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         The effect of genetic variants in the FADS gene
                          cluster is one of the first examples for gene-nutrition
               interactions that influence complex phenotypes

 Key insights

This article presents results from recent gene-nutrition inter-
action studies, discusses the implications for child health, and 
gives an outlook how these associations might translate into 
clinical practice in the future.

 Current knowledge

Recent genetic association studies show that in addition to nu-
tritional influences, the genetic background is highly important 
for polyunsaturated fatty acid (PUFA) composition in human 
tissues. Polymorphisms in the FADS genes determine the effi-
ciency how PUFAs are processed endogenously. Furthermore, 
FADS genotypes modulate the effect of nutrition on complex 
phenotypes such as cognition and asthma risk. So far, results 
are inconsistent regarding the direct association of FADS poly-
morphisms with atopic diseases. 

 Practical implications

A sufficient supply of PUFA does not necessarily translate into 
a beneficial effect because of such gene-nutrient interactions. 
Once the complex network of nutritional and genetic influences 
is understood, well-defined dietary recommendations might be 
possible for optimal child health.  
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 Abstract 

 Sufficient nutritional supply with polyunsaturated fatty ac-
ids (PUFAs) has long been considered as beneficial for child 
health, especially in regard to neuronal development and al-
lergic diseases. In recent years, genetic association studies 
showed that in addition to nutritional influences, the genet-
ic background is highly important for PUFA composition in 
human tissues. Specifically, polymorphisms in the fatty acid 
desaturase genes or  FADS  determine the efficiency of how 
PUFAs are processed endogenously. Recent gene-nutrition 
interaction studies suggest that these polymorphisms mod-
ulate the effect of nutritional fatty acid intake on complex 
phenotypes such as cognitive outcomes and asthma risk in 
children. These early results may provide the basis for future 
well-specified dietary recommendations to achieve optimal 
health benefit for all children. This article presents results 
from recent gene-nutrition interaction studies, discusses its 
implications for child health, and gives an outlook how this 
association might translate into clinical practice in the future. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 The genomic era opened new possibilities for gaining 
the first insights how a person’s genetic background might 
influence certain health outcomes. Hundreds of genetic 

 Key Messages 

 • Fatty acid desaturase (FADS) genotypes are closely

associated with a wide range of intermediate

phenotypes such as polyunsaturated fatty acids,

lipid, and glucose levels, and first evidence exists for 

an association with complex diseases (e.g. diabetes 

mellitus type 2). 

 • FADS genotypes modulate the effect of nutrition

on complex phenotypes such as cognition and

asthma risk. 

 • Mendelian randomization approaches using FADS 

genotypes might be useful for understanding

pathways and causalities of fatty acid-related

diseases better. 

 • Well-defined dietary recommendations might be

possible in the future for optimal child health, once 

the complex network of nutritional and genetic

influences is understood. 

 Key Words 

 Allergy  �  Breastfeeding  �  Cognition  �  �5-Desaturase  �  
�6-Desaturase  �   FADS1   �   FADS2   �  Gene-nutrition
interaction  �  Long-chain polyunsaturated fatty acids  �  
Single nucleotide polymorphisms 

 Published online: May 15, 2012 

 Prof. Berthold Koletzko, MD 
 Dr. von Hauner Children’s Hospital 
 Ludwig Maximilians University of Munich Medical Center 
 Lindwurmstrasse 4, DE–80337 München (Germany) 
 Tel. +49 89 5160 3967, E-Mail Berthold.Koletzko   @   med.uni-muenchen.de 

 © 2012 S. Karger AG, Basel
0250–6807/12/0607–0008$38.00/0 

 Accessible online at:
www.karger.com/anm 

http://dx.doi.org/10.1159%2F000337308


 PUFA Genes and Child Health Ann Nutr Metab 2012;60(suppl 3):8–17 9

loci for various phenotypes have been identified in recent 
years by genome-wide association studies (GWAS). As a 
tool of genetic epidemiology, such studies scan for genetic 
markers – in most cases, single nucleotide polymorphisms 
(SNPs) – across the genomes of many people to find ge-
netic variations associated with a particular disease or 
phenotype ( table 1 ). The most commonly used study de-
sign is the case-control, where subjects are divided into 
cases and matched controls; then genotype frequencies 
are compared between the groups. This design is espe-
cially useful in finding genetic variations that contribute 
to common, complex diseases, such as atopic diseases, di-
abetes, and heart and mental diseases ( fig. 1 ). Another de-
sign uses cohorts representing the general population to 
detect associations with ‘intermediate’ phenotypes such 
as fatty acid, lipid, metabolite or expression levels. Here, 
genotypes between individuals are compared to detect 
those alleles that contribute to especially high or low levels 
of the measured intermediate phenotype. Once new ge-
netic associations are identified, researchers hope to im-
prove understanding of pathways and to develop better 
strategies to detect, treat, and prevent disease. 

