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Abstract

Positive definite functions of compact support are widely used for radial basis function approximation
as well as for estimation of spatial processes in geostatistics. Several constructions of such functions for
Rd are based upon recurrence operators. These map functions of such type in a given space dimension
onto similar ones in a space of lower or higher dimension. We provide analogs of these dimension hopping
operators for positive definite, and strictly positive definite, zonal functions on the sphere. These operators
are then used to provide new families of strictly positive definite functions with local support on the sphere.
c⃝ 2017 Elsevier Inc. All rights reserved.

Keywords: Zonal functions; Positive definite; Dimension hopping operators

1. Introduction

This paper investigates certain dimension hopping operators on spheres that preserve strict and
non-strict positive definiteness of zonal functions. The operators are the analogs for the sphere
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of the dimension hopping montée and descente operators of Matheron [13] for radial functions
f : Rd

→ R. These latter operators were later rediscovered by Schaback and Wu [15]. Using
the montée operator for the sphere, and some known strictly positive definite, zonal functions,
we construct further families of locally supported, strictly positive definite zonal functions. For
the purposes of computation it is useful that these new functions can be evaluated at a relatively
low computational cost rather than being given by infinite series. The first construction is an
analog for the sphere of the Wendland family [19] of radial basis functions for Rd starting from

the function A(x) = (1 − ∥x∥2)
⌈

d+1
2 ⌉

+ of Askey [2], which is strictly positive definite on Rd .
The unit sphere in Rd+1 will be denoted by Sd . Later in the paper a relationship is established
between convolutions of zonal functions on Sd+2 and those for related zonal functions on Sd .
This enables the construction of families of locally supported strictly positive definite zonal
functions, essentially by the self-convolution of the characteristic functions of spherical caps.
This is the analog for the sphere of the construction of the circular and spherical covariances
for R2 and R3, and more generally of the construction of Euclid’s hat functions (see Wu [20]
and Gneiting [9]). See Ziegel [22] and the references there for related work in the statistics
community on generating positive definite functions on the sphere via self-convolution.

In what follows let θ(x, y) = arccos(xT y) denote the geodesic distance on Sd .

Definition 1.1. A continuous function g : [0, π] → R is (zonal) positive definite on the sphere
Sd if for all distinct point sets X = {x1, . . . , xn} on the sphere and all n ∈ N, the matrices
MX :=


g(θ(xi , x j ))

n
i, j=1 are positive semi-definite, that is, cT MX c ≥ 0 for all c ∈ Rn . The

function g is (zonal) strictly positive definite on Sd if the matrices are all positive definite, that
is, cT MX c > 0, for all nonzero c ∈ Rn . The notation Ψd will denote the cone of all positive
definite functions on Sd and Ψ+

d the subcone of all strictly positive definite functions on Sd . Λd

will denote the cone of all functions f ∈ C[−1, 1] such that f ◦ cos ∈ Ψd . Λ+

d will denote the
cone of all functions f ∈ C[−1, 1] such that f ◦ cos ∈ Ψ+

d .

In what follows we abuse notation somewhat by referring to f : [−1, 1] → R as a zonal
function when it is f ◦ cos : [0, π] → R which is the zonal function. In the same spirit we
will refer to Λd and Λ+

d as cones of positive definite and strictly positive definite functions,
even though strictly speaking the relevant cones consist of the zonal functions Λd ◦ cos and
Λ+

d ◦ cos.
Zonal positive definite functions (radial basis functions on the sphere) have been used for

interpolation or approximation of scattered data on the sphere (see [7,8] and the references
therein). The standard model in this setting is a linear combination of translates (rotations) of
the zonal basis function. Thus, the interpolation problem is

Problem 1.2. Given a zonal function g, n distinct points xi ∈ Sd and n corresponding values
fi ∈ R, find coefficients c j ∈ R such that

s(x) =

n
j=1

c j g(θ(x, x j )), x ∈ Sd ,

satisfies

s(xi ) = fi , 1 ≤ i ≤ n.
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Strict positive definiteness of g is exactly the condition needed to guarantee that this interpolation
problem has a unique solution irrespective of the position of the nodes {xi }. Thus, for
interpolation by a weighted sum of rotations of g, strict positive definiteness of g is critical.

Zonal positive definite functions are also of considerable importance in statistics where they
serve as covariance models. In this statistical context positive definiteness is essential but strict
positive definiteness is not. Gneiting [10] gives an excellent survey of positive definite functions
on spheres from a statistical point of view.

It was Schoenberg [16] who characterized the class of positive definite, zonal functions on the
sphere proving the following. His result is stated in terms of the Gegenbauer polynomials {Cλ

n },

the family for fixed λ ≥ 0 being orthogonal with respect to the weight function (1 − x2)λ−
1
2 .

Schoenberg shows

Theorem 1.3. Consider a continuous function f on [−1, 1]. The function f ◦ cos is a positive
definite function on Sd , i.e. f ∈ Λd , if and only if f has a Gegenbauer expansion

f (x) ∼

∞
n=0

anCλ
n (x), (1.1)

λ = (d − 1)/2, in which all the coefficients an are nonnegative and in which the series converges
at x = 1.

