we
selected supernatants from LGG and further supernatants of
L casei W56 for further enrichment and stepwise chemical
characterization of the putative metabolite. During this
procedure, each subfraction was retested for bioactivity in both
the KM-H2 and DC bioassays.

Bacterial supernatants were subjected to semipreparative
chromatography, yielding 11 MeOH/H2O extracts. The highest
immunomodulatory activity was found in the 20% fraction, along
with slightly lower activities in the 40% and 50%MeOH fractions
(Fig 3). Therefore we chose this fraction for further purification.

Isolation and identification of the bioactive sub-

stance in 20% MeOH/H2O extracts. Chromatographic
subfractionation of the 20%MeOH/H2O fraction yielded 10 sub-
fractions (see Fig E3 in this article’s Online Repository at www.
jacionline.org), 3 of which showed activity in bioassays. These
subfractions and their closest neighbors were re-evaluated by
means of reverse-phase, ultraperformance liquid chromatog-
raphy, high-resolution time-of-flight mass spectrometry to
generate total ion chromatograms. By identifying similarities in
the chromatograms, we identified a substance that, according to
peak retention time and molecular mass information, was only
present in the bioactive subfractions, being highest in subfraction
7 from L caseiW56 and subfraction 6 fromLGG (see Fig E4,A, in
this article’s Online Repository at www.jacionline.org). The
extracted mass spectrum strongly suggested that this substance
was composed of the tryptophan ions (2M1H)1 and (M1H)1

and its fragment, (M1H-NH3)
1 (see Fig E4, B).

After careful enrichment of the bioactive substance by repeated
chromatography runs, the isolated candidate substance of
both strains showed bioactivity in both screening assays.
High-resolution mass spectrometric analyses by using Fourier
transform ion cyclotron resonance mass spectrometry confirmed
C11H12N2O2 as the molecular formula of these ions (see Fig E4,C
and D). Further analyses by using proton nuclear magnetic
resonance provided detailed information on the functional group
distribution and molecular structure: the doublets and triplets
(d7.8-7.0) showed the occurrence of an indole ring. Resonance
signals at the region of d3.9-3.8 and d3.2-3.1 could also be

http://www.jacionline.org
http://www.jacionline.org
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FIG 3. Capacity of subfractions of probiotic supernatants to decrease CCL17 secretion in KM-H2 cells.

Subfractions with different polarity (MeOH/H2O gradient chromatography) from supernatants of LGG (top)
or Lactobacillus caseiW56 (middle). Negative controls were nonprobiotic DSM-20021 and blank CDM1 me-

dium (bottom). Three independent experiments in duplicates are shown (mean6SD percentages relative to

constitutive CCL17 secretion of untreated KM-H2 cells). **P < .005 and ***P < .0005, Student t test.
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assigned to b-CH and a-CH protons, respectively (see Fig E5 in
this article’s Online Repository at www.jacionline.org). Thus
there was a close agreement between standard tryptophan and
our bioactive subfraction.

Because L-tryptophan is a standard component of the bacte-
rial growth medium, we hypothesized that the bioactivity is
related to the D-form of this amino acid. Indeed, enantiomeric
separation of the purified subfraction confirmed the presence of
D- and L-tryptophan (see Fig E6, A, in this article’s Online
Repository at www.jacionline.org), whereas the corresponding
subfraction of blank medium contained only L-tryptophan
(see Fig E6, B).

Immunomodulatory activity in probiotic superna-

tants is restricted to the D-form of tryptophan. To
verify whether bioactivity was indeed restricted to the D-isomer
of tryptophan, we tested different concentrations of synthetic L-
and D-tryptophan in the CCL17 bioassay. Only D-tryptophan
showed dose-dependent immune activity (Fig 4). Moreover, none
of 12 other polar and nonpolar neutral D-amino acids tested
showed any bioactivity (Table I).

