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Abstract 32 

Nucleotide modifications constitute marks in RNA and DNA that contribute to gene 33 

regulation, development and other cellular processes. The understanding of their 34 

intricate molecular roles has been hampered by the high number of different 35 

modifications, the lack of effective methods and tools for their detection and 36 

quantification as well as by their complex structure-function relationship. The recent 37 

development of RNA and DNA immunoprecipitation followed by high-throughput 38 

sequencing  (RIP- and DIP-seq) initiated detailed transcriptome- and genome-wide 39 

studies. Both techniques depend on highly specific and sensitive antibodies to 40 

specifically enrich the targeted modified nucleotides without background or potential 41 

biases. Here, we review the challenges and developments when generating and 42 

validating antibodies targeting modified nucleotides. We discuss antibody-antigen 43 

interactions, different strategies of antigen generation and compare different binder 44 

formats suitable for state-of-the-art high resolution mapping and imaging 45 

technologies.  46 

 47 

Introduction 48 

A wide range of chemically modified nucleic acids is present in DNA and RNA. It is 49 

generally accepted that the modification and isomerization of nucleotides serve as a 50 

regulatory layer to fine-tune vital cellular processes. More than 150 different 51 

modifications have been identified in different RNA families so far, approximately half 52 

of them in eukaryotes, but the functions of many of these modifications are still 53 

unclear1-3. In the past, most studies focussed on tRNA, rRNA and, to a lower extent, 54 

mRNA, mainly because rRNA and tRNA are the most abundant RNA families and 55 

also exhibit the largest diversity in modified nucleotides3. In recent years, modified 56 

nucleotides have also been discovered in snRNA and miRNA precursor molecules4-6. 57 

In mRNA, beside various types of N7-methylguanosine (m7G) as 5’-capping 58 

nucleotides, only very few types of modified nucleotides have been identified in 59 

coding RNA sequences, e.g. 5-methylcytidine (5mC) and its oxidized form 5-60 

hydroxylmethylcytidine (5hmC), N6-methyladenosine (m6A), N1-methyladenosine 61 

(m1A), pseudouridine (Ψ) and inosine (I)7-12. A more detailed review on modified 62 

RNA nucleotides and their role in gene regulation has been published recently13.  63 

In vertebrate genomes, 5-methyldeoxycytidine (5mdC) was already discovered in 64 

194814. 5mdC has a relatively high abundance of about 4% in the human genome 65 
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and is the major heritable modification in DNA15. Once the 5mdC pattern is 66 

established, it has to be maintained in dividing cells to ensure the lineage specific 67 

gene expression pattern. Therefore, 5mdC was believed to be a stable modification 68 

except during early embryogenesis16. The fact that the 5mdC mark is actively 69 

removed in the paternal genome of the zygote was reported earlier17, 18, but the 70 

discovery of TET-proteins in 2009 initiated a wealth of studies that shed light into the 71 

dynamic regulatory network which includes several oxidized 5mdC variants19, 20. 72 

5mdC clusters in so called CpG islands in transcriptional regulatory regions. The 73 

balanced establishment and maintenance of the CpG methylation pattern is vital for 74 

development and normal cellular processes. After fusion of sperm and oocyte, an 75 

epigenetic reprogramming occurs including a massive reduction of CpG 76 

methylation17, 21. The development of the totipotent zygote into pluripotent stem cells 77 

and further cell fate decisions correlate with a cell-type specific re-establishment of 78 

CpG-methylation patterns (reviews22, 23). CpG methylation is challenged by active 79 

and passive processes which can lead to DNA demethylation, e.g. by reduced DNA 80 

methyltransferase activity or DNA repair pathways. It is becoming increasingly clear 81 

that lifestyle and environmental stress leads to altered methylation patterns, affecting 82 

ageing and disease development including cancer progression23-26. 5-methylcytidine 83 

is also found in tRNA, rRNA, and mRNA, with 5mC stabilizing tRNA, regulating 84 

translational fidelity in rRNA, in mRNA it is overrepresented in UTRs and in near Ago 85 

binding sites but the function of 5mC is not understood27-29. 86 

With the advent of more sensitive high-throughput profiling techniques, it was 87 

demonstrated that adenosine methylation in RNA and DNA provides an additional 88 

regulatory layer to many cellular processes including transcription, translation and 89 

epigenetic inheritance. For example, early studies proposed the existence of 6-90 

methyldeoxyadenosine (m6dA) in eukaryotes, but direct evidence was only reported 91 

recently30-33. The abundance of m6dA differs in the genomes of various eukaryotic 92 

species, but is less frequent than 5mdC30-33. These studies also revealed that m6dA 93 

is functionally involved in transcriptional regulation, albeit using different mechanisms 94 

in distinct species. In mammalian mRNA, m6A constitutes 0.1-0.4% of all adenosine 95 

nucleotides34-36. m6A has also been identified in snoRNA6 and miRNA4. In mRNA, 96 

m6A is enriched around stop codons and levels increase during development 37, 38. 97 