Since maxx∈[−1,1] |Cλ
n (x)| = Cλ

n (1) (for the normalization see (4.2)) the Weierstrass M-test
implies that the series with nonnegative coefficients (1.1) converges at x = 1 if and only if it
converges uniformly on [−1, 1].

The characterization of strictly positive definite functions on Sd came somewhat later. A
simple sufficient condition of Xu and Cheney [21] states that f ◦cos is strictly positive definite on
Sd , i.e. f ∈ Λ+

d , if in addition to the conditions of Theorem 1.3, all the Gegenbauer coefficients
an of f in expansion (1.1) are positive. Chen, Menegatto and Sun [4] showed that a necessary
and sufficient condition for f ◦cos to be strictly positive definite on Sd , d ≥ 2, is that, in addition
to the conditions of Theorem 1.3, infinitely many of the Gegenbauer coefficients with odd index,
and infinitely many of those with even index, are positive. The Chen, Menegatto and Sun criteria
is necessary but not sufficient for strict positive definiteness on S1 (see [4, p. 2740]). Menegatto,
Oliveira and Peron [14] give necessary and sufficient conditions for a zonal kernel to be strictly
positive definite on S1.

The following notations will be used throughout the paper. Cλ
n is the degree n member of the

family of Gegenbauer polynomials with parameter λ, {Cλ
n }

∞

n=0, whose members are orthogonal

with respect to the weight(1 − x2)λ−
1
2 on [−1, 1]. Abramowitz and Stegun [1] is an excellent

reference for the properties of these functions. The normalization of the Cλ
n ’s adopted here is

that used in [1]. The Chebyshev polynomials of the first and second kind will be written as
{Tn} = {

n
2 C0

n} and {Un} = {C1
n}, respectively. Define the cone of CMS functions, Λ�

d , to be the
set of functions f ∈ Λd such that infinitely many of the Gegenbauer coefficients of odd index
and infinitely many of the Gegenbauer coefficients of even index are positive. Define the cone of
CX functions, Λ�

d , to be the cone of nonnegative functions in Λd such that all the Gegenbauer
coefficients are positive. The results of Chen, Menegatto and Sun, and of Xu and Cheney, imply
the relationships between the cones just defined,

Λ�
m ⊂ Λ+

m = Λ�
m ⊂ Λm when m ≥ 2 and Λ�

1 ⊂ Λ+

1 ⊂ Λ�
1 ⊂ Λ1, (1.2)

which will be very important throughout the rest of the paper.
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The paper is laid out as follows. The montée and descente operators for the sphere will be dis-
cussed in Section 2. The main results in this section concern the positive definiteness preserving
properties of these dimension hopping operators. In Section 3 the montée operator is used to de-
rive families of strictly positive definite functions of increasing smoothness from known strictly
positive definite functions. This is the analog for the sphere of the construction of the Wendland
functions for Rd from the Askey functions (1 − r)ℓ+. Section 4 will consider convolution struc-
tures for the Gegenbauer polynomials. The main result in the section, Theorem 4.1, shows how
convolution of two zonal functions for Sd+2 can be performed indirectly by performing a simpler
convolution two dimensions below. In Section 5 a second family of strictly positive definite zonal
functions is developed. The functions essentially arise from the convolution of the characteristic
functions of spherical caps, and therefore are analogs for the sphere of the circular and spherical
covariances of the Euclidean case.

2. Montée and descente on spheres

This section considers some dimension hopping operators for spheres Sd . These have
properties akin to those of the dimension hopping montée and descente operators of
Matheron [13, section 1.3.3] for radial functions on Rd . Broadly speaking the montée operator I
increases smoothness and maps (strictly) positive definite functions for Sd+2 to (strictly) positive
definite functions for Sd . Its inverse, the descente operator D, decreases smoothness and maps
(strictly) positive definite functions for Sd to (strictly) positive definite functions for Sd+2. More
precise statements will be given below.

Definition 2.1. Given f absolutely continuous on [−1, 1] define D f by

(D f )(x) = f ′(x), x ∈ [−1, 1]. (2.1)

Also, given f integrable on [−1, 1] define an operator I by

(I f )(x) =

 x

−1
f (u) du. (2.2)

Recall from elementary analysis that if f ∈ L1
[−1, 1] then I f is absolutely continuous on

[−1, 1] and

(D I f ) (x) = f (x), for almost every x ∈ [−1, 1].

In the other direction, if f is absolutely continuous on [−1, 1], then f is almost everywhere
differentiable on [−1, 1] and the derivative is integrable with

(I D f ) (x) = f (x) − f (−1), for all x ∈ [−1, 1].

If we are considering Sd
⊂ Rd+1 then the relevant Gegenbauer index is λ = (d − 1)/2.

