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Introduction
Heart failure (HF) is associated with substantial morbidity, mor-
tality, and health care costs, and is increasing in prevalence with 
the aging of the global population (1). Hence, prevention and 
treatment of HF by identifying its genetic and environmental 
determinants is a public health priority. The identification of the 

BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart 
disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac 
structure and function.

METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies 
(EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function.

RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts 
for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), 
respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant 
SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, 
rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and 
rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings 
were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with 
putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue.

CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide 
insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies.
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Results
Cohort descriptions and the echocardiographic characteristics 
are presented in Supplemental Tables 1–5; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI84840DS1.

Individual study genomic inflation factors are shown in Sup-
plemental Table 6. The meta-analytic genomic inflation factor 
(λ) was 1.09 or less for all traits evaluated. The genomic inflation 
factors for the traits with significant results (see below) were 1.09 
(for aortic root diameter [AoD]) and 1.08 (for LV diastolic inter-
nal dimension [LVDD]). To address to what extent the genomic 
inflation might be due to unaccounted population stratification 
versus truly associated genetic markers, we applied the recently 
developed linkage disequilibrium (LD) score regression method to 
these two traits (10). The genomic inflation factor due to potential 
confounding bias reduced to 1.05 for AoD and to 1.03 for LVDD, 
suggesting that our meta-analytic approach accounted for popula-
tion stratification reasonably well. Quantile-quantile (Q-Q) plots 
are shown in Supplemental Figures 1–16.

genetic architecture of HF may be facilitated by evaluating echo-
cardiographic traits of left ventricular (LV) structure and func-
tion. These heritable, quantitative traits can antedate HF and 
are more amenable to genetic analysis than more “distal” heart 
disease traits (2). Initial studies that related common genetic 
variants to echocardiographic traits and incident HF (2–5) were 
limited by modest sample size, analysis of only a few echocardio-
graphic phenotypes, or evaluation of “all HF,” a phenotypically 
heterogeneous group (6–9).

We conducted a meta-analysis of genome-wide association 
studies (GWAS) on a comprehensive set of echocardiographic 
traits in carefully phenotyped individuals primarily of Europe-
an ancestry within the EchoGen consortium (2) comprising 30 
studies. We associated our identified genetic loci with echocar-
diographic traits in other ethnicities, in populations with relat-
ed disease traits. Additionally, we further characterized loci 
by evaluating putative signaling pathways and examining their 
association with gene expression in whole blood, monocytes, 
and cardiac tissue.

Figure 1. Flowchart of the analytical 3-stage approach. *For LV systolic dysfunction as binary trait, the selection criterion for the MAF was ≥0.03. 
Acronyms of cohorts are explained in the supplemental material. Mv-E (E), peak velocity of early diastolic transmitral inflow; Mv-A (A), peak velocity of 
transmitral inflow corresponding to atrial contraction; E/A, ratio of mitral E- and A-wave; DecTime, deceleration time of mitral E-wave; IVRT, isovolumetric 
relaxation time; E′, peak velocity of excursion of lateral mitral annulus in early diastolic phase; E/E′, ratio of E and E′; DDpEF, diastolic dysfunction with 
preserved ejection fraction; HFpEF, HF with preserved ejection fraction; LVM, LV mass; LVDD, LV diastolic dimension; LA, left atrium; FS, LV fraction-
al shortening; LVSD, LV systolic dysfunction; MAF, minor allele frequency; Ncohorts, number of cohorts included in analysis; Nsubjects, number of subjects 
investigated per phenotype; LD, linkage disequilibrium; CAD, coronary artery disease; oevar_imp., observed divided by expected variance for imputed allele 
dosage. Vasan et al. JAMA 2009 is ref. 2.
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an ancestry in the Generation R study (12), and none in Hispanics 
(Northern Manhattan Study [NOMAS] study) or African Ameri-
cans (Jackson Heart Study [JHS] and NOMAS study; Supplemen-
tal Table 8). When evaluating associations of the newly discovered 
SNPs with related disease traits, rs17696696, which was found 
to be associated with AoD, was also associated with pulse wave 
velocity in the AortaGen consortium (Supplemental Table 9 and 
ref. 13). There were no statistically significant associations with 
incident HF or mortality in HF patients of the CHARGE-Heart 
Failure (CHARGE-HF) consortium (Supplemental Table 10), or 
with all-cause mortality, HF, or cardiovascular mortality in the 
Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort 
of patients with suspected coronary artery disease (CAD) (Sup-
plemental Table 11). In the CARDIOGRAMplusC4D consortium 
data, rs17696696, rs17608766, and rs10774625 were significant-
ly associated with CAD; rs10774625 was also strongly associat-
ed with the narrower phenotype myocardial infarction (MI; P =  
5.09 × 10–11, Supplemental Table 12).