Functionally, m6A affects alternative splicing patterns37, regulates translation by 98 

destabilizing mRNA38-41 and some steps of the translation process itself42-44. A 99 
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related modification, N6-2’O-dimethyladenosine (m6Am), was recently reported as a 100 

cap-associated modified nucleotide stabilizing mRNA6, 45. Currently, it is conceivable 101 

that some functions that have been originally attributed to m6A are in fact caused by 102 

m6Am, as the specificity of the used antibodies was unclear (ibid). 103 

Transcriptome-wide mapping of m1A revealed an enrichment of this modification 104 

around the start codon. m1A dynamically acts as a positive regulator of translation 105 

upon stress conditions46, 47. Also pseudouridine, a modified nucleobase that has been 106 

mainly analysed in tRNA, is discussed as a modification with a regulatory function in 107 

mRNA48-50.  108 

These recent publications show that epitranscriptomics and epigenomics have 109 

become two of the most dynamic areas of research in cell biology. RIP- and DIP-seq 110 

techniques and also high-resolution imaging approaches to generate landscapes of 111 

appearance and dynamics of modified nucleic acids in eukaryotic cells depend on 112 

very specific and sensitive antibodies. However, many antibodies are often used 113 

without determining potential secondary effects in the experimental setting. In this 114 

review, we want to discuss the challenges in generating monoclonal antibodies 115 

against modified nucleotides. We will discuss aspects of antibody-antigen 116 

interactions, antigen generation, immunization and antibody validation. 117 

 118 

Antibody-antigen interactions  119 

The fundamental properties of specificity and affinity of each antibody molecule are 120 

determined by the variable domains of the heavy (VH) and light chains (VL), (Figure 121 

1). The affinity of the primary B cell repertoire is low and increases if immunoglobulin 122 

genes of activated B cells undergo somatic hypermutation upon repeated encounter 123 

with antigens51. These mutations accumulate preferentially in the complementarity-124 

determining regions (CDRs) of both the heavy and the light variable immunoglobulin 125 

genes (Figure 1)52. Each VH and VL domain contains three hypervariable CDRs 126 

(CDRH1 to 3 and CDRL1 to 3). CDRs are surface-exposed loops that form the 127 

antigen-binding site, and hypermutation of the CDRs results in structural changes in 128 

the antigen binding sites53. The CDRH3 loop is highly variable in length, sequence, 129 

and structure54. In humans and mice, the other five CDRs are less variable and 130 

assume only a limited number of canonical backbone conformations (reviews55, 56). 131 

This hypervariability, particularly in CDRH3, determines antigen specificity and 132 

affinity56. In rabbits, however, due to a higher junctional diversity during VJ 133 
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recombination, the CDRL3 loops are also heterogeneous in sequence and length 134 

and further contribute to high-affinity antigen binding57, 58.  135 

Crystallographic X-ray analyses of antibody-antigen complexes have revealed a 136 

closer insight into the residues of CDRs interacting with the antigen59, 60. The number 137 

and positions of the residues interacting with the antigen largely depend on the size 138 

of the antigen and determine the overall shape of the antigen-binding site61, 62. 139 

Comparative studies of more than hundred immune complexes showed that large 140 

antigens such as proteins are bound in planar interaction sites, peptides within 141 

grooves, whereas small antigens, so-called haptens, are burried in deep cavities 142 

