1 Supplementary Table 1

Symbol	Gene ID	RefSeqID	Clone ID
ATP6v1e2	74915	NM_029121	TRCN0000103700
			TRCN0000103702
			TRCN0000103702
			TRCN0000103703
			TRCN0000103704
BIRC2	11797	NM_007465	TRCN0000012303
			TRCN0000012304
			TRCN0000012305
			TRCN0000012306
			TRCN0000012307
CD40	21939	NM_011611	TRCN0000066243
			TRCN000066244
			TRCN000066245
			TRCN0000066246
Cox6a2	12862	NM_009943	TRCN0000076809
			TRCN0000076810
			TRCN0000076811
			TRCN0000076812
ΙΚΚβ	16150	NM_010546	TRCN0000026867
			TRCN0000026891
			TRCN0000026894
			TRCN0000026913
			TRCN0000026945
Map2k6 (MKK6)	26399	NM_011943	TRCN0000025259
			TRCN0000025260
			TRCN0000025261
			TRCN0000025262
			TRCN0000025263
Ndufab1	70316	NM_028177	TRCN0000041878
			TRCN0000041879
			TRCN0000041880
			TRCN0000041881
			TRCN0000041882
NFkB1	18033	NM_008689	TRCN000009510
			TRCN000009511
			TRCN000009512
			TRCN000009513
			TRCN000009514
Park2 (Parkin)	50873	NM_016694	TRCN0000041143

2 Gene clone ID for ShRNA-mediated gene silencing TNFα downstream signals in *in vitro*

45					TRCN0000041144
46					TRCN0000041145
47					TRCN0000041146
48					TRCN0000041447
49	PINK1		68943	NM_026880	TRCN0000026727
50					TRCN0000026733
51					TRCN0000026742
52					TRCN0000026743
53					TRCN0000026750
54	Stat3		20848	NM_011486	TRCN0000071453
55					TRCN0000071454
56					TRCN0000071455
57					TRCN0000071456
58					TRCN0000071457
59	Nr2c2 (TAK1)		22026	XM_132700	TRCN0000027044
60					TRCN0000027072
61					TRCN0000027073
62					TRCN0000027089
63	TNFrsf1a		21937	NM_011609	TRCN0000066103
64					TRCN0000066104
65					TRCN0000066105
66					TRCN0000066106
67					TRCN0000066107
68	TNFrsf1b		21938	NM_011610	TRCN0000012318
69					TRCN0000012319
70					TRCN0000012320
71					TRCN0000012321
72					TRCN0000012322
73	TNFrsf4		22163	NM_011659	TRCN0000066193
74					TRCN0000066194
75					TRCN0000066195
76					TRCN0000066196
77					TRCN0000066197
78	Tnfrsf6	18053		NM_033217	TRCN0000065553
79					TRCN0000065554
80					TRCN0000065555
81					TRCN0000065556
82					TRCN0000065557
83	TNFrsf10b		21933	NM_020275	TRCN0000012323
84				_	TRCN0000012324
85					TRCN0000012325
86					TRCN0000012326
87					TRCN0000012327
88	TNFrsf11a		21934	NM_009399	TRCN0000065698

89				TRCN0000065699
90				TRCN0000065700
91				TRCN0000065701
92				TRCN0000065702
93	TNFrsf11b	18383	NM_008764	TRCN0000065748
94				TRCN0000065749
95				TRCN0000065750
96				TRCN0000065751
97				TRCN0000065752
98	TNFrsf12a	27279	NM_013749	TRCN0000066883
99				TRCN0000066884
100				TRCN0000066885
101				TRCN0000066886
102				TRCN0000066887
103	TNFrsf13c	72049	NM_028075	TRCN0000066733
104				TRCN0000066734
105				TRCN0000066735
106				TRCN0000066736
107				TRCN0000066737
108	TNFrsf14	230979	NM_178931	TRCN0000065853
109				TRCN0000065854
110				TRCN0000065855
111				TRCN0000065856
112				TRCN0000065857
113	Tnfrsf16	14102	NM_007987	TRCN0000012328
114				TRCN0000012329
115				TRCN0000012330
116				TRCN0000012331
117				TRCN0000012332
118	TNFrsf17	21935	NM_011608	TRCN0000065898
119				TRCN0000065899
120				TRCN0000065900
121				TRCN0000065901
122				TRCN0000065902
123	TNFrsf18	21936	NM_009400	TRCN0000065953
124				TRCN0000065954
125				TRCN0000065955
126				TRCN0000065956
127				TRCN0000065957
128	TNFrsf21	94185	NM_052975	TRCN0000066598
129				TRCN0000066599
130				TRCN0000066600
131				TRCN0000066601
132				TRCN0000066602