  One of the challenges of the post-genomic era is to 
  make use of this vast amount of data and, in the best case, 
transfer the results into clinical practice. The main ques-
tions that researchers and clinicians aim to answer are:

 • How many of the identified genetic loci translate from 
statistical significance to biological relevance? 
 • How does a certain genetic background interact with 
environmental influences or lifestyle factors such as nu-
trition or physical activity? 
 • Will we be able to predict disease risk based on genet-
ic data and to give precise dietary or lifestyle recommen-
dations to prevent disease? 

This article focuses on the association of SNPs in the 
fatty acid desaturase ( FADS ) gene cluster with fatty acid 
  levels and fatty acid-related phenotypes, which is one of 
the strongest and best-replicated associations identified 
in recent years. The biological relevance of this associa-
tion and its implication for child health is discussed, cur-
rent gene-nutrition interaction studies are presented, and 
an outlook how this association might translate into clin-
ical practice in the future is provided.

  Polyunsaturated Fatty Acids 

 Nutritional supply with essential �–6 and �–3 poly-
unsaturated fatty acids (PUFAs) and their long-chain de-
rivatives such as arachidonic acid (AA) and especially 
docosahexaenoic acid (DHA) is considered highly im-
portant for various physiological functions in every stage 
of human life. Among the main functions of PUFAs is 
regulating cell membrane fluidity as well as acting as 
precursors of eicosanoids and docosanoids, which play 
an important role in inflammatory processes  [1, 2] . In 
the fetal state and in early infancy, DHA is needed for 
proper retinal and neuronal development  [3] , which is 
reflected by the massive accumulation of DHA in the fe-
tal retina and brain during pregnancy  [4] . In recent 
years, much research interest has therefore been laid on 
the optimization of fetal DHA supply by maternal intake 
of DHA supplements during pregnancy and lactation. In 
addition to the importance of the nutritional intake of 
PUFAs, evidence emerged for considerable inter-indi-
vidual variation in the capacity of how dietary �–6 and 
�–3 fatty acids are endogenously processed via the de-
saturation/elongation pathway  [5] . In brief, linoleic acid 
and  � -linolenic acid obtained from the diet are convert-
ed into longer chain fatty acids by elongation of the fatty 
acid carbon chain and insertion of double bonds (i.e. de-
saturation) via this pathway, which had been described 
by Sprecher  [6] . A basic illustration of this pathway is 
given in  figure 2 . The rate-limiting enzymes in this path-
way are the �5- and �6-desaturase, which are encoded by 
the genes  FADS1  and  FADS2 , respectively  [1, 7] . 

versus

Analysis of genetic variants

Disease association

Cases Matched controls

  Fig. 1.  Principle of a genetic association study using a case-control 
design. Subjects are divided into cases and matched controls in 
regard to the specific phenotype of interest and genotype frequen-
cies are compared between the groups. This design is especially 
useful in finding genetic variations that contribute to common, 
complex diseases, such as atopic diseases, diabetes, heart and 
mental diseases. 
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  In 2006, the first genetic association study on the fat-
ty acid composition in serum phospholipids revealed sig-
nificant associations of SNPs in the  FADS  genes with sev-
eral �–6 and �–3 PUFAs  [8] . Carriers of the minor alleles 
of the investigated SNPs showed higher concentrations 
of the desaturase substrates and lower concentrations of 
the desaturase products compared to major allele carri-
ers. This led to the hypothesis that minor allele carriers 
have less ability to endogenously convert the precursor 
fatty acids to their longer-chain products. In the mean-
time, this association was replicated in several other 
(candidate-gene and genome-wide) studies involving 
populations of European, Asian, and African descent, 
and including also other tissues, such as erythrocyte 
membrane phospholipids, adipose tissue, and breast 
milk  [9–23] .