http://www.jacionline.org
http://www.jacionline.org


FIG 4. Effect of tryptophan L- and D-isomers on CCL17 secretion by KM-H2

cells. KM-H2 cells were stimulated with different concentrations of syn-

thetic L- and D-isomers of tryptophan followed by CCL17 quantification in

KM-H2 culture medium after 24 hours. Circles, D-tryptophan; diamonds, L-
tryptophan. Three independent experiments in duplicates are shown

(mean 6 SD percentages relative to constitutive CCL17 secretion of un-

treated KM-H2 cells). *P < .05, **P < .005, and ***P < .0005, Student t test.
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Bacterial supernatants and D-tryptophan modulate

cytokine profiles of enriched human DCs. To obtain a first
insight intomechanisms underlying this bioactivity, we quantified
the cytokines secreted by highly enriched DCs (see Fig E2, D)
after treatment with the bacterial supernatants or synthetic
D-tryptophan. All probiotic supernatants and D-tryptophan
strongly induced IL-10 and decreased LPS-induced IFN-g,
IL-12, and IL-5 in these cultures. In contrast, cytokine patterns
were unaffected by the control supernatants and amino acids
(Table II). Overall, this resulted in increased IL-10/IL-12 ratios
and, with the exception of BB-46, in decreased IL-5/IFN-g ratios.
Preclinical effects of oral D-tryptophan

supplementation
D-tryptophan influences allergic airway inflamma-

tion and TH2 immune responses. If it is to be used as an oral
intervention in patients with allergic diseases, D-tryptophan
needs to be absorbed from the gut. Oral supplementation of
mice with 0.9 mg/d D-tryptophan increased D-tryptophan serum
levels significantly (Fig 5, A), indicating enteric uptake and
systemic distribution. Pretreatment of mice with D-tryptophan
for 3 days and throughout experimental ‘‘asthma’’ induction
decreased numbers of total bronchoalveolar lavage fluid cells,
which was mainly caused by a reduction in eosinophil numbers
(Fig 5, B and C). Furthermore, this supplementation improved
airway hyperreactivity to methacholine (Fig 5, D). Because
this suggested an involvement of TH2 responses, we analyzed
lung T cells: D-tryptophan reduced Il-4–producing T cells and
Il-4 levels in bronchoalveolar lavage fluid (trend, Fig 5, E
and F, and see Fig E7 in this article’s Online Repository at
www.jacionline.org for splenic cells) but not Ifn-g-producing
TH1 cells. Furthermore, D-tryptophan treatment significantly
increased Helios-positive regulatory T (Treg) cell numbers,
whereas total forkhead box p3 (Foxp3)1 cell numbers remained
unchanged (Fig 5, G).

To further substantiate these in vivo findings, we performed
T-cell differentiation assays in vitro. In line with the in vivo
observations, D-tryptophan reduced TH2 cell differentiation,
whereas TH1 differentiation remained unaffected (Fig 6, A and
B, and see Fig E8, A, in this article’s Online Repository at
www.jacionline.org). Consequently, Il4 and Gata3 expression
and Il-13 secretion were reduced, whereas Ifng expression
remained unaffected. However, Treg cells showed increased
Foxp3 expression on mRNA and protein levels (Fig 6, C, and
see Fig E8, B).

D-tryptophan induces gut Treg cells and increases

intestinal microbial diversity in allergic airway inflam-

mation. In addition to the observed pulmonary immune
response, the frequency of Foxp31 T cells was locally increased
in the colons of supplemented mice with AAI compared with
nonsupplemented mice with AAI (Fig 7, A). Altered gut
immunity might be driven directly by D-tryptophan and/or
indirectly through altered gut microbiota.

A diversity analysis of bacteria by 16S rRNA–based barcoding
demonstrated a strongly reduced community richness and
diversity at the level of OTU95 in mice with AAI (Fig 7, B).
Supplementation with D-tryptophan increased the bacterial
diversity of AAI mice, resulting in comparable a-diversity
patterns compared with those of healthy animals. Although the
original diversity was not completely restored after D-tryptophan
application, its effect on microbial community composition was
significant (see Fig E9, A, in this article’s Online Repository at
www.jacionline.org).