133	TRADD	71609	NM_001033161	TRCN0000178874
134				TRCN0000179091
135				TRCN0000183578
136				TRCN0000184240
137	TRAF2	22030	NM_009422	TRCN0000077228
138				TRCN0000077229
139				TRCN0000077230
140				TRCN0000077231
141				TRCN0000077232
142	TRAF5	22033	NM_011633	TRCN0000040718
143				TRCN0000040719
144				TRCN0000040720
145				TRCN0000040721
146				TRCN0000040722
147	TRAF6	22034	NM_009424	TRCN0000040733
148				TRCN0000040734
149				TRCN0000040735
150				TRCN0000040736
151				TRCN0000040737
152	TRAP1	68015	NM_026508	TRCN0000112170
153				TRCN0000112171
154				TRCN0000112172
155				TRCN0000112173
156				TRCN0000112174
157				

159 Supplementary Figure 1. The diurnal microglial activity patterns observed in chow-fed 160 lean mice can be also observed in the MBH of rats on a chow diet, and fasting eliminates 161 this diurnal pattern. (a-d) In chow-fed rats, although the difference in iba1-ir cell number 162 did not reach significance between ZT4 and ZT16 (n=6 for ZT4 and ZT16, p=0.051), the 163 number of iba1-ir cell processes in the MBH at ZT16 was significantly higher than at ZT4 164 (p=0.003). (e-h) Illustration of the iba1-ir cells in 24-h fasted lean or DIO mice. Cell 165 number and processes per cell were quantified in a 0.2x0.2-mm frame outlined by dashed lines in e, high magnification of the cells pointed at by dark arrows is presented at the left-166 167 upper corner of each picture. (i and j) Fasting for 24 h eliminated the interaction between 168 time and body weight on iba1-ir cell number and the number of processes in lean and DIO 169 mice, there was an effect of body weight at ZT4 and ZT16 (n=5 for ZT4 and ZT16 of lean 170 mice, n=6 for ZT4 and n=5 for ZT16 of DIO, for effect of bodyweight on iba1-ir cell 171 number, F(1,17)=32.76, p<0.0001; for effect of body weight on iba1-ir cell processes, 172 F(1,17)=241.9, p<0.0001), and there was an effect of time in DIO mice, $t_{10}=2.962$, 173 p < 0.05). (k) Fasting down-regulated, while refeeding stimulated, TNF α gene expression in 174 the MBH of lean mice (F(1,15)=4.377, p=0.032). Scale bar: 160 µm in a, b, 200 µm in e-h. III: 3^{rd} cerebral ventricle. *P<0.05, **P<0.01, ***P<0.001. Data are presented as means \pm 175 176 s.e.m. P values were analyzed by two-tailed Student's t test for unpaired comparisons in c. 177 d, by two-way ANOVA followed by Bonferroni multiple comparisons in i, j; and by one-178 way ANOVA followed by post hoc *t* test in k.

180 Supplementary Figure 2. Illustrations of the ultrastructure of microglial-neuronal soma
181 very close contact in the hypothalamic arcuate nucleus (M: microglia, outlined in green, N:

- 182 neuron, outlined in orange; *: nucleus of each cell). Arrows point to the contacting areas.
- 183 Scale bar: 2µm in a and c, 1µm in b and d.

