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The immature, chaotic microvasculature of most solid tumors can present a significant
impediment to blood-borne delivery, uneven distribution, and compromised penetration of
macromolecular anticancer drugs and diagnostic agents from tumor microvessels across
the interstitial space to cancer cells. To reach viable tumor cells in relevant concentrations,
macromolecular agents are confronted with several barriers to vascular, transvascular,
and interstitial transport. Amongst those (1) heterogeneous and poor blood supply, (2)
distinctly reduced or even abolished hydrostatic and oncotic pressure gradients across
the microvessel wall abrogating the convective transport from the vessel lumen into the
interstitial space (impairment of transvascular transport), and (3) impediment of convective
transport within the interstitial compartment due to elevated interstitial fluid pressure (IFP)
(resulting from hyperpermeable blood vessels coupled with non-functional lymphatics)
and a dense structure of the interstitial matrix are the major mechanisms hindering
drug delivery. Upon irradiation, changes in these barrier functions are inconclusive so far.
Alterations in vascular transport properties following fractionated radiation up to 40 Gy
are quite inconsistent in terms of direction, extent, and time course. Total doses above
45 Gy can damage tumor microvessels, additionally impeding vascular delivery. Vascular
permeability for macromolecules might be enhanced up to a total dose of 45 Gy. However,
this effect is counteracted/abolished by the elevated IFP in solid tumors. When assessing
IFP during fractionated radiotherapy in patient tumors, inconsistent alterations have been
observed, both in direction and extent. From these data it is concluded that modulations
in vascular, transvascular, and interstitial transport by irradiation of solid tumors are rather
unclear so far. Translation of experimental data into the clinical setting thus needs to be
undertaken with especial care.

Keywords: irradiation, tumor microcirculation, transport barriers, tumor interstitial fluid pressure, macromolecular

agents, intratumor pharmacokinetics

INTRODUCTION
The chaotic microvasculature of solid tumors leads to significant
impediment of delivery, uneven distribution, and compro-
mised penetration of macromolecules and nanotherapeutics
from tumor microvessels across the interstitial compartment to
cancer cells, especially to cells distant from microvessels. To
reach viable tumor cells in relevant concentrations, diagnostic,
and therapeutic agents are confronted with several obstacles:
disturbed convective transport within the chaotic vascular com-
partment (vascular transport), spatio-temporally uneven distri-
bution within the tissue, and significant shunt flow bypassing the
exchange processes between the vascular bed and the extravas-
cular space. Extravasation (transvascular transport) and extravas-
cular convection (interstitial transport) of macromolecules and
nanoparticles are mainly impaired by high interstitial fluid pres-
sure (IFP). Furthermore, marked gradients in concentrations of
macromolecules and nanoparticles exist within the extravascular

space limiting anticancer therapies with increasing distance from
tumor blood vessels (Jain, 1987, 1990; Vaupel, 2009b; Jain and
Stylianopoulos, 2010; Vaupel and Multhoff, 2013).

Amongst the key pathophysiological abnormalities in solid
tumors related to drug transport, chaotic vascular networks,
abnormal blood flow, and elevated IFP (interstitial hypertension)
seem to play the dominant roles (see Figure 1). Accumulated solid
stress from the growing tumor (through unlimited proliferation
of cancer cells and excessive production of collagen and hyaluran),
a dense interstitial structure, and contractions of the interstitial
matrix mediated by stromal fibroblasts add to the transport bar-
rier to anticancer agents (Heldin et al., 2004; Chauhan et al., 2011;
Wiig and Swartz, 2012).

While some data suggest that interstitial hypertension might
not be a significant barrier to therapy as has generally been
proposed (Wiig and Swartz, 2012), in the following sec-
tions the impact of irradiation on the key pathophysiological
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FIGURE 1 | Schematic representation of relevant pathophysiological

mechanisms affecting the vascular (left), transvascular (center), and

interstitial transport (right) of macromolecular compounds (e.g.,

anti-tumor and diagnostic large-size molecules). Green tags: basic
pathophysiological obstacles (negative signs) or facilitating mechanisms
(positive signs). Red tags: irradiation-induced modulations affecting the
transport properties in a positive or negative direction. Interstitial transport

of macromolecules is hindered by an adverse transport geometry
(including enlarged interstitial volumes and transport distances), by a
hyperproduction of interstitial components (e.g., stromal cells, collagen
fibers, interstitial matrix), by elevated pressures (IFP, OC, and accumulated
solid stress), electrostatic interactions, and drive back into the circulation.
IFP, interstitial fluid pressure; OP, oncotic pressure; GAGs, negatively
charged glycosaminoglycans.

characteristics mentioned above will be discussed with regard to
their effect on the delivery of macromolecules and nanotherapeu-
tics to primary and metastatic tumors.