(review63). Haptens are defined as small molecules of < 1kDa in size64. Modified 143 

nucleotides, which have an average molecular weight of 0.35 kDa, are therefore 144 

haptens.  145 

On the molecular level, the interactions between antibody and antigen are non-146 

covalent and reversible. They are based on a combination of hydrogen bonds, 147 

hydrophobic interactions, electrostatic and van der Waals forces65. To the best of our 148 

knowledge, no crystal structures of antibody complexes with modified nucleotides 149 

have been published yet. So far, analyses of several autoimmune anti-DNA antibody 150 

complexes revealed that high-affinity binding to DNA is mainly mediated through 151 

electrostatic forces between arginine residues in the CDR3H region and the bases or 152 

phosphate groups of the nucleic acid66. Small changes in the antigen alter the 153 

electrostatic and hydrophobic interactions and have a profound effect on the strength 154 

of the antibody-antigen interaction. For example, the addition of a methyl group to 155 

guanosine completely abolished binding of an anti-ssDNA antibody67. Similarly, 156 

substitution of a single arginine residue in the CDR3H loop by glycine abrogated 157 

antibody binding to ssDNA, while introduction of additional arginine residues into 158 

CDRH2 improved the binding affinity68. A study comparing six monoclonal antibodies 159 

raised against various modified nucleotides (5mC, m7G, Ψ, m1In, m1A, 4AcC) 160 

revealed high specificity of each antibody towards the respective antigen and no 161 

cross-reactivity against the other nucleotides69. These data demonstrate that 162 

modified positions of a nucleobase are part of the antibody interaction site and any 163 

change significantly alters the specificity and affinity of the interaction. Systematic 164 

structural analyses of antibodies bound to different modified nucleotides are required 165 

to gain insights of how specificity is achieved for nucleic acids that differ only in one 166 

position. 167 



 6

 168 

Modified nucleosides as antigens for antibody generation 169 

Early attempts to generate antibodies against DNA were largely unsuccessful until it 170 

was discovered that carrier molecules improve the immune response (review70). It is 171 

thought that antibodies against the most common B-DNA-form are difficult to 172 

generate in experimental settings because responsive B-lymphocytes are eliminated 173 

as self from natural repertoires71, 72. Only certain ssDNA and less common DNA 174 

forms (e.g. Z-DNA), triplexes or DNA-RNA hybrids are targets of natural antibody 175 

responses (summarized73). Humans and animals therefore exhibit an 176 

immunotolerance to B-form DNA and autoantibodies against dsDNA are only found 177 

in patients diagnosed with e.g. systemic lupus erythematosus (SLE) or lupus 178 

nephritis as a result of progressive hypermutation in the CDR374. The first antibodies 179 

against unusual and modified nucleotides were generated in the 1970s and early 180 

1980s when it was discovered that tRNA contains a number of differently modified 181 

nucleotides75, 76 and that 5mdC is important in gene regulation and cell development 182 

(reviews77, 78). 183 

RNA or DNA nucleotides are too small to elicit an immune response but it is possible 184 

to generate antibodies targeting single nucleosides by coupling the latter to an 185 

immunogenic carrier protein. Studies in the early 1960s identified BSA, a basic 186 

protein with many free –NH2 groups, as an appropriate carrier70. A stable covalent 187 

coupling of ribonucleosides was achieved by oxidation of the ribose ring with sodium 188 

periodate followed by a reductive condensation of the resulting aldehyde groups to 189 

the NH2-group of the lysine side chain79. The oxidation step opens the ribose ring 190 

between the 2’ and 3’ position and covalently couples the nucleobase via the opened 191 

ribose to the carrier protein (Figure 2). As a consequence, antibodies generated 192 

against such antigens cannot discriminate between molecules differing at the ribose 193 

moiety, e.g. between RNA and DNA or nucleic acids with modified or non-modified 194 

2’- and 3’-ribose OH-groups6. All antibodies directed against modified nucleosides 195 

generated so far are based on this coupling method. They target single nucleotides in 196 

DNA or RNA chains and neighbouring nucleotides appear not to influence antibody 197 

binding. Consequently, these antibodies allow an unbiased determination of 198 

sequences flanking modified nucleotides and their potential consensus motifs. For 199 

example, antibodies generated against m6A led to the identification of the DRACH 200 

motif flanking m6A6, 37, 38, 80. Other examples of antibodies currently in the spotlight 201 
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are those specific for 5mC, m1A and m7G69, 81-83. Table 1 summarises available 202 

antibodies against modified nucleosides and their applications.  203 

Presently, a modified nucleobase-coupling protocol allows a more efficient binding of 204 

the hapten and also the coupling of nucleobases sensitive to oxidation or reduction 205 

such as m1A (pers. communication R. Hett / G. Meister). The use of cationized BSA, 206 