Independent of the health status of the animals’ D-tryptophan
supplementation, all samples were dominated by the phyla
Bacteroidetes and Firmicutes (19.4% to 27.7% and 65.9% to
78.4% of the total sequences). As expected, the phylum
Firmicutes mainly consisted of members of the order Clostri-
diales. Other phyla, including Actinobacteria and Proteobacteria,
were also present, although at significantly lower abundance. At
the family level, Lachnospiraceae, Odoribacteraceae, Rikenella-
ceae, Ruminococcaceae, S24-7, and an unclassified bacterial
family belonging to the Clostridiales (see Fig E9, B) dominated.
The latter was mainly present in mice with AAI, forming
58.6% of the total community. However, Lachnospiraceae were
less abundant in animals with AAI (5.5%) compared with control
animals (13.7%), D-tryptophan–treated mice with AAI (20.6%),
or D-tryptophan–treatedmicewithout AAI (27.5%). Odoribacter-
aceae were strongly affected by D-tryptophan because their
relative abundance tripled in both groups of supplemented
animals (3.9% vs approximately 1.1%). In contrast, Rikenella-
ceae showed a decreased abundance in the D-tryptophan groups
(1.1% to 2.0%) compared with the control groups (4.6% to
7.7%). Interestingly, Ruminococcaceae, which were strongly
reduced in the control mice affected with AAI (3.7%) recovered
through application of D-tryptophan (8.9%): this was comparable
with abundance in the control group of mice without AAI.
Members of the S24-7 family were affected by neither AAI
nor application of D-tryptophan. Overall, D-tryptophan
supplementation increased intestinal bacterial diversity in
D-tryptophan–treated mice with AAI, such that the bacterial
diversity pattern was more comparable with healthy control
mice (PBS/PBS; Fig 7, B). Thus our results suggested that
D-tryptophan treatment re-establishes a healthy microbial
community genotype in mice with AAI.
DISCUSSION
In the present work, for the first time, we identified

D-tryptophan as a bacterial substance produced by the probiotic
strains LGG and L caseiW56.We demonstrate that D-tryptophan
decreases the production of TH2 cytokines and chemokines in

http://www.jacionline.org
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TABLE I. Percentage of surface marker–expressing mature DCs treated with synthetic D-amino acids*

D-alanine D-histidine D-isoleucine D-leucine D-methionine D-phenylalanine

CD83 97.7 6 2.3 103.1 6 0.3 100.5 6 1.1 97.1 6 2.4 102.4 6 2.2 99.6 6 2.0

CD86 99.2 6 2.1 102.5 6 0.4 99.8 6 1.2 101.9 6 1.3 102.2 6 2.5 99.2 6 3.3

CD80 98.3 6 2.6 102.0 6 0.9 98.2 6 1.5 100.3 6 1.6 100.4 6 0.2 92.4 6 3.5

CD40 102.3 6 3.4 101.4 6 3.2 100.4 6 2.4 100.4 6 1.7 102.7 6 0.6 100.4 6 2.7

HLA-DR 98.1 6 1.1 99.9 6 0.9 100.1 6 0.3 98.0 6 10.0 98.9 6 2.0 98.0 6 3.2

D-proline D-serine D-threonine D-tryptophan D-tyrosine D-valine

CD83 100.9 6 0.4 100.8 6 0.3 102.6 6 0.5 7.6 6 3.3 101.6 6 0.6 102.1 6 1.2

CD86 101.2 6 1.9 101.1 6 2.8 102.1 6 0.7 24.1 6 2.7 102.2 6 0.9 101.8 6 0.9

CD80 100.3 6 0.1 100.1 6 2.8 100.8 6 0.4 12.1 6 1.7 101.6 6 0.4 99.6 6 2.0

CD40 99.2 6 1.3 100.8 6 1.1 100.6 6 1.5 15.2 6 6.5 100.4 6 1.3 101.4 6 2.4

HLA-DR 98.4 6 2.6 98.6 6 0.6 97.1 6 3.9 88.9 6 3.0 98.4 6 2.4 100.0 6 1.0

Three independent experiments are shown (mean 6 SD percentages relative to LPS-induced expression).