Biological pathways related to echocardiographic traits. In path-
way analysis, the observed genetic variants were significantly 
enriched for canonical pathways that might be involved in the 
biological regulation of echocardiographic traits: protein kinase A 
signaling (P = 5.8 × 10–6), death receptor signaling (P = 6.9 × 10–5), 
the Wnt/Ca2+ pathway (P = 2.2 × 10–4), and P2Y purigenic receptor 
signaling (P = 4.1 × 10–4, Supplemental Tables 13 and 14, Supple-
mental Figure 20, and refs. 14–16).

When investigating the potential regulatory effect of the top 
loci using Encyclopedia of DNA Elements (ENCODE) data (17), 
4 SNPs (rs10774625, rs6702619, rs17608766, and rs11207426) 
were located within enhancer histone marks and 4 (rs806322, 
rs6702619, rs7127129, and rs17608766) within DNase-hypersensi-
tive sites. The literature search tool Snipper revealed no additional 
information, and no significant direct or indirect protein-protein 
interactions were found between loci using DAPPLE software 
(18). No significantly reconstituted gene sets were identified by 
the DEPICT tool (ref. 19 and Supplemental Table 15). DEPICT pri-
oritized (false discovery rate [FDR] <0.05) 10 genes across associ-
ated (P < 1 × 10–5) loci, including 4 colocalizing with genome-wide 
significant loci (Tables 1 and 2, and Supplemental Table 15).

Analyses of expression quantitative trait loci and gene expression 
in whole blood, monocytes, and myocardial tissue. Our data showed 4 
SNPs that were significantly associated with cis transcripts in both 
datasets (whole blood and monocytes, Supplemental Table 16): 
rs10774625 with SH2B adaptor protein 3 (SH2B3, P = 8.15 × 10–20 
and P = 1.83 × 10–4), rs17696696 with craniofacial development 
protein 1 (CFDP1, P = 6.21 × 10–11 and P = 7.59 × 10–5), rs7127129 
with Fas-associated death domain–containing protein (FADD,  
P = 1.61 × 10–37 and P = 2.71 × 10–4), and rs1532292 with serine race-
mase (SRR, P = 3.40 × 10–20 and P = 4.63 × 10–10).

We also examined the associations of our top loci with gene 
expression in human LV tissue provided by the Myocardial Applied 
Genomics Network consortium (MAGNet consortium; unpub-
lished data). Two SNPs were significantly associated with LV gene 
expression: rs12541595 showed cis-association with metastasis 
suppressor 1 (MTSS1, P = 1.25 × 10–19), with the effect allele T asso-
ciated with lower MTSS1 expression; rs1532292 showed again a 
cis-association with SRR (P = 2.62 × 10–4), with the effect allele T 