The reader will recall that formulas involving Gegenbauer polynomials with index λ = 0 have
to be understood in a limiting sense as

lim
λ→0+

1
λ

Cλ
n (x) = C0

n(x) =

2
n

Tn(x), n > 0,

1, n = 0.
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We now turn to questions of the preservation of positive definiteness under the action of the
operators I and D. Then [17, 4.7.14]

DCλ
n =


2λ Cλ+1

n−1 , λ > 0,

2 C1
n−1 = 2Un−1, λ = 0.

It will be useful to define an auxiliary index µ by

µλ =


λ, λ > 0,

1, λ = 0.
(2.3)

Using the µλ notation the relationship above takes the compact form

DCλ
n = 2µλ Cλ+1

n−1 , λ ≥ 0. (2.4)

In terms of I Eq. (2.4) becomes

I Cλ+1
n−1 =

1
2µλ


Cλ

n − Cλ
n (−1)


, λ ≥ 0. (2.5)

The following theorems show that the montée operator I maps positive definite functions
f ◦ cos on Sd+2 into smoother positive definite functions (I f ) ◦ cos on Sd . Furthermore, the
descente operator D maps positive definite functions f ◦ cos on Sd into rougher positive definite
functions (D f )◦cos on Sd+2, unless D f either fails to exist, or fails to be continuous. Eqs. (2.4)
and (2.5) already show these positive definiteness preserving properties for the positive definite
spherical functions Cν

n ◦ cos.
The same results almost hold for strictly positive definite functions, only the results involving

S 1 being slightly different. The statements concerning strict positive definiteness are most clearly
set out in terms of the cone of CMS functions Λ�

m , and the cone of CX functions Λ�
m , (see (1.2)

above).

Theorem 2.2. Let m ∈ N.

(a) (i) If f ∈ Λm+2 then there is a constant C such that C + I f ∈ Λm .
(ii) If f ∈ Λ+

m+2 then there is a constant C such that C + I f ∈ Λ�
m .

(iii) If, in addition, f is nonnegative then the constant C in parts (i) and (ii) can be chosen
as zero.

(b) Let f ∈ Λ�
m+2 then I f ∈ Λ�

m .

Theorem 2.3. Suppose that f ∈ Λm , m ≥ 1, has derivative f ′
∈ C[−1, 1]. Then D f ∈ Λm+2.

If, in addition, f ∈ Λ�
m then D f ∈ Λ+

m+2.

Note that in this theorem the explicit assumptions on f are weak, principally that f ′ is
continuous. There is no need to assume for f ′ the greater amount of smoothness necessary to
guarantee a general function has a uniformly convergent Gegenbauer series


∞

n=0 cnCλ+1
n .

2.1. Proofs of the results concerning positive definiteness and the dimension hopping operators
I and D

Proof of Theorem 2.2. Proof of (a)(i): Since f ∈ Λm+2, it follows from Theorem 1.3 that

f (x) =

∞
n=0

anCλ+1
n (x),
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where all the coefficients an are nonnegative, and the series is absolutely and uniformly
convergent for all x ∈ [−1, 1]. Integrating term by term using the boundedness of the operator I
and (2.5) we obtain another uniformly convergent series

(I f )(x) =

∞
n=0

bnCλ
n (x), x ∈ [−1, 1]. (2.6)

According to (2.5) the coefficient bn has the same sign as the coefficient an−1. Hence, for a
suitable constant C , C + I f has nonnegative Gegenbauer coefficients. Applying Theorem 1.3
again it follows that C + I f is in Λm .

Proof of (a)(ii): From the definition of the cone of CMS functions and since Λ+

m+2 = Λ�
m+2

by (1.2), part (a)(ii) follows by almost exactly the same argument as part (a)(i).
Proof of (a)(iii): The nonnegativity of f in [−1, 1] implies I f is also nonnegative. Since f

is nontrivial it follows that I f is nontrivial. Since the constant part of the Gegenbauer series

expansion of I f is a weighted average, with weight function

1 − x2

λ−
1
2 , of the values of

(I f )(x), −1 < x < 1, it follows that this constant is positive. The conclusion follows.
Proof of (b): Recall that the cone Λ�

m is the set of all functions f on [−1, 1] that are
nonnegative, belong to Λm , and have all the Gegenbauer coefficients positive. Assume now f ∈

Λ�
m+2. The Xu and Cheney criterion then implies f ∈ Λ+

m+2. Since f is strictly positive definite it
must be nontrivial. The argument of part (a)(i) shows that the series (2.6) converges uniformly on
[−1, 1], and that all the coefficients bn with n > 0 are positive. The positivity of the constant part
in the expansion of I f =


∞

n=0 bnCλ
n then follows as in the proof of (a)(iii). The nonnegativity

of I f on [−1, 1] follows from that of f . Therefore, I f ∈ Λ�
m ⊂ Λ+

m , as required. �

The following lemma shows that the coefficients of the (formal) Gegenbauer series for the
derivative f ′ can be calculated term by term from the coefficients in the (formal) Gegenbauer
series for f .

Lemma 2.4. Let f be an absolutely continuous function on [−1, 1]. Suppose f and f ′ have
(formal) Gegenbauer series

f ∼

∞
n=0

anCλ
n and f ′

∼

∞
n=0

bnCλ+1
n , respectively.

Then, for n ∈ N,

bn−1 = 2µλan, λ ≥ 0.