VASCULAR TRANSPORT
Vascular transport, i.e., the delivery of anticancer and diagnostic
agents via the blood stream, includes the convective trans-
port to the tumor and the subsequent distribution within the
tumor (“blood-borne delivery,” Vaupel and Multhoff, 2013). The
development of a disorganized microvasculature and significant
arterio-venous shunt perfusion leads to an inefficient delivery
of (macromolecular) agents and nutrients (e.g., oxygen, glucose)
through the vascular system of the tumor (see Table 1). The sit-
uation is further aggravated by flow-dependent spatio-temporal
heterogeneities in the distribution of plasma-borne agents (and
their metabolites). These “4D-heterogeneities” are not static, but
instead are quite dynamic, and therefore more complex than has
been previously assumed (for reviews see Vaupel et al., 1989;
Vaupel, 2006, 2009a,b, 2012).

The status of the tumor microvasculature and blood flow
(direction, extent, and time course of changes) upon irra-
diation remains largely unclear, both for single large doses
(12–50 Gy) and fractionated radiation (25 fractions, 5 weeks,
up to a total dose of 75 Gy), but also appears to depend on
the tumor type studied, the radiation dose, the time interval
between exposures, and irradiation stage (during vs. post). The
literature provides quite conflicting data on whether or not

radiation-related biologically or clinically relevant changes in
microvascular structures and functions occur.

Descriptive and morphometric studies performed between
1927 and 1977 using experimental tumors suggested that frac-
tionated doses commonly led to an increase in vascular density,
while single large doses often destroyed the vasculature and shut
down blood flow (for details see Narayan and Cliff, 1982; Fajardo
and Berthrong, 1988; Baker and Krochak, 1989; Dewhirst, 1991).
However, experiments using single large dose irradiation are quite
inconclusive since changes in tumor blood flow were both dose-
and time-dependent (Vaupel et al., 1984). In a recent review, a
very contradictory data set for single large dose local irradiation in
the experimental setting has been presented (Kozin et al., 2012).

In conventional fractionation schedules, tumor microvessels
are distinctly damaged above doses of 40–45 Gy (Zywietz et al.,
1994). Above this “critical cumulated dose” tumor oxygenation
and ATP levels progressively decreased (Thews et al., 1999),
clearly showing that these parameters are critically determined
by the efficacy of tumor blood flow. Continuous hyperfraction-
ation (2 daily fractions of 2.5 Gy, up to 60 Gy), however, induced
only relatively discreet alterations of the tumor microvasculature
(Lorke et al., 1999).

Published data on changes in tumor blood flow and oxygena-
tion upon radiation therapy in the clinical setting showed no clear
direction in observed alterations (Feldmann et al., 2000; Molls
et al., 2000). From this compilation of data, there is evidence
that changes in tumor microcirculation (i.e., vascular transport
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Table 1 | Obstacles in blood-borne delivery of macromolecular

anticancer and diagnostic agents and modulations following

irradiation (selection; Vaupel, 2006, 2009a).

A. ABNORMAL VASCULAR NETWORK (“MORPHOLOGICAL

ABNORMALITIES”)

Development of an immature, disorganized microvasculature

Spatial heterogeneities

Existence of avascular spaces

Enlarged intervessel distances

Blind vessel endings

Arterio-venous anastomoses

Convoluted, elongated, and dilated microvessels

Leaky microvessels

B. ABNORMAL BLOOD FLOW (“FUNCTIONAL ABNORMALITIES”)

Excessive spatial and temporal heterogeneity in flow
(“4D-heterogeneity”)

Slowing of blood flow, flow stops

Poor, inadequate perfusion

Sluggish perfusion

Unstable flow velocities

Arterio-venous shunt perfusion

Flow reversals

Elevated geometric and viscous resistance to flow

C. IRRADIATION-INDUCED MODULATIONS OF BLOOD-

BORNE DELIVERY

Changes in vascular transport properties following fractionated
irradiation up to 40 Gy are rather unclear

Total doses above 45 Gy may damage tumor microvessels further
impeding vascular delivery

properties) following γ-irradiation (fractionated doses, up to
40 Gy) are rather unclear so far due to obvious variabilities in
the direction, extent, and time course of changes observed. There
is at least some consensus that upon conventional fractionation
with total doses above 45 Gy microvessels are damaged, further
impeding vascular delivery of blood-borne anticancer (macro-)
molecules.