Single nucleotide polymorphisms related to cardiac structure and 
function (stage 1). We applied a two-stage design proposed by Skol 
et al. (11), including an additional stage for assessing the gener-
alizability of the find, with details on samples and single nucleo-
tide polymorphisms (SNPs) for each stage given in Figure 1. The 
meta-analysis of LV cardiac structure and systolic function traits 
included data from 21 cohorts with up to 30,201 individuals. For 
LV diastolic function, data were available from 17 cohorts with 
up to 21,852 individuals. We identified genome-wide significant 
associations (all P < 5 × 10–8) of: 1 locus with LV mass (LVM), 3 
with LVDD, 12 with AoD, 1 with LV fractional shortening (LVFS). 
Additionally, the following associations were observed at a higher 
P value threshold (all P < 1 × 10–6): 2 with the peak velocity of the 
transmitral E-wave (Mv-E), 5 with the peak velocity of the trans-
mitral A-wave (Mv-A), 5 with the ratio of Mv-E to Mv-A (E/A), 2 
with deceleration time of Mv-E (DecTime), 4 with isovolumetric 
relaxation time (IVRT), 1 with the peak velocity of the excursion 
of the lateral mitral annulus in the early diastolic phase (E′), 3 with 
the ratio of Mv-E to E′ (E/E′), 1 with asymptomatic LV diastolic 
dysfunction with preserved ejection fraction (DDpEF), and 2 with 
HF with preserved ejection fraction (HFpEF). Using pre-defined 
selection criteria (Figure 1) and excluding known loci from our 
previous report (2), 12 SNPs for traits of cardiac structure and LV 
systolic function (Table 1) and 24 SNPs for traits of LV diastolic 
function (Table 2) were considered for additional analysis detailed 
in stage 2 below. Full results for all SNPs with P < 1 × 10–4 are shown 
in Supplemental Table 7.

Replication and combined meta-analysis (stage 2). SNPs taken 
forward for stage 2 replication were analyzed in 5 cohorts (n = 
14,002; 2 with in silico GWAS data, 3 with de novo genotyping) 
for cardiac structure and LV systolic function; and in 6 cohorts 
(n = 14,787; 3 with in silico GWAS data, 3 with de novo geno-
typing) for LV diastolic function (Figure 1). A final combined 
meta-analysis of discovery and replication data from overall 30 
cohort samples included 44,203 individuals with data on cardiac 
structure and systolic function, and 36,639 individuals with data 
on LV diastolic function. The investigation revealed 10 SNPs 
with genome-wide significance: rs10774625 and rs12541595 for 
LVDD; rs806322, rs4765663, rs6702619, rs7127129, rs11207426, 
rs17608766, and rs17696696 for AoD; and rs12440869 for Mv-A 
(Tables 1 and 2). Manhattan plots for these 3 traits are present-
ed in Figure 2. Forest plots for the most significantly associat-
ed SNPs for AoD (rs6702619), LVDD (rs12541595), and Mv-A 
(rs12440869) with the corresponding regional plots including 
functional annotation are presented in Figures 3, 4, and 5. The 
plots for the other genome-wide significant loci are shown in 
Supplemental Figures 17 and 18. Funnel plots for the significantly 
associated SNPs are shown in Supplemental Figure 19. All known 
and novel loci combined explained 1.7%, 0.5%, and 0.2% of the 
phenotypic variance in AoD, LVDD, and Mv-A, respectively, in a 
combined analysis of 3 of the larger cohorts.

Findings in children, other ethnicities, and related cardiovascular 
phenotypes (stage 3). In stage 3, the genome-wide significant SNPs 
were investigated for generalizability of the observed associations; 
small sample sizes of available cohorts partly limited the statistical 
power to replicate findings. In this exploratory analysis, we only 
found one weak association with AoD in white children of Europe-
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associated with lower SRR expression. Both expression quantita-
tive trait locus (eQTL) associations from the LV tissue were also 
supported by the GTEx database (http://gtexportal.org/home/). 
The association with SRR expression for rs1532292 had the same 
direction of effect in different tissues, with the T allele generally 

associated with lower gene expression levels, e.g., in 
the aorta and in blood cells. Additionally, the follow-
ing eQTLs with genes from the reference sequence 
database (RefSeq; https://www.ncbi.nlm.nih.gov/
refseq/) in the aorta or heart tissue were found for the 
replicated SNPs in the GTEx database: rs17696696 
(BCAR1), rs12541595 (LINC00964), and rs11153730 
(SSXP10). Detailed GTEx results are given in Supple-
mental Table 17.

Discussion
In the present investigation, we identified 7 genetic 
loci associated with aortic root size and confirmed the 
associations of 4 other loci previously reported (2). 
These 11 variants explained 1.7% of the inter-individ-
ual variation in aortic root size (Supplemental Table 
18). However, use of genome-wide complex trait 
analysis (GCTA) software in one of the larger cohorts 
(Study of Health in Pomerania [SHIP]) as an illus-
trative example demonstrated that common genetic 
variation explains about 30% of the variation in AoD 
(Supplemental Table 19), underscoring the potential 
for more, as-yet-undiscovered, loci. Additionally, we 
observed three genetic loci that were associated with 
LV diastolic dimensions (including one previously 
reported; see below) and one locus that was associat-
ed with the transmitral A-wave velocity.