184

185 **Supplementary Figure 3.** TNF α stimulates hypothalamic neuronal mitochondrial activity. (a) Scheme depicting dissection of the oxygen-consuming processes of neurons. Cellular 186 187 respiration was divided into mitochondrial and non-mitochondrial respiration using the 188 ETC inhibitors rotenone (R) and antimycin A (AA). Mitochondrial respiration was further 189 dissected into proton-leak and ATP-linked respiration using the ATP-synthase inhibitor 190 oligomycin (Oligo). Maximal respiration was obtained after addition of an uncoupler 191 (FCCP) and by subtracting the nonmitochondrial respiration rates. The portion of spare 192 respiratory capacity was obtained by subtracting basal respiration from maximal 193 respiration rates. Mitochondrial coupling efficiencies were calculated as the fraction of 194 mitochondrial oxygen consumption that is sensitive to oligomycin, reflecting the fraction 195 used to drive ATP synthesis. (b) Dose response of oxygen consuming rate (OCR) over 196 time in primary hypothalamic neurons in response to different concentrations of TNFa. (c-197 d) Neurons treated by 5 nM TNF α had a significantly higher mitochondrial and ATP-198 linked oxygen consumption rate in comparison to those treated by vehicle, 0.5 nM or 2.5 199 nM TNFa. In addition, neurons treated with 5 nM TNFa also had a significantly higher 200 non-mitochondrial OCR. (e) OCR over time in primary hypothalamic neurons treated with 201 TNF α , IL-1 β , IL-6, or vehicle. (f) Hypothalamic neurons treated with TNF α had 202 significantly increased protein expression of complex-I, but not complex-II, or complex-IV (n=4 for each group, p=0.012 for complex-I). *P<0.05. Data are presented as means \pm 203 204 s.e.m in b, and min to max in d. P values were analyzed by Student's t test. See also 205 Supplementary Fig 10.

206

207 **Supplementary Figure 4.** TNFa stimulates hypothalamic neuronal mitochondrial fusion 208 processes. Pseudotyped rabies virus (RABV Δ G) was produced to analyze mitochondrial 209 fusion-fission processes in *in vivo*. (a and b) Hypothalamic neurons treated with TNFα had 210 significantly increased protein expression of optic atrophy 1 (Opa1), but not of mito-fusion 211 2 (Mfn2) or the phosphorylated dynamin-related protein 1 (p-Drp1) (n=4 for each group in 212 Opa1 and p-Drp1 and n=6 for each group in Mfn2, p=0.034 for Opa1), see also 213 Supplementary Fig 11. (c) The construction of RABVAG encoding for mitochondriallytargeted red fluorescence protein (Mito^{RFP}), and the schematic illustration of virus injection 214 into the paraventriculer nuclei (PVN) and the $TNF\alpha$ injection into the mediobasal 215 hypothalamus (MBH). *P<0.05. Data are presented as min to max in b. P values was 216 217 analyzed by Student's t test.

219

220 **Supplementary Figure 5.** Hypothalamic neurons infected by Mito^{RFP}-expressing 221 RABVΔG did not stimulate immune responses from surrounding glial cells. (a) 222 Hypothalamic neurons infected by Mito^{RFP}-expressing RABVΔG have Mito^{RFP}-labelled 223 mitochondria. (b-d) No increase of iba1-ir microglia or GFAP-ir astrocytes occurred 224 surrounding the PRV-infected neurons. Scale bar: 30 µm.

227 **Supplementary Figure 6.** Mitochondrial Energy Metabolism PCR Array in vehicle versus 228 TNFα treatment in hypothalamic neurons. TNFα stimulated Atp6v1e2 (ATPase, H+ transporting, lysosomal V1 subunit E2) and Ndufab1 (NADH dehydrogenase (ubiquinone) 229 230 1, alpha/beta, subcomplex 1) gene expression (n=4 wells for vehicle and n=4 wells for 231 TNFα, p=0.026 for Atp6v1e2, and p=0.031 for Ndufab1). NDUF: NADH dehydrogenase (ubiquinone), COX: Cytochrome c oxidase, ATP5: ATP synthase, Bcs11: BCS1-like 232 (yeast), Cyc1: Cytochrome c-1, Lhpp: Phospholysine phosphohistidine inorganic 233 pyrophosphate phosphatase, Oxall: Oxidase assembly 1-like, Ppa: Pyrophosphatase 234 (inorganic), Sdh: Succinate dehydrogenase complex, Uqcr: Ubiquinol-cytochrome c 235 236 reductase. *p<0.05. Data are presented as min to max. P values were analyzed by Two-237 tailed Student's t test for comparing vehicle versus TNFa.