*DCs were stimulated with LPS (0.1 mg/mL) in the presence of the indicated D-amino acids (10 mmol/L). Percentages of CD83-, CD86-, CD80-, or CD40-expressing DCs were

assessed.

TABLE II. Cytokine regulation by probiotic supernatants or D/L-tryptophan in human LPS-treated DCs*

IL-10 (pg/mL) IL-5 (pg/mL) IFN-g (pg/mL) IL-12 (pg/mL)

Ratios

IL-10/IL-12 IL-5/IFN-g

- LPS - LPS - LPS - LPS - LPS - LPS

Medium 3.20 2.90 14.70 68.30 112.50 2238.80 102.10 2092.80 0.031 0.001 0.131 0.031

DSM-20021 6.80 4.80 33.60 55.90 330.00 2520.50 447.80 2217.30 0.015 0.002 0.102 0.022

LGG 432.90 787.90 9.10 5.40 372.70 105.70 79.20 106.90 5.466 7.370 0.024 0.051

LA-2 107.30 591.70 8.00 10.30 111.60 437.70 89.30 238.00 1.202 2.486 0.072 0.024

LA-5 81.30 305.70 7.60 8.00 113.30 531.80 87.50 331.10 0.929 0.923 0.067 0.015

LC-01 452.40 924.50 7.90 2.40 109.30 211.30 76.90 67.80 5.883 13.636 0.072 0.011

BB-12 234.90 735.70 11.00 10.90 75.40 437.00 91.50 228.20 2.567 3.224 0.146 0.025

BB-46 813.50 1230.70 14.00 13.60 13.50 637.90 95.10 202.30 8.554 6.084 1.037 0.021

BB-420 450.40 915.40 8.80 8.40 81.50 783.70 102.50 356.90 4.394 2.565 0.108 0.011

L-Tryptophan 5.70 4.90 12.00 61.40 45.00 2031.50 88.30 1993.00 0.065 0.002 0.267 0.030

D-Tryptophan 56.90 202.50 10.30 20.60 21.90 1129.50 82.50 871.90 0.690 0.232 0.470 0.018

L-Proline � 6.00 14.80 57.70 88.90 2133.90 99.80 1938.00 � 0.003 0.166 0.027

D-Proline 5.90 4.00 15.80 69.10 92.60 2295.40 90.60 1911.90 0.065 0.002 0.171 0.030

*DCs were stimulated in the presence or absence of LPS (0.1 mg/mL) with supernatants from 200 mL of bacterial cell-free supernatants or tryptophan enantiomers (10 mmol/L) for

14 hours. Nonprobiotic DSM-20021 and blank medium (CDM1) were used as negative controls. D/L-proline and L-Tryptophan were used as controls for D-tryptophan.

�Less than the detection limit.

J ALLERGY CLIN IMMUNOL

VOLUME 139, NUMBER 5

KEPERT ET AL 1531
human peripheral and murine immune cells and, more
importantly, prevents full development of AAI when fed to
mice. Aside from immune modulation, this can occur also
through maintenance of a diverse gut microbiota, which was
otherwise lost in animals with experimental asthma.

Probiotic bacteria have been shown to modify immune
responses in vitro3,4 and in animal studies,5,6 but clear evidence
for clinical efficacy in the treatment of chronic inflammatory
disorders is largely lacking. Because the reciprocal interaction
of probiotic bacteria with the host’s microbiota and immune
system is extremely complex, use of defined small substances
with a predictable mode of action might provide an interesting
alternative for prevention of allergic disease in subjects at risk.

D-amino acids are nonproteinogenic enantiomers of L-amino
acids. Until the discovery of free D-aspartate and D-serine in the
mammalian brain as neurotransmitters in the late 1980s, D-amino
acids were considered to play no role in higher organisms. Thus
far, research on D-amino acids in mammals has been mainly
restricted to the nervous system because of the relative abundance
of D-aspartate and D-serine in the brain38 and the difficulty of
detecting D-amino acids at trace levels.39 Thus very little is
known on D-tryptophan uptake40 and metabolism in human
subjects,41 and it has been assumed that higher organisms use
D-tryptophan poorly.42 By developing highly sensitive assays,
we demonstrated systemic distribution of D-tryptophan in mice
after oral uptake.