Among the SNPs identified in our study as being 
associated with LVDD, one was rs12541595 close to 
MTSS1, which interacts with cytoplasmic actin near 
the cell surface and modulates intercellular connec-
tions in the kidney and metastatic potential in tumors 
(20, 21). When investigating our top loci for cis- 
associations with gene expression in human LV myo-
cardial tissue (MAGNet consortium, unpublished 
data) and the GTEx database, rs12541595 showed a 
significant association with MTSS1 expression, with 
the LVDD-lowering allele (T) associated with lower 

MTSS1 expression in this tissue (Supplemental Table 9). We spec-
ulate that a reduction in MTSS1 may promote favorable LV remod-
eling, perhaps by affecting cell junctions. The other novel variant 
associated with LVDD, rs10774625, was associated with expres-
sion of SH2B3 in eQTL analysis and lies in ATXN2 (ataxin 2),  

Figure 2. Manhattan plots of echocardiographic pheno-
types with genome-wide findings in the joint analysis 
of discovery and replication cohorts. The plots show the 
SNP-wise log P values against their genomic position for 
(A) aortic root diameter (AoD), (B) LV diastolic dimension 
(LVDD), and (C) peak velocity of the transmitral inflow 
corresponding to the atrial contraction (Mv-A). The genome-
wide significant loci and the gene nearest to the top SNP are 
highlighted in yellow if they were discovered in the present 
analysis and in blue if they had been identified in the earlier 
analysis. The horizontal gray lines indicate the significance 
threshold of P = 5 × 10–8. P values were obtained by calculat-
ing Wald test statistics. The number of samples (n) per trait 
is reported in the upper left corner of each panel.
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tissue (unpublished data from the MAGNet consortium; GTEx 
database, see Supplemental Table 9).

One of the SNPs associated with AoD in our meta-analysis was 
also associated with AoD in children in the Generation R Study. 
Additionally, one SNP was associated with pulse wave velocity. Two 
SNPs associated with AoD and one SNP associated with LVDD were 
also significantly associated with CAD, the LVDD SNP also with MI 
in the CARDIOGRAMplusC4D consortium. These associations 
strengthen the evidence of involvement of these loci in echocar-
diographic traits. However, given the sample sizes of cohorts with 
different ethnicities as well as the SNP allele frequencies, and tak-
ing the effect sizes into account, the power was not more than 35% 
to reveal a statistically significant association of select SNPs with 
traits in “look-up” exercises. Therefore, some of the null results for 
the assessment of the generalizability of observed associations to 
non-European samples should be interpreted with care.

Pathway analysis suggested enrichment of the Wnt/Ca2+ 
canonical pathway among the genetic variants associated with 
echocardiographic traits. These observations are consistent with 
the known effects of this pathway on myocardial biology (35). The 
Wnt/Ca2+ pathway connects to the nuclear factor of activated T 
cells (NFAT) transcription factor (14, 15) and gene expression via 
calcineurin. Interestingly, both calcineurin and its target NFAT are 
involved in cardiac hypertrophy (16).

The association of our findings with expression data from 
human blood revealed 4 genes with potential functional signif-

which is adjacent to SH2B3, previously associated with retinal 
venular diameter, CAD, and arterial hypertension in separate 
reports (22–26). For LVDD, we also replicated the previously iden-
tified SLC35F1 locus (soluble transporter membrane protein) adja-
cent to the phospholamban (PLN) locus (protein inhibiting cardiac 
muscle sarcoplasmic reticulum Ca++-ATPase) (2).