in which the carboxy groups of acidic amino acids are converted to aminoethylamide 207 

groups, enhances the resulting T-cell immune response and increases the 208 

immunogenicity of poorly immunogenic molecules84-86. In addition, it increases the 209 

number of -NH2 groups available for coupling with the nucleoside. The higher 210 

coupling efficiency increases the likelihood that two or more modified nucleobases 211 

are in close vicinity to each other on the carrier so that antibodies that specifically 212 

recognize pairs of adjacent modified nucleobases might be raised. Such antibodies, if 213 

undesired, have to be eliminated during the validation process or by affinity 214 

purification. Modern Click Chemistry87 provides an alternative strategy to couple DNA 215 

or RNA nucleosides to the carrier protein. Here, the 5’OH group of the ribose is 216 

activated with azide allowing the copper(I)-catalysed addition of the alkyne-linker 217 

molecule. This coupling method has the advantage that the ribose is kept intact, thus 218 

potentially allowing the generation of antibodies that discriminate between DNA and 219 

RNA nucleosides or recognize modified ribose OH groups. This is of special 220 

importance for the generation of antibodies that allow discrimination between highly 221 

related modified nucleosides, for example nucleosides having the same chemical 222 

modification at one position in the nucleobase but differ in an additional modification 223 

of the ribose such as a methylated OH-group (e.g. m7G versus m7Gm). We are 224 

currently trying to establish monoclonal antibodies using DNA nucleosides coupled 225 

by Click chemistry to the carrier protein as antigens (in collaboration with T. Carell). 226 

One possible drawback of this method is the generation of antibodies that might bind 227 

to the modified nucleoside only in conjunction with the 1,2,3-triazole resulting from 228 

the Click reaction. These antibodies need to be excluded during the antibody 229 

validation procedure.  230 

 231 

Comparison of different antibody formats 232 

The validity of high-throughput approaches in epitranscriptomics and epigenomics 233 

directly depends on the specificity and affinity of the employed antibody. Currently, 234 

polyclonal and monoclonal antibodies are used to target modified nucleic acids 235 
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(Table 1). Both have their advantages and disadvantages. A systematic comparison 236 

of monoclonal and polyclonal antibodies targeting modified nucleotides has not been 237 

performed so far. However, a detailed comparison of polyclonal and monoclonal 238 

antibodies targeting different post-translational histone modifications in ChIP-seq 239 

experiments showed that monoclonal antibodies exhibit the same sensitivity as 240 

polyclonal antibodies, yet offer higher reproducibility88. Polyclonal antibodies, which 241 

are mainly produced in rabbits, comprise a heterogeneous mixture of antibodies that 242 

target different epitopes and bind the antigen with different affinities. They often 243 

perform well in multiple applications, as they can bind their targets under conditions 244 

of different pH and salt concentrations89. A major drawback of polyclonal antibodies 245 

is batch-to-batch inconsistencies. Affinity column purification, e.g. on modified and 246 

unmodified nucleotides is required to reduce carrier-specific and other unspecific 247 

antibodies from the immune serum. However, due to their heterogenic nature, 248 

validation for cross-reactivity, e.g. against similar nucleotide modifications or binding 249 

of two adjacent modified nucleotides, is difficult. In general, polyclonal antibodies 250 

exhibit a broader but less well characterized interaction pattern, which is the 251 

disadvantage of the larger antibody pool. In contrast, monoclonal antibodies, which 252 

are secreted from a single B cell clone, recognize a defined epitope with a given 253 

affinity and specificity. Their generation is more expensive and time-consuming as 254 

compared to polyclonal antibodies90. However, once a monoclonal antibody is 255 

established it can be repeatedly produced in large amounts and with consistent 256 

quality between different batches. In addition, cross-reactive or unspecific clones can 257 

be eliminated already during primary antibody screening (see next chapter).  258 

The development of a rabbit myeloma cell line allowing the efficient fusion of rabbit B 259 

cells from immunised animals was a major improvement on the antibody market58, 91. 260 

Because rabbit monoclonal antibodies often display high affinities58 they could be a 261 

valuable alternative to those from mouse and rat for antibody DIP-and RIPseq 262 

studies. At present, we are not aware of rabbit monoclonals generated against 263 

modified nucleic acids.  Unfortunately, the rabbit myeloma fusion cell line is not freely 264 

available for the scientific community. The recombinant cloning of smaller antibody 265 

formats, such as Fab or single-chain variable fragments (scFv) from established 266 

hybridoma cell lines92, 93 or of nanobodies dervied from camelid heavy chain 267 

antibodies94 can be useful especially for high-resolution imaging. Recombinant 268 

antibody technologies provide an alternative to the hybridoma technology. Different 269 