  However,  FADS  genotypes are not only associated 
with PUFA concentrations – several GWAS on complex 
lipid traits reported associations of  FADS  polymorphisms 
with serum phosphatidylcholines  [24, 25] , and the blood 

lipid parameters low- and high-density lipoprotein, total 
cholesterol, and triglycerides  [26–34] , suggesting that the 
desaturation pathway might be highly important for lipid 
homeostasis in the human body. 

  Fatty Acid-Related Complex Diseases  

 In addition to lipid homeostasis, early hints were avail-
able from GWAS that demonstrated the genetically deter-
mined fatty acid composition and degree of desaturation 
may influence glucose homeostasis: SNPs in  FADS1  and 
 FADS2  have recently been associated with fasting glucose 
 [32, 35] , and several indices of insulin secretion and sen-
sitivity  [35–37] . Another GWAS on genetic determinants 
for resting heart rate found one SNP in  FADS1  to be as-
sociated with the length of heart rate interval  [38] . Wheth-
er SNPs in the  FADS  gene cluster show pleiotropic effects 
on all these phenotypes or whether one of these pheno-
types in consequence causes the associations with all oth-
er phenotypes remains to be analyzed. However, these 

 Table 1.   Glossary

Term Abbreviation Explanation

Deoxyribonucleic acid DNA polymer of nucleic acids containing an organism’s genetic information 

Genome – an organism’s complete set of DNA 

Genome-wide association study GWAS analysis of thousands to millions of genetic variants (most often SNPs) scattered 
across the genome in many different individuals for association analysis of these 
variants with defined phenotypes

Single nucleotide polymorphism SNP exchange of a single base pair at a specific position in the genome resulting in 
different alleles at this position 

Fatty acid desaturase FADS enzymes needed for the insertion of double bonds into fatty acid carbon chains 

Polyunsaturated fatty acids PUFAs fatty acids that contain more than one double bond in their carbon chain, e.g. 
the essential fatty acids linoleic acid and �-linolenic acid

Long-chain polyunsaturated fatty 
acid

LC-PUFA derivatives of PUFA (e.g. arachidonic acid or docosahexaenoic acid) either
synthesized endogenously by elongation and desaturation or incorporated from 
nutritional sources

Arachidonic acid AA a long-chain polyunsaturated �–6 fatty acid, which can be synthesized
endogenously and is also present, e.g., in meat, eggs, and dairy products, and 
which is a precursor in the production of eicosanoids

Docosahexaenoic acid DHA a long-chain polyunsaturated �–3 fatty acid, which can be synthesized
endogenously and is also present, e.g., in marine foods, and which is an
important structural component of the human brain and retina

Pleiotropy – the phenomenon when one gene influences multiple phenotypic traits

Mendelian randomization – if genetic variants alter the level or reflect the biological effects of a modifiable 
environmental exposure that itself influences disease risk, these genetic variants 
should be related to disease risk as well; common genetic variants that have a 
well-characterized biological function can therefore be used as proxies to study 
the effect of a suspected environmental exposure on disease risk
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widespread associations with multiple intermediate phe-
notypes representing different physiological processes 
lead to the question whether  FADS  genotypes also influ-
ence the development of complex fatty acid- or lipid-re-
lated phenotypes such as coronary artery, allergic, and 
mental disease, or glucose- and insulin-related diseases 
such as type 2 diabetes melli-
tus. Several studies analyzed 
the influence of  FADS  ge-
notypes on such complex
outcomes, but real evidence 
for significant associations is 
scarce.  Table  2  summarizes 
the recent results of studies 
looking at the associations be-
tween  FADS  SNPs and complex outcomes. In an Italian 
and Korean population,  FADS  SNPs were associated with 
cardiovascular disease  [19, 39] . These results were sup-
ported by a GWAS, in which hints for an association were 
also detected, but not at the genome-wide significance 
level  [40] . Associations with atopic diseases were not sig-

nificant in most studies  [41, 42] . The only statistically sig-
nificant association between one of the atopic disease en-
tities and  FADS  gene variants was reported for eczema in 
a subgroup  [41] , while in the entire cohort no association 
was found  [42] . Associations with attention-deficit/hy-
peractivity and bipolar disorder have been reported  [40, 
43]  but these studies have not been replicated to date. Two 
studies reported significant associations of  FADS  SNPs 
with type 2 diabetes mellitus  [35, 44] .