Three loci associated with AoD have been linked previous-
ly to blood pressure as well as MI (GOSR2, Golgi SNAP recep-
tor complex member 2; refs. 24, 27), blood pressure response 
to treatment (CACNA1C, calcium channel, voltage-dependent, 
L type, alpha 1C subunit; ref. 28), and carotid intimal-medial 
thickness, as well as with CAD (CFDP1; refs. 29, 30). The oth-
er novel AoD-associated genetic loci were in or close to PALMD 
(palmdelphin, a paralemmin-related cytosolic protein; ref. 31), 
KCNRG (soluble protein with regulatory function in voltage- 
gated potassium channels; ref. 32), FGGY (carbohydrate kinase 
domain–containing protein, phosphorylates carbohydrates; ref. 
33), and in TMEM16A (transmembrane member 16A, protein 
involved in transepithelial anion transport and smooth muscle 
contraction; ref. 34). We also replicated in our discovery sample 
4 loci associated with aortic diameter from our previous report 
(2): SMG6 (Smg-6 homolog, nonsense-mediated mRNA decay 
factor), CCDC100 (centrosomal protein 120kDa), HMGA2 
(high-mobility group AT-hook 2), and PDE3A (phosphodies-
terase 3A, cGMP-inhibited). The effect allele of rs1532292 was 
associated with lower SRR expression in human LV myocardial 

Figure 3. Forest plot for the meta-analysis of the association between rs6702619 and AoD, with the corresponding regional plot including functional 
annotation. P values were obtained by calculating Wald test statistics using a sample size of n = 26,741. Total sample size in the forest plot is n = 30,704.

Downloaded from http://www.jci.org on May 9, 2017.   https://doi.org/10.1172/JCI84840



The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

1 8 0 6 jci.org   Volume 127   Number 5   May 2017

likely have further improved diagnosis and classification of LV dia-
stolic dysfunction in our study if this method had been available in 
more cohorts. Likewise, as noted above, several of the LV diastolic 
filling measures are notoriously susceptible to variation in ven-
tricular loading conditions (38). The genetic variants identified 
in our study have small effect sizes and explain a relatively small 
percentage of the variance in the echocardiographic phenotypes. 
Larger studies with more detailed reference panels, as well as 
more detailed functional studies and studies into the interactions 
of the variants found with factors such as hypertension, will likely 
shed further light on the molecular mechanisms underlying these 
complex traits. Furthermore, alterations of the transmitral A wave 
velocity are challenging to interpret alone, without consideration 
of other measures of LV diastolic function and filling patterns. The 
transmitral A wave velocity reflects the late diastolic phase of the 
LV filling, i.e., the phase of atrial contraction. Thus, in theory this 
single measure provides important information about active atrial 
function. Yet in practice, this measure changes variably and in a 
complex manner with the progression of LV diastolic dysfunction: 
Increasing impaired ventricular relaxation is at first accompanied 
by a decrease in E-wave with a compensatory increase in A-wave, 
resulting in a “relaxation abnormality” pattern; it results in the 
further, continuous decrease in A-wave velocity, reflecting a pro-
gressive deterioration of the contractility of the left atrium, and 
also changes in LV compliance (39, 40). These pathophysiological 
considerations underline the importance of the active contraction 

icance (Supplemental Table 8). Of these, rs7127129 is located 
within TMEM16A, but its eQTL FADD has been shown to be 
associated with myocardial ischemia/reperfusion injury in an 
HF mouse model (36).

Our study is strengthened by the large sample size, the use of 
standardized echocardiographic techniques with adequate quali-
ty, and a harmonization of phenotypic data. Nonetheless, several 
limitations must be acknowledged. We did not observe any associ-
ation of common genetic variants with the other echocardiograph-
ic measurements studied, e.g., LA size, LV wall thickness (LVWT), 
LVM, LV systolic dysfunction (LVSD), and most measures of LV 
diastolic function, with the exception of the transmitral A-wave 
velocity. In particular, we did not find any statistically significant 
associations for HFpEF, although we included only carefully phe-
notyped individuals in our study to reduce the phenotypic hetero-
geneity (37). The lack of association of select echocardiographic 
traits with common genetic variation is intriguing. It is likely that 
heterogeneity in both phenotypic assessment and study design 
and modest statistical power may have limited our ability to detect 
modest genetic associations, and associations with rare variants 
could not be assessed by design. A proportion of the intra-individ-
ual variability of functional traits might have been influenced by 
physiological factors (e.g., posture, state of hydration, heart rate, 
or medication use) (38). In this context, it should be noted that 
some echocardiographic measures may be imprecise, e.g., analy-
sis of tissue Doppler imaging (TDI) of the mitral annulus would 

Figure 4. Forest plot for the meta-analysis of the association between rs12541595 and LVDD, with the corresponding regional plot including functional 
annotation. P values were obtained by calculating Wald test statistics using a sample size of n = 30,201. Total sample size in the forest plot is n = 43,623.