Proof. Let bn−1 = hλ+1
n−1 bn−1 where hλ+1

n−1 =
 1
−1


Cλ+1

n−1(x)
2

(1 − x2)λ+
1
2 dx . Then proceed by

integration by parts:

bn−1 =

 1

−1
Cλ+1

n−1(x)(1 − x2)λ+
1
2 f ′(x) dx

=

 1

−1
f (x)(1 − x2)λ−

1
2


(2λ + 1)xCλ+1

n−1(x) − (1 − x2)
d

dx
Cλ+1

n−1(x)


dx . (2.7)

Applying formula [1, (22.8.2)] the expression in curly braces above becomes

(2λ + 1)xCλ+1
n−1(x) − (1 − x2)

d

dx
Cλ+1

n−1(x) = (2λ + n)


xCλ+1
n−1(x) − Cλ+1

n−2(x)


. (2.8)
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Then a combination of the three term recurrence relation (see [1, (22.7.3)]), and the recurrence
on order formula [1, (22.7.23)], shows that

xCλ+1
n−1(x) − Cλ+1

n−2(x) =
n

2λ
Cλ

n , λ > 0. (2.9)

Using (2.8) and (2.9) to rewrite (2.7) yields

bn−1 =
n(2λ + n)

2λ

 1

−1
f (x)Cλ

n (x)(1 − x2)λ−
1
2 dx =

n(2λ + n)

2λ
an, λ > 0, (2.10)

where an = hλ
nan . From [1, (22.2.3)]

hλ
n =

πΓ (n + 2λ)

22λ−1n!(n + λ)Γ 2(λ)
, λ > 0.

Substituting into (2.10)

bn−1 =

bn−1

hλ+1
n−1

=
hλ

n

hλ+1
n−1

n(2λ + n)

2λ
an = 2λan, λ > 0, and n ∈ N. (2.11)

This is the result for λ > 0. Recall that C0
n(x) = limλ→0+

Cλ
n (x)

λ
. Hence, in the obvious notation,

the Gegenbauer coefficient a0
n = limλ→0+ λaλ

n . Thus, the result for λ = 0 follows from
Eq. (2.11). �

Proof of Theorem 2.3. Let λ = (m − 1)/2 and f and f ′ have Gegenbauer series

f ∼

∞
n=0

anCλ
n and f ′

∼

∞
n=0

bnCλ+1
n .

Since f ∈ Λm Schoenberg’s characterization implies that all the coefficients an are nonnegative
and the series for f converges uniformly on [−1, 1].

It follows from Lemma 2.4 that all the bn’s are also nonnegative. Szegö [17, Theorem 9.1.3]
gives a result concerning Cesàro summability that implies that the Gegenbauer series of any
function g ∈ C[−1, 1] is Abel summable at x = 1 to g(1). Applying this result to f ′ we see
that the series


∞

n=0 bnCλ+1
n (1) is Abel summable to f ′(1). But this is a series of nonnegative

terms, hence the Abel summability implies summability. Since
Cλ+1

n (x)
 ≤ Cλ+1

n (1), for all
x ∈ [−1, 1], it follows that the Gegenbauer series of f ′ converges uniformly by the Weierstrass
M-test. The well know theorem about the uniform convergence of a term by term derivative
series then shows that this series converges uniformly to f ′. An application of the Schoenberg
characterization, Theorem 1.3, now shows that f ′

◦cos ∈ Ψm+2, completing the proof of the first
part of the proposition.

Turn now to the second claim in the theorem. Assume f ∈ Λ�
m . From the first part of the

theorem f ′
∈ Λm+2. Then, from the definition of the cone of CMS functions and since by

Lemma 2.4 bn−1 has the same sign as an , it follows that f ′
∈ Λ�

m+2 = Λ+

m+2. �

3. Positive definite functions generated from the basic functions of the Pólya criteria for Sd

In this section the montée operator I is used to construct families of strictly positive definite
zonal functions of increasing smoothness starting from less smooth parent functions known to
be strictly positive definite.
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The construction of this section starts from the locally supported zonal functions (t − θ)
µ
+,

0 < t < π , known to be strictly positive definite on S2µ−1 with all Gegenbauer coefficients
positive, for 2 ≤ µ ≤ 4 (see [3]). These functions were conjectured to be strictly positive definite
on the corresponding sphere for all integers µ ≥ 2.1 The constructions discussed in this section
are the analog for the sphere of the construction of the Wendland functions [19] for Rd .

The proof in [3] shows that fm ∈ Λ�
2m−1 ⊂ Λ+

2m−1, for 2 ≤ m ≤ 4. The construction starts
with the case µ = 2 of the function fµ,

f2(cos θ) = g2(θ) := (t − θ)2
+, 0 < t < π.

Calculating

(I f2)(cos θ) =


cos(θ)


(t − θ)2

− 2


+ 2 sin(θ)(t − θ) + 2 cos(t), 0 ≤ θ < t,

0, t ≤ θ ≤ π.

From Theorem 2.2(b) since f2 ∈ Λ�
3 it follows that I f2 ∈ Λ�

1 ⊂ Λ+

1 .
Next consider the case µ = 3. Then

f3(cos θ) = g3(θ) := (t − θ)3
+, 0 < t < π.

Applying the I operator, and writing u = t − θ ,

(I f3)(cos θ) =


cos(θ)(u3

− 6u) + sin(θ)(3u2
− 6) + 6 sin(t), 0 ≤ θ < t,

0, t ≤ θ ≤ π.

and

(I 2 f3)(cos θ)

= cos(2θ)(a7u3
+ a6u) + sin(2θ)(a5u2

+ a4) + cos(θ)a3 + a2u3
+ a1u + a0,

for 0 ≤ θ < t , and equals 0 when t ≤ θ ≤ π . Here,

a7 =
1
4
, a6 = −

21
8

, a5 =
9
8
, a4 = −

45
16

, a3 = 6 sin(t),

a2 =
1
2
, a1 = −3, and a0 = −

3
16

sin(2t).