  Although the effect of genetic variants in the  FADS  
gene cluster on PUFA concentrations in various tissues is 
extraordinarily strong  [9–23] , detection of really strong 
associations between these variants and fatty acid-related 
complex diseases is scarce and might be impeded by the 
sophisticated regulatory network of fatty acid and lipid 
metabolism. Several genes might be involved in the regu-
lation of fatty acid and lipid levels and nutritional influ-
ences might play an important role as well. Gene-gene 
interaction and gene-nutrition interaction studies might 
be one of the next steps to understand this complex net-
work better and to evaluate the biological significance of 
genetic background for the development of fatty acid-re-
lated complex diseases.

  Fatty Acid Genotype Interaction in Child 

Nutrition 

 Recently, several gene-nutrition interaction studies on 
the effect of  FADS  genotypes together with nutritional 
influences on complex outcomes have been performed. 
One major field of interest when talking about fatty acids 
and child health is the field of mental health and neuronal 
development. Several studies showed a relationship be-
tween fish or fish oil intake and breastfeeding on later 
cognitive outcomes and different measures of intelli-

gence in children  [45–49] . It is 
widely hypothesized that this 
relation might be due to the 
presence of important long-
chain PUFA such as DHA in 
fish oil and breast milk. 
Therefore, pregnant and lac-
tating women are advised to 
achieve an average DHA in-

take of additional 200 mg DHA/day in order to provide 
optimal supply for the fetus and newborn infant  [4] . In-
terestingly, early evidence suggests that polymorphisms 
in the  FADS  gene cluster might modulate this effect by 
gene-nutrition interaction. Caspi et al.  [50]  reported on a 
genetic variant in the  FADS2  gene modulating the asso-

One major field of interest when 
talking about fatty acids and child 

health is the field of mental health and 
neuronal development.

Elongation

Docosahexaenoic acid Docosapentaenoic acid

Elongation

�6-Desaturation
(FADS2)

�-Oxidation

Eicosapentaenoic acid Arachidonic acid 

�–3 pathway�–6 pathway

�-Linoleic acidLinoleic acid

Elongation

�6-Desaturation
(FADS2)

�5-Desaturation
(FADS1)

  Fig. 2.  Schematic presentation of the desaturation/elongation 
pathway of �–3 and �–6 PUFAs (modified from  [6] ). 
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ciation between previous breastfeeding and intelligence 
quotient (IQ) in 2 large birth cohorts. Children who were 
previously breastfed and formula fed differed in their lat-
er IQ in both cohorts, but this effect was more pronounced 
and only significant in children carrying the major allele 
of the investigated SNP (rs174575). In contrast, children 

with the minor allele neither gained an advantage nor 
suffered a disadvantage from having been fed breast milk. 
The attempt to replicate these findings in the Avon Lon-
gitudinal Study of Parents and Children (ALSPAC)  [51]  
showed differing effects from the Caspi study. In that 
study  [23] , all children showed benefit from having been 

 Table 2.   Summary of association studies of  FADS  polymorphisms with complex diseases

Study Subjects Analyzed SNP(s) Analyzed outcome Main findings

Cardiovascular diseases
Baylin et al. [11] n (ca)  =  1,694, 

n (co)  =  1,694; CR
rs3834458 non-fatal acute MI in adults no association between rs3834458 and 

non-fatal acute MI

Martinelli et al. [39] n (ca)  =  610, 
n (co) = 266; IT

13 SNPs in the 
FADS gene cluster

CAD in adults FADS haplotypes associated with high 
AA/LA ratio are also associated with 
higher CAD risk (p = 0.02)

Kwak et al. [19] n (ca) = 756, 
n (co) = 890; KR

4 SNPs in the FADS 
gene cluster

CAD in adults minor T allele frequency of rs174537 
significantly lower in CAD patients 
than in controls

Atopic diseases
Schaeffer et al. [8] n (total) = 727,

n (rhinitis) = 76,
n (eczema) = 49; DE

18 SNPs in the 
FADS gene cluster

allergic rhinitis, atopic eczema, 
and IgE levels in adults

no association with IgE levels; minor 
alleles are protective for allergic 
rhinitis and atopic eczema, which is 
however not significant after 
correction for multiple testing 