Supplementary Figure 7. Changes of cellular oxygen consuming rate (OCR) after 240 241 knocking down each gene from the gene list of TNF receptors, the TNF receptor superfamily, and the TNF downstream-signalling pathway. (a) Changes of OCR with 242 243 knocked down TNF receptors, and the TNF receptor superfamily (F(1,36)=3.600,244 p=0.001), knocked down Tnfrsf11a, 11b or 14 significantly attenuated the stimulatory 245 effect of TNF α on OCR in comparison to Ctrl (t₆=4.868, p=0.003 for Tnfrsf11a, t₆=4.219, 246 p=0.006 for Tnfrsf11b, t₆=3.936, p=0.008 for Tnfrsf14); knocking down Tnfrsf6 enhanced 247 the stimulatory effect of TNF α on OCR (p<0.001). (b) Changes of OCR after knocking 248 down the TNF downstream-signalling pathway (F(1,36)=4.000, p=0.0003); knocking 249 down TNF receptor-associated factors 2 and 5 (TRAF2 and TRAF5, which mediate TNF 250 effects on activation of MAPK8/JNK and NF-κB) significantly attenuates or completely 251 blocks the TNF-stimulatory effects on OCR (t_6 =6.487, p=0.0006 for TRAF2, and t_6 =4.340, 252 p=0.0005 for TRAF5). Among the rest of the TNF-downstream signals, knocking down 253 cluster of differentiation (CD40), NF-KB, MAP kinase kinase 6 (MKK6), nuclear 254 transcription factor signal transducer and activator of transcription 3 (STAT3, which can 255 bind to mitochondrial DNA to regulate mitochondrial gene expression), the PTEN-induced 256 putative kinase 1 (PINK1, mediating parkin protein-induced mitochondrial autophagy), TNF receptor-associated protein (TRAP1, a mitochondrial chaperone that regulates the 257 metabolic switch between mitochondrial respiration and aerobic glycolysis), or apoptotic 258 259 repression factor baculoviral inhibitors of apoptosis repeat-containing 1 (Birc1), can 260 significantly attenuate or completely block the stimulatory effects of TNF on OCR 261 $(t_6=6.487, p=0.034 \text{ for CD40}, t_6=3.380, p=0.015 \text{ for NF-}\kappa\text{B}, t_6=6.778, p=0.0005 \text{ for}$ 262 MKK6, t₆=7.511, p=0.0003 for STAT3, t₆=2.580, p=0.042 for TAK1, t₆=5.686, p=0.001 263 for PINK1, t₆=3.619, p=0.011 for TRAP1, t₆=5.922, p=0.001 for BIRC2). Furthermore, 264 knocking down the selected mitochondrial targets, the mitochondrial respiratory chain 265 complex-1 subunit - NADH dehydrogenase ubiquinone 1, alpha/beta subcomplex 1 266 (Ndufab1), or the V-type proton ATPase subunit e2 (ATP6v1e2), completely blocked the 267 TNF-stimulatory effects on OCR ($t_6=5.594$, p=0.001 for Ndufab1, $t_6=6.470$, p=0.0006 for ATP6v1e2). *P<0.05, **P<0.01, ***P<0.001. Data are presented as means \pm s.e.m. P 268 269 values were analyzed by One-way ANOVA followed by post hoc t test. 270

272 **Supplementary Figure 8.** Knocking down TNFα downstream signals by AAV-expressing 273 Ndufab1 shRNA (n=5), Tnfrsf11a shRNA (n=4), or TRAP1 (n=4) in the MBH of chow-274 fed lean mice does not affect the food intake (a) or body weight gain (b), in comparison to 275 mice that received AAV-expressing scrambled shRNA (F(1,15)=1.665, p=0.217 for food 276 intake, and F(1,15)=0.574, p=0.641 for weight gain). Data are presented as means \pm s.e.m. 277 *P* values were analyzed by One-way ANOVA followed by post hoc *t* test for comparing 278 daily food intake or bodyweight gain between scrambled shRNA group and each of the 279 three-targeted shRNA groups. 280

Supplementary Figure 9. In lean mice, TNF α engagement of TNFrsf11a activates NF- κ B signaling pathway and enhances complex-1 activity to promote mitochondrial ATP production, consequently matching ATP production with demands in neurons in the dark phase. In DIO mice, constantly elevated TNF α drives persistent mitochondrial activity and causes mitochondrial stress in POMC neurons.

288 289 Supplementary Figure 10. Uncropped blots of Complex I (a) and B-actin (b) of

290 supplementary figure 3f.

Supplementary Figure 11. Uncropped blots of Opa1 (a), p-Drp1 (c) and B-actin (d) of supplementary figure 4a. The image of the B-actin from Opa1 blot in b is not used in the figure. Instead, B-actin from p-Drp1 blot is presented).