Downloaded from http://www.jci.org on May 9, 2017.   https://doi.org/10.1172/JCI84840



The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

1 8 0 7jci.org   Volume 127   Number 5   May 2017

For analysis of LV diastolic dysfunction, we excluded individuals with 
reduced ejection fraction (EF) (defined as <50%, LVFS <29% or poor/
impaired LV systolic function by visual estimation).

Strategy for analysis
For the identification of genetic variants associated with cardiac struc-
ture and function, we followed a 3-stage analysis plan (Figure 1). First, 
a discovery meta-analysis of up to 21 population- and hospital-based 
GWAS was performed (stage 1). Second, replication of the findings 
from stage 1 was performed in up to 6 independent cohort studies (3 
with in silico data and 3 with de novo genotyping), and a combined 
meta-analysis of discovery and replication data was carried out (stage 
2). In stage 3, SNPs that were genome-wide significant in the combined 
meta-analysis were investigated for the generalizability of the observed 
associations in a cohort of white children of European ancestry (the 
Generation R study), in two cohorts of other ethnicities (Hispanic in 
the NOMAS Study and African American in the JHS and in the NOMAS 
study), and in associations with related disease traits (data from the 
AortaGen and CHARGE-HF consortia, and the LURIC study).

Echocardiographic methods
Detailed echocardiographic methods used and distributions of traits 
in each cohort study are reported in Supplemental Methods and Sup-
plemental Tables 3 and 4.

The present investigation focused on 5 traits of cardiac struc-
ture: LVM, LVDD, LVWT, AoD, and left atrial size (LA). Additionally, 

of the left atrium. Last, we did not directly assess the functional 
significance of all the associated SNPs or perform mechanistic 
studies, other than for the MTSS1 locus associated with LVDD 
(unpublished data from the MAGNet consortium).

To conclude, we report the largest genetic association study 
to our knowledge of a comprehensive set of LV echocardiographic 
traits. The large number of interesting genetic loci identified for 
AoD and LV diastolic dimensions, and the biological pathways 
enriched within our association results provide new insights into 
the biology of cardiac remodeling. Additional studies are warrant-
ed to further evaluate experimentally the functional significance 
of the reported genetic variants and loci.

Methods

EchoGen consortium
The EchoGen consortium was initiated in 2007 and has grown to a 
consortium of 30 studies with population-based and hospital-based 
cohorts primarily of European ancestry, and additionally including 
two cohorts of African American and one of Hispanic individuals. For 
the present investigation, we applied harmonized phenotype defi-
nitions, covariate selection, and genotyping protocols and the same 
statistical analysis plan across all cohorts. For traits of cardiac struc-
ture and systolic function, individuals with a history of MI, clinical 
diagnoses of HF, or valve disease were excluded if this information 
was known or recorded during the echocardiographic examination. 

Figure 5. Forest plot for the meta-analysis of the association between rs12440869 and Mv-A, with the corresponding regional plot including functional 
annotation. P values were obtained by calculating Wald test statistics using a sample size of n = 21,156. Total sample size in the forest plot is n = 36,430.
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Map (https://www.genome.gov/10001688/international-hapmap- 
project/) release 28 CEU dataset using PLINK (settings r2 > 0.2, 1 Mb 
distance) (44). For each identified independent locus, the SNP with 
the lowest P value was defined as the lead SNP and taken forward for 
replication. SNPs representing loci identified and replicated in our 
previously published report (2) were not taken forward for replication.