 9

display technologies are now available to isolate the best binders from either immune 270 

or naive antibody libraries (summarized95). However, as far as we know, these 271 

technologies have not been applied for modified nucleotides so far. 272 

 273 

Antibody validation  274 

To serve as valuable and reliable research tools, antibodies need to be thoroughly 275 

validated regarding their affinity, specificity and reproducibility in the context of their 276 

intended use96. The primary screening process during monoclonal antibody 277 

generation already identifies hybridoma candidate clones that produce the strongest 278 

and most specific binders. Supernatants from several hundred hybridomas can easily 279 

be tested in a high-throughput manner in solid-phase enzyme-linked immunosorbent 280 

(ELISA) assays97. Detection ELISA assays are ideal to identify antibodies that 281 

recognize the desired antigen, e.g. by testing the binding of modified nucleobases 282 

coupled to a different carrier protein or on small modified oligonucleotides to assure 283 

the identification of hapten-specific antibodies and to exclude carrier-specific ones69, 284 
83, 92, 98. Capture ELISA identifies antibodies that immunoprecipitate antigen with high 285 

affinity, a prerequisite for antibody-based mapping studies of modified nucleic acids. 286 

Competitive ELISA can further determine antibody specificity and cross-reactivity. 287 

Here, antibodies are pre-incubated with increasing amounts of the target antigen or 288 

potentially cross-reactive antigens as competitors before binding to the target antigen 289 

is assessed. The combination of these ELISA-based techniques allows identification 290 

of antibodies binding the desired antigens with high affinity and to eliminate those 291 

showing cross-reactivity69, 83, 92, 98.  292 

Further validation is essential to verify the antibodies’ performance in particular 293 

applications. Antibodies targeting modified nucleic acids were validated e.g. by DNA 294 

or RNA immunoprecipitation32, 46, 99, immuno-Northern blotting99 or high-resolution 295 

nucleic acid mapping technologies6, 32, 37, 100. Potential off-target binding and biases 296 

can be detected by using methylation-deficient control cells, as recently 297 

demonstrated for anti-m6A antibodies in mapping studies with N6-adenine-298 

methylases-negative bacteria or yeast cells32, 100. A study by Linder et al. revealed, 299 

that antibodies described as 6mA-specific, which were generated by coupling 6mA to 300 

the carrier protein by the reductive coupling method described above79 (Figure 2) do 301 

not discriminate between m6A and m6Am
6. This is not surprising, as the antigen used 302 

for immunization does not contain the intact 2’- and 3’-moieties of the ribose. These 303 
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studies highlight the importance of antibody validation, especially if highly related 304 

targets exist in the same molecule, as it is the case in RNA and DNA. Antibodies 305 

targeting nucleic acids or modified nucleic acids are generated by coupling single 306 

(modified) nucleosides to the BSA carrier protein79. However, the resulting antibodies 307 

are used to detect the respective target in the context of complex structures, e.g. 308 

chromatin, dsDNA, protein-bound RNA or structured regions of RNA. These 309 

structures may impede antibody-antigen interactions. Most parts of RNA are single-310 

stranded, but in DNA and in structured regions in RNA, nucleic acids pair with each 311 

other to make double-strands, and may therefore not be readily accessible for the 312 

antibody. For example, we observed that some antibody clones detecting a single 313 

modified nucleoside coupled to BSA in ELISA, did not bind to the same modified 314 

nucleotide in the context of RNA or DNA (own unpublished data). In mammalian 315 

cells, the generation of CRISPR/Cas9-targeted methyltransferase knock-out cell lines 316 

will be instrumental to identify antibodies without or low off-target activity. 317 

Interestingly, apart from specific antigen binding, antibodies can be used to generate 318 

signatures on modified RNA after UV-induced crosslinking and mutations introduced 319 

during reverse transcription, allowing a precise mapping of modified nucleobases6. 320 

