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ABSTRACT 
 
In optoacoustic tomography, images representing the light absorption distribution are reconstructed from the 
measured acoustic pressure waves at several locations around the imaged sample. Most reconstruction 
algorithms typically yield negative absorption values due to modelling inaccuracies and imperfect measurement 
conditions. Those negative optical absorption values have no physical meaning and their presence hinders image 
quantification and interpretation of biological information. We investigate herein the performance of 
optimization methods that impose non-negative constraints in model-based optoacoustic inversion. Specifically, 
we analyze the effects of the non-negative restrictions on image quality and accuracy as compared to the 
unconstrained approach. An efficient algorithm based on the projected quasi-Newton scheme and the limited-
memory Broyden-Fletcher-Goldfarb-Shannon method is used for the non-negative constrained inversion. We 
showcase that imposing non-negative constraints in model-based reconstruction leads to a quality increase in 
cross-sectional tomographic optoacoustic images.  
Keywords: optoacoustic tomography, photoacoustic tomography, model-based inversion, non-negative 
constrained least squares 
 

1. INTRODUCTION 
 
Image reconstruction of the optical absorption distribution from the measured pressure signals is an essential step 
regarding the performance of an optoacoustic tomographic imaging system. Indeed, key factors such as the 
resolution, quantitativeness and reconstruction time are determined by the accuracy and computational efficiency 
of the reconstruction algorithm employed. 

Analytical back-projection approaches have been extensively utilized for tomographic imaging due to their 
simplicity and low computational time [1]. However, negative values, quantitative inaccuracies, streak-type 
artifacts and other errors affect images reconstructed with back-projection approaches. Model-based 
optoacoustic algorithms have been developed as more accurate alternatives to back-projection methods [2] [3] 
[4] [5] [6]. In model-based procedures, inversion is done by numerically minimizing the error between the 
measured signals and those theoretically predicted by a linear optoacoustic forward model. Typically, the 
corresponding least squares problem is solved without constraints by application of an iterative algorithm such as 
the LSQR [7].  

Model-based methods allow accounting for distorting effects in the forward model. For example, the effects of 
the detector employed or acoustic heterogeneities in the imaged object can be modeled [3] [8] [9]. Therefore, a 
forward model can be built that better matches the real experimental situation compared to the idealized 
assumptions, leading to more accurate inversions. However, even though such complex models generally 
improve the reconstruction accuracy over back-projection approaches, the forward model may not perfectly 
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account for all experimental parameters. In addition, the tomographic information collected may be incomplete, 
i.e. the sound waves may only be collected in limited-view angles or with finite-bandwidth ultrasound detectors. 
Such imperfections result in the appearance of negative values in the reconstructed images. These negative 
values have no physical meaning since the absorbed optical energy can only be higher or equal than zero, but are 
introduced during the inversion process as part of the minimization computation. Indeed, the development of a 
perfect forward model is generally unattainable, so that negative values commonly appear in the reconstructed 
images. For instance, model-based reconstruction in cross-sectional tomographic imaging systems is typically 
done by assuming optoacoustic sources confined in a plane [10], which is an approximation considering the three 
dimensional excited region and the imperfect rejection of out-of-plane signals with cylindrically focused 
ultrasound transducers. Also, some imaging systems are constrained to detect sound only at certain angular 
positions, which results in limited-view acquisition further compromising the reconstruction performance and 
similarly leading to negative value artifacts.  

The negative values in the reconstructed images are usually thresholded to zero. A more rigorous approach is to 
set non-negative restrictions to the inversion problem. Conventionally, numerical inversion is computationally 
burdensome. As recent imaging systems allow generation of tomographic datasets at video rate, the inversion 
process has become the bottleneck for accurate fast imaging. Imposing additional constraints further increases 
the inversion times for large-scale problems in optoacoustic tomography. However, algorithms that are used for 
unconstrained large-scale optimization problems (e.g. the limited-memory Broyden-Fletcher-Goldfarb-Shannon 
(LBFGS) method) can be adapted to handle simple box constraints such as the non-negativity constraint. 

Herein, we investigate the performance of non-negative constrained model-based inversion and compare the 
results to those obtained with the unconstraint approach. We use data from imaging experiments with tissue-
mimicking phantoms and mice in vivo. We observe in our experiments that inversion with an explicit non-
negativity constraint leads to results with more information than those obtained in the unconstrained case when 
the negative values are thresholded to zero. 