TRANSVASCULAR TRANSPORT
Therapeutic (and diagnostic) molecules and nanomedicines cross
the leaky vessel walls by two major mechanisms: diffusion and
convection. Large pore sizes of tumor microvessels facilitate these
transport processes. Diffusion is the prevailing molecular trans-
port modality of small-size molecules driven by concentration
gradients. Convection is driven by hydrostatic pressure gradients
and is the dominant mode of transport for large molecules, lipo-
somes, and other nanoparticles (Kuszyk et al., 2001). Due to the
elevated interstitial fluid pressure (IFP, interstitial hypertension,
see section below), transvascular pressure gradients are approach-
ing zero. As a result of this “equilibration” of hydraulic pressures,
significant hindering of the transport of macromolecules and
nanoparticles into the extravascular space by convection has to
be considered (see Table 2). For this reason, the main mech-
anism of mass transport across vessel walls is diffusion (for a
review see Vaupel and Multhoff, 2013). This process is signifi-
cantly slower than convection, especially for macromolecules and

Table 2 | Obstacles to transvascular transport (extravasation) of

macromolecular therapeutic and diagnostic agents in solid tumors

and modulations upon irradiation (selection, Vaupel and Multhoff,

2013).

A. MECHANISMS FACILITATING EXTRAVASATION

Presence of abundant fenestrae, wide channels, and large pores in the
microvascular wall

High permeability (leakiness) of microvessels (vascular permeability is at
least 10 times higher than interstitial permeability; Lunt et al., 2008)

B. MECHANISMS HINDERING EXTRAVASATION

Leakiness of microvessels is heterogeneous

Impaired transluminal convective transport of macromolecules (due to
elevated IFP, see Table 3)

Decreased transfer of large-sized, anionic, and neutral particles

Intravasation back to vascular compartment (due to elevated IFP, see
Table 3), “back-convection” from the interstitial space into the
circulation

C. IRRADIATION-INDUCED MODULATION OF EXTRAVASATION

Radiation-induced increase in vascular permeability might enhance
extravasation up to a total dose of 45 Gy

However, enhanced permeability is counteracted by elevated interstitial
fluid pressure (IFP)

Due to elevated IFP transluminal transport can be reversed (intravasation
instead of extravasation)

nanoparticles (Jain and Stylianopoulos, 2010). Vessel wall hyper-
permeability (enhanced porosity) is thus counteracted by elevated
IFP in tumors (and by the large size of nanoparticles).

Vascular permeability decreases with increasing size of the
transported nanoparticles (according to the Organization for
Standardization, nanomedical approaches use particles from 1 to
100 nm; e.g., gold nanoparticles 2.5 nm, monoclonal antibodies
10–15 nm, oncolytic viruses 30–40 nm, magnetic nanoparticles
for drug targeting 15–100 nm, liposome-encapsulated doxoru-
bicin 80–130 nm, gadolinium-based nanoparticles 115 nm, and
albumin-paclitaxel nanoparticles 130 nm). Furthermore, per-
meability is higher for cationic compounds than for their
anionic or neutral counterparts (Jain and Stylianopoulos,
2010).

Upon fractionated γ-irradiation, time- and dose-dependent
changes in vascular permeability have been described in the
experimental setting due to direct vessel wall damage and the
action of indirect inflammatory stimuli (Lorke et al., 1999). A dis-
crete increase in leakiness (associated with interstitial edema) has
been observed already after a total dose of 15 Gy, with more pro-
nounced leakiness at higher radiation doses. Upon radiation with
a total dose of 30 Gy, hyperpermeability was further increased.
Prolonged irradiation was eventually associated with progres-
sive destruction of the vascular wall and disruption of the basal
lamina.