In contrast to higher organisms, numerous bacteria, including
probiotic bacteria, produce D-amino acids, such as D-glutamate
and D-alanine, by using them mainly for cross-linking glycan
chains in the peptidoglycan wall.43,44

The regulation of bacterial L-tryptophan biosynthesis and
degradation is well known.45 A role for D-tryptophan in bacterial
communication was only recently discovered by demonstrating
its requirement for disassembly of biofilms in Bacillus subtilis.46

Other soluble substances produced by probiotic bacteria are less
investigated thus far.4,47

Human subjects are potentially exposed to microbially
generated D-amino acids48 because body surfaces and
the environment harbor an abundant and high diversity of
microbes.49 Similar to what has already been shown for



FIG 5. Oral D-tryptophan reduces allergic airway inflammation. A, Serum D-tryptophan inmice receiving D-

tryptophan (50 mmol/L) in drinking water or water only (ultraperformance liquid chromatography mass

spectrometry peak areas). Note the different scales for D-tryptophan (solid bars) and L-tryptophan (shaded
bars). **P 5 .006 and ***P 5 .004, Welch Test, mean 6 SD. B, Total number of cells in bronchoalveolar

lavage fluid (BAL). C, Differential cell count. D, Measurement of airway resistance to increasing doses of

methacholine (2-way ANOVA with the Bonferroni posttest). E, Geometric mean (fold change) of Ifn-g and

Il-4 in lung-derived CD31CD41 lymphocytes. F, Il-4 levels in bronchoalveolar lavage of mice, as assessed

by using a Cytometric Bead Array. G, Helios-positive Treg cells of lung-derived CD31CD41Foxp31 lympho-

cytes. Student t test: *P < .05, **P < .01, and ***P < .001. Fig 5, B, C, E and F, n 5 8 mice per group, Mann-

Whitney U test, median 6 SD, *P < .05, ***P < .001, and Fig 5, D and G, n 5 6 to 12 mice per group.
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acyl-homoserine lactones from gram-negative bacteria,50-53

means to recognize and interact with bacterial D-amino acids,
including D-tryptophan, could have evolved.

This hypothesis is supported by several observations. First,
human cells used in our bioassays responded to D-tryptophan but
to neither L-Tryptophan nor any other tested D-amino acid.

Second, at least 2 surface receptors for D-tryptophan exist in
human subjects: the G protein–coupled receptor GPR109B54 is
expressed on macrophages, monocytes, adipose tissue, and
lung55 and mediates attraction of neutrophils on binding of
D-tryptophan or its metabolite, D-Kynurenine. Of note, when
we extracted and analyzed published transcriptomic data,56

GPR109B was significantly decreased in airway epithelial cells
and T cells from patients with asthma as opposed to control
subjects, indicating a potential role for this receptor in allergic
disease (see Table E2 in this article’s Online Repository at
www.jacionline.org).

The second receptor, solute carrier family 6 amino acid
transporter member 14 (SLC6A14, alias ATB0,1), transports
D-tryptophan and 4 other D-amino acids across epithelial cells.57

Because the receptor is expressed in the intestine, SLC6A14 is
exposed to high microbial load and diversity. SLC6A14 is further
expressed at exceptionally high levels in the fetal lung (based on
our own data [see Fig E10 in this article’s Online Repository at
www.jacionline.org] and those of Su et al58). The physiologic
role of SLC6A14 in fetal life is unknown thus far. However,
it is tempting to speculate a mechanistic link for prenatal
intervention trials using probiotic bacteria.