 

2. THEORY 
Model-based reconstruction 

In a two dimensional imaging geometry, the pressure wave that results from the absorption of a laser pulse is 
modeled as [10] [11] ݌(࢘, (ݐ = ୻ସగ௖ డడ௧ ׬ ு൫࢘ᇲ൯|࢘ି࢘ᇲ|௅ᇲ(௧)  (1)                                                           (ݐ)ᇱܮ݀

where Γ is the dimensionless Grueneisen parameter, ܿ is the speed of sound in the medium and ܪ is the amount 
of energy absorbed in the tissue per unit volume. The integral is performed along a circumference ܮᇱ(ݐ) with 
radius |࢘ − ࢘ᇱ| =  This model is valid as long as the excitation with the laser pulses fulfills the stress and .ݐܿ
thermal confinement conditions and the speed of sound is uniform within the medium. Furthermore, it is 
assumed that the optoacoustic sources are confined in the imaging plane (cross-section). The linear relation of 
the continuous absorption function and the pressure signal in (1) is then discretized and we obtain a linear system 
of equations [2] ࢖ =  (2)                                                                              ࢎ࡭

where ࢖ denotes the pressure signals at discrete time instants and ࢎ is the vector of optical absorptions sampled 
in a uniform two-dimensional grid. The model matrix	࡭ is the discretization of (1) and depends on the geometry 
of the experimental setup and the speed of sound in the medium. 

For the unconstrained reconstruction, we simply have to minimize the least squared error between the measured 
pressure signal ࢓࢖and the pressure signal predicted by the forward model in (2), i.e. to solve the least-squares 
problem given by ࢎ෡ = argmin࢓࢖‖ࢎ −  ૛૛.                                                                  (3)‖ࢎ࡭
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Due to the large dimensionality of the problem, the reconstruction is typically done with an iterative method, for 
example the LSQR algorithm. 

Non-negative reconstruction 

By introducing non-negativity constraints, image reconstruction is performed by solving the non-negative 
constrained least squares (NNLS) problem given by ࢎ෡ = argminࢎஹ૙‖࢓࢖ −  ૛૛.                                                              (4)‖ࢎ࡭

The problem is convex since the cost function is convex and we have linear constraints. However, a typical 
convex solver is not applicable due to the high dimensionality of the problem. Methods like LBFGS, which is a 
reduced memory quasi-Newton method, can be applied to very large, unconstrained problems [12]. Fortunately, 
the LBFGS method can be extended to the handle the simple non-negativity constraint [13]. 

 

 
3. METHODS 

 
The performance of the non-negative constrained inversion in optoacoustic cross-sectional model-based 
reconstruction was evaluated with experimental measurements from phantoms and small animals in-vivo. The 
experiments were done with two cross-sectional optoacoustic tomography systems based on signal acquisition 
with an array of cylindrically focused transducers. The first system consists of 64 transducer elements with 172° 
angular coverage, while the second system is based on an array of 256 transducers with 270° angular coverage 
[14]. 

We first investigated the performance of the NNLS approach in terms of the squared residual. In this experiment, 
two polyethylene tubings were inserted in the central region of a tissue-mimicking phantom. The tubings 
contained India ink with different concentrations corresponding to optical absorption coefficients of μ௔ =1cmିଵand μ௔ = 2cmିଵ. Imaging was done with the 64 element system. The reconstruction performance of the 
NNLS approach was compared to the unconstrained case, which contains negative artifacts, and to the case with 
unconstrained reconstruction where all negative values were set to zero. 

In a second experiment, we used the 256-element system to obtain cross-section images of mice in vivo in the 
region of kidney and post-mortem in the brain area. We again compared the image quality of NNLS 
reconstruction with unconstrained reconstruction where negative values were set to zero. 

 

4. RESULTS 
 

Fig. 1 displays the phantom imaging results obtained with the different reconstruction approaches. Fig 1a shows 
the result of unconstrained reconstruction, which contains negative artifacts in the background and in the interior 
of the phantom (marked in red). Fig 1b shows the same image with negative values thresholded to zero. Fig 1c 
illustrates the result of non-negative constrained reconstruction. It is shown that the NNLS approach conserves 
more of the internal information of the image. 

In Fig. 1d the performance of the NNLS approach with respect to the number of iterations of the projected quasi-
Newton LBFGS algorithm (PQN-LBFGS) is represented. Each dot in the PQN-LBFGS curve denotes a single 
iteration. It is shown that the squared error decreases with iterations until the algorithm converges. The squared 
errors for unconstrained reconstruction and unconstrained reconstruction with thresholding are included for 
comparison. The squared error of the unconstrained reconstruction without thresholding is obviously lower than 
that of the NNLS approach since the NNLS approach incorporates an additional constraint. However, we note 
that a small number of iteration is sufficient for the NNLS approach to outperform the reconstruction when 
thresholding is performed.  
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Fig. 2 displays two cross-sectional images of mice, which were taken with the 256-element cross-sectional 
system. The first row shows the resulting images with the thresholding approach and the second row the
equivalent images obtained with NNLS inversion. The loss of structure is observed in the internal area of the 
image when thresholding is applied. This is due to the low absorption values within the tissue, which are
reconstructed as negative artifacts in the unconstrained reconstruction. The NNLS approach, on the contrary, 
preserves the internal structure of the image without introducing any negative artifacts.  

5. CONCLUSION

It was observed in the presented experiments that the NNLS reconstruction leads to a smaller residual as
compared to the thresholding approach. Additionally, it was shown that the internal structure of both the
phantom and the mouse images are better preserved with the NNLS approach than the thresholded images. Since 
negative values destroy the physical integrity of the image, the presented results motivate the use of non-negative
constrained reconstruction in optoacoustic imaging. 
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