Applying Theorem 2.2(b) again, since f3 is in Λ�
5 it follows that I f3 ∈ Λ�

3 ⊂ Λ+

3 and that
I 2 f3 ∈ Λ�

1 ⊂ Λ+

1 . Note that in evaluating the function I 2 f3, and other functions yet to be
constructed, efficiency gains can clearly be made by rearranging expressions, precomputing
coefficients, and using nested multiplication.

Also

f4(cos θ) = g4(θ) := (t − θ)4
+, 0 < t < π.

Applying the I operator, and writing u = t − θ ,

(I f4)(cos θ)

=


cos(θ)(u4

− 12u2
+ 24) + sin(θ)(4u3

− 24u) − 24 cos(t), 0 ≤ θ < t,
0, t ≤ θ ≤ π.

1 Note added in proof: Yuan Xu has recently given a proof of this conjecture in his paper “Positive definite functions
on the unit sphere and integrals of Jacobi polynomials”, arXiv: 1701.00787 [math.CA] (2017).

http://arxiv.org/1701.00787
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and

(I 2 f4)(cos θ) = cos(2θ)


b8u4
+ b7u2

+ b6


+ sin(2θ)


b5u3

+ b4u


+ cos(θ)b3 +


b2u4

+ b1u2
+ b0


,

for 0 ≤ θ < t , and equals 0 when t ≤ θ ≤ π . Here,

b8 =
1
4
, b7 = −

21
4

, b6 =
93
8

, b5 =
3
2
, b4 = −

45
4

,

b3 = −24 cos(t), b2 =
1
2
, b1 = −6,

and b0 =
3
4 cos2(t) +

93
8 . From Theorem 2.2(b) again, since f4 is a C[−1, 1] function in Λ�

7
it follows that I f is a C1

[−1, 1] function in Λ�
5 ⊂ Λ+

5 , that I 2 f4 is a C2
[−1, 1] function in

Λ�
3 ⊂ Λ+

3 , and that I 3 f4 is a C3
[−1, 1] function in Λ�

1 ⊂ Λ+

1 .
For the practically important special case of approximation on S2 or S3 the construction

above yields a list of locally supported functions in Λ+

3 of increasing smoothness, namely
f2 ∈ C[−1, 1], I f3 ∈ C1

[−1, 1] and I 2 f4 ∈ C2
[−1, 1].

For approximation on S1 the construction yields the following list of locally supported
functions in Λ+

1 , f2 ∈ C[−1, 1], I f2 ∈ C1
[−1, 1], I 2 f3 ∈ C2

[−1, 1], and I 3 f4 ∈ C3
[−1, 1].

Should the conjecture of [3] be proven, as it now has1 then the construction of positive definite
families by the method of this section could easily be extended. For example a double integration
by parts establishes the recurrence formula

(I fm)(cos(θ)) = cos(θ)(t − θ)m
+ + m sin(θ)(t − θ)m−1

+ − m(m − 1)(I fm−2)(cos(θ)),

where fm(cos(θ)) = (t − θ)m
+, 0 < t < π , m ∈ N, which together with the initial values

(I f1)(cos(θ)) =


cos(θ)(t − θ) + sin(θ) − sin(t), 0 ≤ θ < t,
0, t ≤ θ ≤ π,

and

(I f2)(cos(θ)) = cos(θ)(t − θ)2
+ + 2 sin(θ)(t − θ)+ − 2(cos(θ) − cos(t))+,

enables computation of (I fm)(cos θ) for all positive integers m.
Finally, note that the functions fµ(cos θ) = (t − θ)

µ
+, 2 ≤ µ < ∞, provide an alternative

family of locally supported, strictly positive definite functions of increasing smoothness on S3.

4. Convolution via dimension hopping

This section concerns a connection between the dimension hopping operators D and I ,
and certain convolution structures for Gegenbauer expansions. The main result, Theorem 4.1,
shows that the convolution of two zonal functions for Sd+2 can be calculated indirectly via the
convolution of related zonal functions for the sphere Sd .

The notation ⋆λ will be used to denote a convolution associated with Gegenbauer series in the
polynomials


Cλ

n

∞
n=0. As explained in Section 4.1 it is naturally associated with a convolution

of zonal functions on S2λ+1.
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Theorem 4.1. Let f and g be functions in L1
[−1, 1] and (I f ) ⋆λ(I g) be absolutely continuous.

Then

( f ⋆λ+1 g) (x) = (2λ + 1)D

(I f ) ⋆λ (I g)


(x), almost everywhere in [−1, 1]. (4.1)

Theorem 4.1 will be applied to construct a family of strictly positive definite zonal functions
in Section 5.

4.1. A convolution structure for the Gegenbauer polynomials

In this section it is convenient to use a different normalization of the Gegenbauer polynomials,
one in which the Gegenbauer expansion and the associated convolution take particularly simple
form. Namely, normalize so that the orthogonal polynomials are one at one, taking W λ

n (x) =

Cλ
n (x)/Cλ

n (1), where

Cλ
n (1) =




n + 2λ − 1
n


=

Γ (2λ + n)

Γ (2λ)Γ (n + 1)
, λ > 0, n > 0,

2
n
, λ = 0, n > 0.