In principle, radiation-triggered increases in vascular perme-
ability may enhance extravasation of anti-cancer macromolecules
up to a total dose of approximately 45 Gy. However, this facilita-
tion is severely counteracted or totally abolished by mechanisms
occurring in the interstitial compartment as outlined in the
following section.
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INTERSTITIAL TRANSPORT
The interstitial compartment of tumors differs significantly from
that of normal tissue (Vaupel and Multhoff, 2013). As a result of
(1) vessel leakiness, (2) lack of functional lymphatics, (3) intersti-
tial fibrosis, (4) contraction of the interstitial matrix mediated by
stromal fibroblasts, and (5) cell proliferation in a confined space,
most solid tumors develop an elevated interstitial/hydrostatic
fluid pressure (IFP), which is in contrast to normal tissues where
IFP is close to atmospheric pressure (Jain, 1987, 1990; Heldin
et al., 2004; Milosevic et al., 2004; Cairns et al., 2006; Wiig and
Swartz, 2012).

As already mentioned above, increased IFP within solid
tumors decreases extravasation. In addition, high IFP severely
inhibits interstitial transport of larger molecules (e.g., antibod-
ies, antibody drug conjugates, and liposomes) by convection (see
Table 3). Macromolecules rely more heavily on convection as
opposed to simple diffusional transport of low-molecular weight
drugs. Compounds larger than 60 nm in diameter are not able
to effectively diffuse through the extracellular matrix of highly
fibrotic tumors. Interstitial transport of macromolecules is fur-
ther impaired by a much denser network of interconnected
collagen fibers in the extracellular matrix of tumors (as com-
pared to normal tissues) leaving them in higher concentrations
in perivascular areas only (Jain and Stylianopoulos, 2010). The
transport of compounds with sizes of up to 1000 nm is fur-
ther hindered by highly negatively charged heparan sulfate in the
matrix.

Heterogeneous mobility and distribution of large-sized
molecules is additionally caused by two phases in the matrix: a
more aqueous phase is found in regions with low fiber content
(“fast” compartment with relatively high diffusivity), and a more
viscous phase is due to a high concentration of collagen fibers
in a dense matrix (“slow” compartment with high retention of
compounds). Collagen content in tumors is much higher and col-
lagen fibers are much thicker than in normal tissue leading to
an increased mechanical stiffness of the tissue (Netti et al., 2000;
Heldin et al., 2004). The interstitium also contains abundant stro-
mal cells and enzymes that can affect the activity and delivery of
agents to the tumor cells (Kuszyk et al., 2001).

It is assumed that IFP is almost uniform throughout a tumor
and that relevant gradients of IFP do not exist. However, IFP
drops precipitously at the tumor/normal tissue interface. For this
reason, the interstitial fluid oozes out of the tumor into the sur-
rounding normal tissue, carrying away anticancer agents, growth
factors or released heat shock proteins, and cancer cells with it
(Fukumura and Jain, 2007). Shedded cancer cells may mediate
metastasis. As another consequence of this peripheral drop in IFP,
blood flow may be diverted away from the tumor center toward
the periphery where anticancer agents may be lost from larger
vessels.

Transmural coupling between IFP and microvascular pressure
can critically reduce perfusion pressure between up- and down-
stream tumor blood vessels leading to flow stasis and thus, inade-
quate delivery of anticancer agents, in addition to the mechanisms
impairing blood flow already mentioned above.

In the experimental setting, radiocurability of human tumor
xenografts decreases with increasing IFP (Rofstad et al., 2009,

2010). In these experiments, IFP showed a strong positive
correlation to the extent of acute hypoxia in the tumors
investigated (Rofstad et al., 2009), an increased number of clono-
genic cells (Rofstad et al., 2010), stimulation of proliferation,
occurring presumably via modulation of signaling pathways

Table 3 | Obstacles in interstitial transport of macromolecular

anti-cancer agents and nanomedicines and modulations following

irradiation (selection, Vaupel and Multhoff, 2013).