Replication and combined meta-analysis (stage 2). In stage 2, SNPs 
were related to echocardiographic traits in 6 cohort samples (Figure 
1). We chose proxies for 4 of the top SNPs, as no reliable assays were 
available for wet lab replication of the originally identified SNPs: 
rs1039692 was used as a proxy for rs949796 (Mv-A, P = 6.60 × 10–7,  
R2 = 1.0), rs7904368 as a proxy for rs7074647 (E/A, P = 8.30 × 10–7,  
R2 = 0.95), rs17868167 as a proxy for rs17862703 (IVRT, P = 9.70 × 10–7, 
R2 = 1.0), and rs806322 as a proxy for rs2762049 (AoD, P = 3.85 × 10–15, 
R2 = 1.0). The dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) 
identifiers of the proxies are reported in the final results.

For the combined meta-analysis of discovery and replication 
cohorts, SNPs with a P value of <5 × 10–8 in the combined meta- 
analysis were considered to be significantly associated with their 
respective outcomes, as the overall sample size of the replication 
cohorts was very small. Genome-wide significant association signals 
were deemed novel for the corresponding traits if they were >500 kb 
away from the lead SNPs reported in our previous study (2) and not in 
high LD with them (R2 < 0.5).

Look-up in other cohorts to test for generalizability of findings
For the genome-wide significant SNPs representing novel loci, we per-
formed “look-ups” in relation to the corresponding echocardiographic 
traits in children (the Generation R study), Hispanics (NOMAS), and 
African Americans (meta-analysis of data from JHS and NOMAS). 
Additionally, we evaluated associations of these SNPs with traits of 
interest: SNPs for aortic root diameter with pulse wave velocity in the 
AortaGen consortium (45, 46); and all newly identified SNPs with 
incident HF and mortality in the CHARGE-HF consortium (3), with 
all-cause, cardiovascular, and HF mortality in the LURIC study (a 
cohort of patients with suspected CAD), as well as with MI and CAD 
in the CARDIOGRAMplusC4D consortium data (47). Further details 
for the look-up investigations are presented in Supplemental Methods.

Proportion of trait variance explained
The proportion of variance in echocardiographic traits explained by 
the significantly associated SNPs from our meta-analyses was estimat-
ed in 3 of the larger cohorts (Rotterdam study [RS], SHIP, and FHS). 
Within each cohort, R2 values of two models were compared for each 
trait: one model including the covariates (age, sex, height, and weight) 
only; and one model additionally including the new and known loci. 
The proportion of the sex-, age-, height-, and weight-adjusted vari-
ance explained by all common (MAF >0.01) autosomal genotyped 
SNPs for each trait was calculated in the SHIP sample using the REML 
method of GCTA software version 1.24.4 (48).

Known associations of genome-wide significant SNPs
We combined a manual review of the literature with the use of the tool 
Snipper version 1.2 (http://csg.sph.umich.edu/boehnke/snipper/), which 
conducts an automated search of the published literature using speci-
fied search terms and the putative SNP to evaluate previously reported  
disease/trait associations for the genome-wide significant SNPs.

we evaluated 2 traits of systolic cardiac function (LVFS and LVSD) 
and 9 traits of LV diastolic function: Mv-A, Mv-E, E/A, E′, the ratio 
E/E′ as a surrogate for LV end-diastolic pressure, DecTime, and 
IVRT, as well as DDpEF and HFpEF (41). Measurements were based 
on the European and American guidelines for the echocardiographic 
assessment of the LV (42).

Genotyping methods and imputation
Details on genotyping, imputation, and quality control are presented 
in Supplemental Table 5. Population stratification as well as family 
structure, if applicable, was accounted for in each individual cohort’s 
analysis. For replication, 3 of the 6 cohorts (Gutenberg Health Study 
III [GHS-III]; Cardiovascular Risk Factors, Living and Ageing in 
Halle [CARLA] study; and Malmö Preventive Project [MPP] study) 
underwent de novo genotyping using 5′ nuclease assays on 384-well 
plates. For quality control, genotypes were validated in 10% of the 
samples for all SNPs.

Definition of traits and statistical methods
Discovery (stage 1). All traits were analyzed as continuous traits, with 
the exception of LVSD, DDpEF, and HFpEF. LVSD was defined as 
an EF <50%, fractional shortening (FS) <29% or reduced (poor or 
impaired) EF by visual estimation. Aggregate binary phenotypes were 
defined for asymptomatic participants with echocardiographic evi-
dence of LV DDpEF and for those with HFpEF based on information 
on classes of HF according to the New York Heart Association (NYHA) 
and medication for HF in addition to echocardiography.