(4.2)

Set Ωλ(x) = (1 − x2)λ−
1
2 . The orthogonality in terms of this W λ

n normalization is 1

−1
W λ

n (x)W λ
m(x)Ωλ(x)dx =

1
wλ(n)

δnm, n, m ∈ N0,

where

wλ(n) =


Γ (λ) (n + λ)Γ (n + 2λ)

π1/2 Γ

λ +

1
2


Γ (2λ)Γ (n + 1)

, λ > 0, n ∈ N0,

2/π, λ = 0, n ∈ N,

1/π, λ = 0, n = 0.

Now for f ∈ L1([−1, 1],Ωλ) define Fourier–Gegenbauer coefficients as

fλ(n) =

 1

−1
f (x)W λ

n (x)Ωλ(x)dx, n ∈ N0.

Then the formal series expansion can be written in terms of the W λ
n ’s as

f ∼

∞
n=0

wλ(n)fλ(n)W λ
n . (4.3)

From the definition of the Fourier coefficient and the orthogonality it follows immediately that

W λ
m


λ
(n) =

δnm

wλ(n)
. (4.4)

Associated with the Gegenbauer series is a convolution ⋆λ. This convolution is based upon
the product relation due to Gegenbauer 1

−1
W λ

n (x)Cλ(x, y, z)Ωλ(x)dx = W λ
n (y) W λ

n (z), λ > 0.
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Note that Hirschman [11] provides an explicit form of the density Cλ(x, y, z) showing that the
function vanishes if 1 − x2

− y2
− z2

+ 2xyz ≤ 0.
The convolution ⋆λ is defined in terms of a generalized translation [11] as

( f ⋆λ g) (x) =

 1

−1

 1

−1
f (y)g(z)Cλ(x, y, z)Ωλ(y)Ωλ(z)dy dz,

when λ > 0. When λ = 0 it may be defined by

( f ⋆0 g) (cos θ) =
1
2

 π

−π

f (cos(θ − t)) g(cos(t)) dt. (4.5)

The latter definition may be viewed as going over to the circle with the substitution x = cos θ ,
convolving there and coming back, as is commonly done in proofs of Jackson theorems for
algebraic polynomial approximation.

The convolution has the properties listed in the theorem below. Hirschman [11] gives proofs
of these properties when λ > 0. The parts concerning the special case λ = 0 have been added as
they are needed later.

Theorem 4.2. Let f, g, h ∈ L1([−1, 1],Ωλ). Then

(i) ∥ f ⋆λ g∥ ≤ ∥ f ∥ ∥g∥.
(ii) f ⋆λ g = g ⋆λ f .

(iii) f ⋆λ(g ⋆λ h) = ( f ⋆λ g) ⋆λ h.

(iv) [ f ⋆λ g]λ(n) = fλ(n)gλ(n), for all n ∈ N0.

It is well known that the convolution for functions in L1([−1, 1],Ωλ) described above is
equivalent to convolution of zonal functions on the sphere. For example Dunkl [5] writes

“the space of zonal functions on Sk is isomorphic to L1([1, 1],Ω(k−1)/2) and the “spherical
convolution” is isomorphic to Bochner’s”.

Here, the convolution of Bochner being referenced by Dunkl is the one that Hirschman and we
are using. Explicitly, defining

( f ~d g)(⟨u, v⟩) :=


Sd

f (⟨u, w⟩)g(⟨w, v⟩) dσ(w) (4.6)

one can show

f ⋆λ g =

Γ

λ +

1
2


2πλ+

1
2

f ~2λ+1 g, λ ∈ N0. (4.7)

4.2. Proof of Theorem 4.1

Write F for I f and G for I g. Then f has a Gegenbauer series

f ∼

∞
n=0

wλ+1(n)fλ+1(n)W λ+1
n (x) =


n


wλ+1(n)fλ+1(n)

Cλ+1
n (1)


Cλ+1

n (x),
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and F has Gegenbauer series

F ∼

∞
n=0

wλ(n)Fλ(n)W λ
n (x) =

∞
n=0


wλ(n)Fλ(n)

Cλ
n (1)


Cλ

n (x).

Since f ∈ L1
[−1, 1], F is absolutely continuous. Therefore applying Lemma 2.4

wλ+1(n)fλ+1(n)

Cλ+1
n (1)

= 2µλ

wλ(n + 1)Fλ(n + 1)

Cλ
n+1(1)

, n ≥ 0.

Hence,Fλ(n + 1) = aλ,n+1 fλ+1(n), n ≥ 0,

where

aλ,n+1 =
1

2µλ

Cλ
n+1(1)

Cλ+1
n (1)

wλ+1(n)

wλ(n + 1)
.

Similarly, Gλ(n + 1) = aλ,n+1gλ+1(n), for n ≥ 0. Since F and G are absolutely continuous
F ⋆λ G is well defined with

(F ⋆λ G) (x) ∼

∞
n=0

wλ(n)Fλ(n)Gλ(n)W λ
n (x) ∼

∞
n=0

wλ(n)Fλ(n)Gλ(n)

Cλ
n (1)

Cλ
n (x).