A. PATHOMORPHOLOGICAL CHARACTERISTICS OF THE

INTERSTITIAL COMPARTMENT

Enlarged interstitial volume

Enlarged interstitial transport distances

Hyperplasia of stromal cells

High stromal fraction

Dense network of collagen fibers

Hyperproduction of interstitial matrix

Non-functional lymphatics in the tumor center

B. PATHOPHYSIOLOGICAL FEATURES OF THE INTERSTITIAL

COMPARTMENT

Elevated hydrostatic fluid pressure (IFP, 5–40 mmHg in solid tumors vs.
−3 to +1 mmHg in most normal tissues)

Elevated oncotic (colloid osmotic) pressures (approximately 20.5 mmHg
in tumors vs. 8 mmHg in subcutis; Stohrer et al., 2000)

Equilibrium between oncotic pressures of plasma and tumor interstitium

Transmural coupling between IFP and microvascular pressure leading to
slowing/stoppage and even reversals of microvascular blood flow

Convective drive of anti-cancer agents back into the circulation

High visco-elasticity caused by glycosaminoglycans, e.g., hyaluronan

Severely hampered convective transport within the interstitial
compartment

(Poor) diffusion largely responsible for interstitial transport in the bulk of
tumors

Diffusivity (diffusion coefficient) decreases with increasing size of
macromolecules

Diffusion rate for macromolecules correlates with orientation of collagen

Electrostatic interaction of charged particles with charged compounds of
the interstitium

Electrostatic binding of macromolecules/nanoparticles by heparan
sulfate

Escape of macromolecules at the tumor edge into the surrounding
normal tissue

Diversion of blood flow from center to periphery of tumors due to
elevated IFP

C. MODULATION OF INTERSTITIAL TRANSPORT UPON

IRRADIATION

Inconclusive results when assessing IFP during fractionated
radiotherapy in patients with cancers of the uterine cervix

(decrease in IFP in four out of seven patients, increase in IFP in three
patients; Roh et al., 1991)

Decrease in IFP above a threshold of 10 Gy upon single dose or
fractionated radiation of human colon cancer xenografts (Znati et al.,
1996)

Reduced convective and diffusive transport of macromolecules following
single dose or fractionated irradiation

(reduced interstitial fluid transport, increased collagen content; Znati
et al., 2003)
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(Nathan et al., 2005), and upregulation of VEGF-A expression
(Nathan et al., 2008).

Studies in patients with cervix cancers have explored the
relationship between IFP and outcome following radiotherapy
(Milosevic et al., 2001; Yeo et al., 2009). In these studies, IFP was
found to be a strong, negative, and independent prognostic factor
for local control and distant metastasis. Several compounds have
been shown to decrease tumor IFP in patients (for a review see
Heldin et al., 2004). This reduction in IFP has been attributed to
a substantial decrease in vascular permeability, lowered microvas-
cular pressure and changes in the extracellular matrix.

Assessing interstitial hypertension during fractionated radio-
therapy in patients with cervix cancers showed inconclusive
results, since only 4 out of 7 patients experienced a drop
in IFP during treatment, whereas in 3 patients IFP dis-
tinctly increased (Roh et al., 1991). Measurements after sin-
gle dose or fractionated radiation in human colon cancer
xenografts yielded a reduction in IFP above a threshold of
10 Gy. Below this threshold there was no significant change in
IFP (Znati et al., 1996). A decrease in microvascular pressure
has been discussed as a plausible explanation for the radiation-
induced reduction in IFP by these authors. Furthermore, the
authors argued that this radiation-related decrease in IFP
may have been responsible for an improved uptake of mon-
oclonal antibodies following single dose or fractionated irra-
diation as reported earlier by others. In contrast to these
data, in a later publication by this group a reduced intersti-
tial fluid transport and increased collagen content in tumors

has been communicated (Znati et al., 2003), implicating a
reduced transport of macromolecular agents in tumors upon
radiation.

CONCLUDING REMARKS
Preceding cellular pharmacodynamics, three important
pharmacokinetic steps govern the delivery of anti-cancer drugs
and diagnostic agents to tumor cells: vascular, transvascular, and
interstitial transport. Barriers to delivery of macromolecular
drugs mainly arise from immature, chaotic vascular networks
and abnormal tumor blood flow, hyperpermeability of leaky
microvessels, and elevated fluid pressure within the intersti-
tial compartment abrogating convective transport. Upon tumor
irradiation, changes in these barriers and thus in transport
properties are inconsistent so far, so that definite conclusions
for the clinical (and experimental) setting cannot be drawn.
Therefore, transport mechanisms for (macro-) molecules should
increasingly receive attention. One of the goals of translational
cancer research is to obtain a better understanding of the com-
promised delivery and distribution of anti-cancer compounds
in solid tumors (i.e., intratumor pharmacokinetics) in order to
improve patients’ outcomes.
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