Stage 1 analyses were first performed separately at the individual 
cohort level for each trait (Figure 1). Continuous echocardiographic 
traits were related to genotype dosage (0–2 copies of the effect allele) 
for each autosomal SNP using linear regression assuming additive 
genetic models adjusted for age, sex, height, weight, and study site 
(only applicable for the Cardiovascular Health Study [CHS] and 
Anglo-Scandinavian Cardiac Outcomes Trial [ASCOT]). For bina-
ry traits, we used logistic regression models with the same adjust-
ments. In the Framingham Heart Study (FHS), linear mixed-effects 
models were applied to account for familial correlations. The asso-
ciations of genotypes with echocardiographic traits were quantified 
by beta estimates, SEM, and P values. After verifying strand align-
ment across studies and applying genomic control to each study, we 
performed inverse variance–weighted fixed-effects meta-analysis 
across the discovery cohorts with METAL (43) for the structural and 
the systolic function traits and with the R package MetABEL (http://
www.r-project.org) for the diastolic traits. After the meta-analysis, 
we excluded SNPs with a minor allele frequency (MAF) below 0.5% 
for diastolic function traits and below 1% for structural traits, and FS 
and below 3% for LVSD.

We used an a priori P value threshold of <5 × 10–8 to indicate 
genome-wide statistical significance in the discovery meta-analysis 
for the selection of SNPs taken forward to the next stage. As no SNP 
reached genome-wide significance in the analysis of diastolic func-
tion traits, SNPs with P < 1 × 10–6 were taken forward for replication as 
“suggestive” findings. This threshold was chosen because there was 
approximately 80% power to achieve a genome-wide significant P val-
ue in the combined discovery and replication analysis for most of the 
traits given the effect sizes observed in the discovery stage. The asso-
ciation results were grouped based on the LD structure from the Hap-
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cis eQTL analysis
To evaluate the potential functional significance of our findings, we 
related each replicated SNP to the expression levels of genes in three 
sets of tissues: human whole blood samples from n = 5,311 individuals 
evaluated by Westra et al. (49), human monocytes from n = 1,372 par-
ticipants in the GHS (50), and LV free-wall tissue from n = 313 patients 
with HF undergoing transplantation and from unused donor hearts 
from the MAGNet consortium (http://www.med.upenn.edu/magnet). 
Further details are presented in Supplemental Methods. To evaluate 
possible cis eQTLs across multiple tissues, an additional look-up was 
performed in the GTEx database for the new findings.

Pathway analysis
The collective effects of multiple genetic variants on biological sys-
tems were investigated by pathway analysis, first for the 7 structural 
and systolic traits combined, and then for the 9 combined diastolic 
traits and for all 16 echocardiographic traits combined (for details, see 
Supplemental Methods).

To identify whether any of the associated SNPs fall within regula-
tory regions of the genome, we evaluated data from ENCODE (17). We 
compared the expected overlap of the putative SNPs with functional 
domains due to chance with the actual observed overlap by creating a 
permuted set of non-associated SNPs that were evaluated for overlap 
with the functional domains. We also used the DEPICT tool to further 
explore functionality of the identified SNPs (19). In addition, variants 
with P < 5 × 10–7 were used as the input for the DAPPLE software (18), 
which then built both direct and indirect interaction networks from 
seed genes near the top loci.

Statistics
If not specified otherwise, a Wald test statistic was calculated by divid-
ing the estimated effect size by its standard error and comparing them 
with a normal distribution (2-tailed) with mean zero. In the GWAS,  
P < 5 × 10–8 for the combined stage 1 and 2 analysis was deemed sig-
nificant (11), which corresponds to a significance level of 0.05 after 
correcting for 1 million independent SNPs (51). For pathway analyses, 
a FDR was applied as multiple testing correction with a cutoff-value 
<0.05 for statistical significance.

Study approval
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dations of the Declaration of Helsinki. All subjects in the cohorts 
provided informed written consent prior to their participation in 
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meta-analysis of human data. The institutional review boards are 
listed in the supplemental material.
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