Since F ⋆λ G is absolutely continuous another application of Lemma 2.4 shows

D (F ⋆λ G) (x) ∼ 2µλ

 wλ(n + 1)Fλ(n + 1)Gλ(n + 1)

Cλ
n+1(1)

Cλ+1
n (x)

∼


n

aλ,n+1wλ+1(n)fλ+1(n)gλ+1(n)W λ+1
n (x).

Now a calculation shows that aλ,n+1 =
1

2λ+1 for all λ ≥ 0, and all nonnegative integers n.
Hence from the convolution rule in Theorem 4.2 part (iv), functions f ⋆λ+1 g and (2λ +

1)D ((I f ) ⋆λ(I g)) have the same Gegenbauer coefficients.
However, a consequence of Kogbetliantz’s result [12] concerning the positivity (in the

operator sense) of the Cesàro means of order 2λ+1, {σ 2λ+1
N h}, of a function h ∈ L1([−1, 1],Ωλ),

is that σ 2λ+1
N (h) → h, in the sense of L1([−1, 1],Ωλ), as N → ∞. This in turn implies

the well known uniqueness theorem that a function h ∈ L1([−1, 1],Ωλ) with all Gegenbauer
coefficients zero, is the zero function. Applying this uniqueness the functions f ⋆λ+1 g and
(2λ + 1)D ((I f ) ⋆λ(I g)) are equal almost everywhere on [−1, 1]. �

5. Families of strictly positive definite functions constructed via convolution

In this section the convolution via the dimension hopping formula given in Theorem 4.1 is
employed to generate a family of strictly positive definite zonal functions, essentially by the
self-convolution of the characteristic functions of spherical caps.

There is a strong tradition in approximation theory of generating families of (strictly) positive
definite functions by convolution. For example, univariate B-splines on a uniform mesh can be
generated by repeated convolution of the characteristic function of an interval with itself. Further,
in geostatistics, physical motivations give rise to the circular and spherical covariances. These
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are generated by convolving the characteristic function of a disk in R2, and of a ball in R3,
with themselves. The Euclid hat functions, see Wu [20] and Gneiting [9], are a continuation
of this method of construction beyond R3. Such a self-convolution will automatically have
a nonnegative Fourier transform. There has also been considerable interest in the statistics
community in the analogous self-convolution construction of kernels on the sphere. See, for
example, Estrade and Istas [6], Tovchigrechko and Vakser [18] and Ziegel [22].

Let us consider this analogous construction for zonal functions on Sd . Formula (iv) of
Theorem 4.2 shows that all the Gegenbauer coefficients of the self-convolution

f = χ[c,1] ⋆λ χ[c,1], −1 < c < 1,

are nonnegative so that f ◦ cos is automatically positive definite. It remains to see if the self
convolution of a spherical cap is strictly positive definite.

[1, (22.13.2)] gives the formula

n(2α + n)

2α

 x

0
Cα

n (y)


1 − y2
α−

1
2

dy = Cα+1
n−1 (0) −


1 − x2

α+
1
2

Cα+1
n−1 (x),

α > 0, n > 0,

from which it follows that

n(2λ + n)

2λ

 1

c
Cλ

n (y)


1 − y2
λ−

1
2

dy =


1 − c2

λ+
1
2

Cλ+1
n−1(c), λ > 0, n > 0. (5.1)

The quantity on the left above is a positive multiple of the nth Gegenbauer coefficient of the
characteristic function χ[c,1]. This corresponds to a spherical cap of radius arccos(c) in Sd . Now
if λ, n > 0 and 0 < c = cos(s) < 1 is a zero of Cλ+1

n−1 , then the interlacing property of the

zeros of C (β)

n−1 and C (β)
n implies c is not a zero of Cλ+1

n . It follows from the three term recurrence

relation for the Gegenbauer polynomials that c is also not a zero of Cλ+1
n+1 . Hence, for 0 < c < 1,

f = χ[c,1] ⋆λ χ[c,1] has infinitely many Gegenbauer coefficients with respect to {Cλ
n } of even

index that are positive, and infinitely many coefficients of odd index that are positive.
Since it is clear that f is continuous, it follow that this function belongs to the cone Λ�

d . In
particular this shows that when d ≥ 2, f ∈ Λ+

d , that is that f ◦ cos is a strictly positive definite
zonal function on Sd .

Let us now turn to the support of the function f = χ[c,1] ⋆λ χ[c,1]. Here, the isomorphic
convolution of zonal functions approach, summarized by Eqs. (4.6) and (4.7), comes into its
own. In the setting of the sphere let both of the caps have angular radius r , 0 < r < π/2. Let
one of the caps have axis u, the north pole, and rotate the other cap with axis v away. Then it is
clear that the caps no longer overlap if u and v are more than 2r apart. Thus, in the setting of the
interval, and for 0 < c < 1, χ[c,1] ⋆λ χ[c,1] has support [cos(2 arccos(c)), 1].

Let us apply this self-convolution approach to generate locally supported strictly positive
definite functions on Sd . The function for Sd has the form Nd,c ◦ cos where

Nd,c = N2λ+1,c = gλ,c χ[c,1] ⋆λ χ[c,1], (5.2)

and supp Nd,c = [cos(2 arccos(c)), 1]. Here gλ,c is a normalizing constant chosen so that
Nd,c(1) = 1. As mentioned previously this echoes a well known method of construction of
positive definite kernels for Rd .