http://www.jacionline.org
http://www.jacionline.org


FIG 6. D-tryptophan (DTrp) influences in vitro primary T-cell differentiation. Primary murine splenocytes

were differentiated toward TH1 (A), TH2 (B), and Treg (C) cells with respective cytokine mixes in the presence

of 0, 10, or 50 mmol/L D-tryptophan (dissolved in water). Differentiation was assessed by means of flow cy-

tometry, quantitative RT-PCR, and the Cytometric Bead Array for Il-13 and Il-5 protein levels from culture

supernatants. Graphs depict fold changes to differentiated cells not treated with D-tryptophan. *P < .05,

n 5 3 to 4 independent experiments, Mann-Whitney U test.
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Three enzymes, tryptophan 2,3-dioxygenase (TDO), indole-
amine 2,3-dioxygenase (IDO) 1, and themore recently discovered
IDO2, can metabolize tryptophan. Although tryptophan
2,3-dioxygenase is specific for L-tryptophan, IDO1 channels
both D- and L-tryptophan into the kynurenine pathway. IDO
activation leads to tryptophan depletion and thereby promotes
peripheral tolerance,59 which contrasts our findings. However,
IDO1 seems not to be important for the induction of immune
tolerance in the airways but instead promotes TH2 responses
through effects on lung DCs,60 which we suggest could be
counteracted by D-tryptophan. In addition, IDO2, which is also
expressed on DCs61 and has a slightly different substrate
specificity, could further modulate D-tryptophan metabolism.62

Thus far, we concentrated on the 20% MeOH fraction for
identification of the putative substance because this was the
subfraction with the highest immunomodulatory activity and
polarity. Bioactivity was further detected in the 40% and 50%
MeOH fractions, holding the potential for the discovery of further
small immunoactive substances. Our bioassays were designed to
detect substances that induce a tolerogenic profile in DCs and
decrease levels of the allergy-related chemokine CCL17.
Therefore it is possible that further immunoregulatory substances
not related to allergic disease were overlooked.

D-tryptophan could influence immune homeostasis either
directly, as shown in our screening assays, or indirectly by
shifting the structure of the microbiome of the host. Apart from
the observed immunomodulatory properties of D-tryptophan, we
do not have direct mechanistic links explaining the altered gut
microbiota or protection fromAAI. However, in linewith our own
findings, Trompette et al63 demonstrated that a change in the gut
microbiota caused by dietary fermentable fibers induces
production of metabolites involved in protection fromAAI. These
metabolites have further been associated with increased
frequencies of Foxp31 Treg cells.64 The lung microbiota and a
population of Foxp31 Treg cells have further been shown to
protect neonatal mice from exaggerated type 2 immune responses
in a murine model of house dust mice–induced AAI,65 which
supports a role of both immune parameters also in adult mice.

In summary, for the first time, we identified that D-tryptophan
acts as an immunomodulatory substance produced by probiotic



FIG 7. Oral D-tryptophan (DTrp) supplementation increased gut Treg cell numbers and the intestinal bacte-

rial community in mice with AAI. A, Percentage of Foxp31 cells within CD31CD41 T cells in the lamina prop-

ria of the colon. ****P < .0001, n 5 6 to 12 mice per group, Student t test. B, a-Diversity of bacterial

communities. Shannon diversity index was used to estimate bacterial diversity for each treatment (Wil-

coxon rank sum test).
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strains. Our results suggest that tryptophan can potentially
influence both immune responses and the constituents of
intestinal microbiota and can conceivably reduce the degree
of hyperactivity severity of AAI. In addition to immune
modulation, this can occur through the maintenance of a
diverse gut microbiota, which was otherwise lost in animals
with AAI.

We conclude that bacteria-derived D-tryptophan can play a
wider role in human health than previously thought. Overall, our
findings support the concept that defined bacterial products can
provide the basis for future development of preventive strategies
for chronic inflammatory disorders.
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Key messages

d D-tryptophan is a newly identified immunomodulatory
probiotic substance.

d When fed to mice, D-tryptophan increased the gut micro-
bial diversity and ameliorated AAI.

d Although the biology of live probiotic bacteria is very
complex, D-tryptophan has a provable mode of action
that might be exploited for prevention or treatment of
allergic diseases.
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