However, although directed against the same modification, some antibodies were 321 

shown to induce an inconsistent mutation pattern6. 322 

 323 

Summary and Perspective 324 

Modifications of nucleic acids are widespread, and the function of many of these 325 

modifications is far from understood. Antibodies specific for modified nucleotides are 326 

essential tools to address fundamental questions on the molecular regulation of life in 327 

this new era of epigenomics and epitranscriptomics. At present, antibodies against a 328 

limited number of DNA and RNA modifications are available. The generation of new 329 

specific antibodies will be instrumental to decipher the function of those modifications 330 

that have been neglected so far. Comparative structural studies of antibody 331 

complexes with modified nucleobases are required for an improved understanding of 332 

specific target recognition. 333 

Antibodies directed against modified nucleobases have traditionally been generated 334 

by immunization with nucleosides coupled to a carrier protein using the ribose part as 335 

a linker. Modern Click Chemistry now allows coupling by maintaining the sugar intact, 336 

thus permitting the generation of antibodies that may, in addition to recognizing 337 
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specific modified nucleobases, be able to distinguish between different forms of the 338 

ribose moiety, such as ribose, deoxyribose, and O-methylated variants. Careful 339 

antibody validation is essential to reduce background through off-target activity and 340 

also to verify the applicability in a particular technique. Whenever possible, cellular 341 

knock-out controls should be part of the validation process. Polyclonal antibodies are 342 

often not sufficiently characterized, and their functionality may vary from batch to 343 

batch, which may hamper reproducibility and comparability of results. Monoclonal 344 

antibodies from stable hybridoma cell lines have unlimited availability, allow for 345 

precise definition of specificity and affinity, and therefore more consistent 346 

experimentation. Several monoclonal antibody clones should be used to validate 347 

nucleotide mapping in RIP- and DIP-based experiments. The generation of high-348 

affinity nucleotide-specific monoclonal antibodies in rabbits might further advance the 349 

epitranscriptomics field, especially for very rare modifications or in single-cell 350 

settings. Smaller binder formats, e.g. scFv that can be obtained by recombinant 351 

cloning of nucleoside-specific monoclonal antibodies or by recombinant display 352 

technologies, will be useful tools for high-resolution imaging.  353 
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 365 

Table legend 366 

Table 1: Overview of the most commonly studied nucleic acid modifications and their 367 

analyses using antibody-based approaches. 368 
#Occurrence of modified nucleobases in DNA and different RNA species. For more 369 

details see RNAMDB  and MODOMICS databases1, 3.  370 
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¶  Performed applications using polyclonal or monoclonal antibodies (bold) and the 371 

respective references. Clone names of mAbs are included.  372 

♮Listed are the clone names of monoclonal antibodies, the publication describing 373 

their generation, and the species in which the antibodies were generated.  374 

* Commercially available monoclonal antibodies. 375 

Abbreviations: pAb: polyclonal antibody; mAb: monoclonal antibody; scFv: single-376 

chain variable fragment; DIP: DNA immunoprecipitation; RIP: RNA 377 

immunoprecipitation; IHC: immunohistochemistry; IF immunofluorescence, ms: 378 

mouse; mt: mitochondria.  379 

 380 

Figure legends 381 

Figure 1: Schematic overview of the organisation and expression of immunoglobulin 382 

(Ig) genes. Different germline gene segments coding for the variable Ig heavy and 383 

light chains are joined by somatic V(D)J gene rearrangement (upper panels). 384 

Addition or removal of nucleotides during recombination at the junctions (symbolised 385 

by asterics) and somatic hypermutation (arrows) in the complementary-determining 386 

regions (CDR) of the VL and VH genes results in a high diversity of the Ig repertoire. 387 

The constant regions of the heavy chain are joined by RNA splicing to the variable 388 

regions. The heavy and light chains are covalently linked by disulfide bridges and fold 389 

into the typical Y-shaped immunoglobulin molecule. The antigen-binding site is 390 

formed by the CDRs of the heavy and light variable chains. A 3D shape of an Ig 391 

molecule can be found in the RCSB Protein Data Bank PDB ID: 1IGT (doi: 392 

10.2210/pdb1igt/pdb) 393 

 394 

Figure 2: Conjugation of nucleosides to carrier proteins. In a first step the 2’ and 3’ 395 

hydroxyl groups of the ribose of the nucleic acid are oxidized with IO4
- at pH9-9.5. 396 

This allows the coupling to primary amino groups of carrier proteins, e.g. ε-NH2-group 397 

of lysine residues. The resulting unstable acid is subsequently stabilized by reduction 398 

with NaBH4.  399 

 400 
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