Fig. 1 gives plots of Nd,c for various values of d and c =
1
2 .
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Fig. 1. The normalized self-convolutions Nd,c for c = 1/2 and various values of d.

We will give a few more details of the calculation on S3. The desired function in Λ+

3 is
essentially to be obtained by convolving spherical caps. Thus, in the setting of the interval, we
wish to calculate

f = g ⋆1 g, with g = χ[c,1] and 0 < c < 1.

Employing the dimension hopping approach embodied in Theorem 4.1

g ⋆1 g = D {(I g) ⋆0(I g)} .

Now (I g)(x) = (x − c)1
+. Hence, for 0 < c = cos s < 1 and 0 < θ < 2s,

((I g) ⋆0(I g)) (cos θ)

=
1
2

 π

−π

(I g)(cos(θ − t))(I g)(cos t) dt =
1
2

 s

θ−s
[cos(θ − t) − c][cos(t) − c] dt

=
1
4

(2s − arccos(x)) (x + cos(2s) + 1) −
1
4

sin(2s)x

+
1
4

(2 + cos(2s))


1 − x2 −
1
2

sin(2s),

where x = cos(θ). Consequently, applying D and normalizing so that the function has value 1 at
x = 1 we obtain the locally supported basis function N3,c ∈ Λ+

3 ,

N3,c(x) =

1 + b arccos(x) + d


1 − x

1 + x
, cos(2s) < x ≤ 1,

0, −1 ≤ x ≤ cos(2s),

where ab = −
1
4 , ad =

1
4 (1 + cos(2s)) and a = (g ⋆1 g)(1) =

1
2 s −

1
4 sin(2s).

Similar arguments to those used in the indirect computation of g ⋆1 g show

g ⋆2 g = 3 D2

(I 2g) ⋆0(I 2g)


, g ⋆3 g = 15 D3


(I 3g) ⋆0(I 3g)


, etc.
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Carrying out the details of these calculations yields the normalized locally supported basis
functions N5,c ∈ Λ+

5 , N7,c ∈ Λ+

7 and N9,c ∈ Λ+

9 specified below.

N5,c(x) =

1 + b arccos(x) +


1 − x

1 + x


d +

e

1 + x


, cos(2s) < x ≤ 1,

0, −1 ≤ x ≤ cos(2s),

where ab = −
3

16 , ad =
3
4 cos2(s) −

1
4 cos4(s), ae = −

1
4 cos4(s) and a = (g ⋆2 g)(1) =

1
4 sin(s) cos3(s) −

5
8 sin(s) cos(s) +

3
8 s.

N7,c(x) =

1 + b arccos(x) +


1 − x

1 + x


d +

e

v
+

f

v2


, cos(2s) < x ≤ 1,

0, −1 ≤ x ≤ cos(2s),

where v = 1 + x , ab = −
5

32 , ad =
15
16 cos2(s) −

5
8 cos4(s) +

1
6 cos6(s), ae = −

5
8 cos4(s) +

1
6 cos6(s), a f =

1
4 cos6(s) and a = (g ⋆3 g)(1) =

5
16 s −

11
16 sin(s) cos(s) +

13
24 sin(s) cos3(s) −

1
6 sin(s) cos5(s).

N9,c(x) =

1 + b arccos(x) +


1 − x

1 + x


d +

e

v
+

f

v2 +
h

v3


, cos(2s) < x ≤ 1,

0, −1 ≤ x ≤ cos(2s),

where v = 1+ x , ab = −
35

256 , ad =

105 cos2(s) − 105 cos4(s) + 56 cos6(s) − 12 cos8(s)


/96,

ae =

−105 cos4(s) + 56 cos6(s) − 12 cos8(s)


/96, a f =


84 cos6(s) − 18 cos8(s)


/96 ah =

−30 cos8(s)/96 and

a = (g ⋆4 g)(1)

=
35

128
s −

93
128

sin(s) cos(s) +
163
192

sin(s) cos3(s)

−
25
48

sin(s) cos5(s) +
1
8

sin(s) cos7(s).

Clearly the functions N3,c, N5,c, N7,c and N9,c can be evaluated efficiently by precomputing
all the coefficients, once and for all, and then using nested multiplication.

Some other members of the family of self-convolutions specified by (5.2) have been computed
by other means. The function N1,c is easily computed directly from the definition of the one
dimensional convolution (4.5). Written in terms of angles, θ = arccos(x), it is a linear B-spline.
In our setting of working predominately on [−1, 1] it is for 0 < c = cos(s) < 1,

N1,c(x) =


0, −1 ≤ x ≤ cos(2s),

1 −
1
2s

arccos(x), cos(2s) ≤ x ≤ 1.

Furthermore, the function N2,c has been computed by Tovchigrechko and Vakser [18] using
spherical trigonometry. N2,c(x) equals
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0, −1 ≤ x ≤ cos(2s),

1
2π(1 − c)


2π − 2 arccos


x − c2

1 − c2


−4c arccos


cot(s)(1 − x)

sin(arccos(x))


, cos(2s) < x < 1,

1, x = 1.
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