Rzehak et al. [41] n (total) = 333, 
eczema = 14.1%, DE; 
n (total) = 542, 
eczema = 30.6%; NL

5 SNPs in FADS1/
FADS2

IgE levels and eczema in the first
2 years of life

no association with IgE levels; SNPs are 
significantly associated with eczema in 
the German (p < 0.005), but not in the 
Dutch study

Singmann et al. [42] n (total) = 2,718, 
asthma = 4%, 
bronchitis = 29%,
eczema = 38%, 
hay fever = 9%; DE

5 SNPs in FADS1/
FADS2

asthma, bronchitis, eczema, hay 
fever in children

no association with any of the tested 
outcomes

Diabetes
Dupuis et al. [35] n (ca) = 40,655, 

n (co) = 87,022; EUR
genome-wide study T2DM [and related quantitative 

traits (e.g. glucose, HOMA-B, 
HOMA-IR)] in adults

major allele of SNP rs174550 is 
associated with higher risk of T2DM 
(OR = 1.04, p = 2.3 × 10–4)

Kröger et al. [44] n (ca) = 649, 
n (co) = 2,004; DE

rs174546 in FADS1 incident T2DM in adults minor allele of SNP rs174546 is 
associated with lower risk of T2DM 
when adjusted for �5-desaturase 
activity (RR = 0.78, p = 0.009)

Mental diseases and others
Brookes et al. [43] n (ca) = 180, 

n (co) = 180; GBR
29 SNPs in the 
FADS gene cluster

ADHD in children and 
adolescents

SNP rs498793 is associated with ADHD 
(p = 0.004)

Wellcome Trust 
Case Control 
Consortium [40]

n (ca) = 2,000 
(for each disease), 
n (co) = 3,000; GBR

genome-wide study 7 common diseases (bipolar 
disorder, CAD, Crohn’s disease, 
hypertension, rheumatoid 
arthritis, type 1 diabetes, T2DM) 
in adults

hints for association of SNP rs174548 
with bipolar disorder (p = 0.048), CAD 
(p = 0.021), and Crohn’s disease (p = 
0.027; summarized in [24])

n   =  Number of cases; ca = cases; co = controls; CR = Costa Rica; IT = Italy; KR = Korea; DE = Germany; NL = The Netherlands; EUR = individuals 
of European descent; GBR = Great Britain; MI = myocardial infarction; CAD = coronary artery disease; LA = linoleic acid; T2DM = type 2 diabetes
mellitus; HOMA-B = homeostatic model assessment index of �-cell function; HOMA-IR = homeostatic model assessment index of insulin resistance; 
ADHD = attention-deficit/hyperactivity disorder; OR = odds ratio (effect per allele); RR = relative risk per allele.
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breastfed irrespective of genotype [on average 8 points 
higher full-scale IQ in breastfed children in unadjusted 
analysis (3 points higher in adjusted analysis)]. Children 
homozygous for the minor allele had the lowest IQ scores 
when not having been breastfed (4.3 IQ points below non-
breastfed carriers of the major allele), but showed the 
highest benefit when having been breastfed, thereby 
reaching similar scores as breastfed major allele carriers 
(p value for interaction = 0.0091). A third study did not 
find any significant interactions between breastfeeding 
and IQ, possibly because of the smaller sample size or the 
later time point of IQ measurement  [52] . In this third 
study, IQ was determined in adolescence, whereas in the 
ALSPAC study, IQ was assessed at 8 years. Recently, a 
fourth study has been published that looked at cognitive 
scores at 14 months (INMA-Sabadell birth cohort) and at 
4 years in the replication study (AMICS INMA-Menorca 
Birth Cohort)  [23] . Although in that study other SNPs 
were genotyped, sample sizes were much smaller, and the 
main outcome was slightly different, similar interactions 
as in the ALSPAC study were observed: not having been 
breastfed conferred a disadvantage in cognition among 
children being homozygous for the rs174468 allele, which 
corresponded to lower �5-desaturase activity, but not 
among those carrying at least one allele corresponding to 
high �5-desaturase activity [p value for interaction = 
0.020 (Menorca) and 0.077 (Sabadell)]. Children who 
were breastfed did not differ in their cognition score ir-
respective of genotype. Interestingly, in that study, mater-
nal  FADS  genotypes were nominally associated with chil-
dren’s cognition score. The minor allele of SNP rs174627 
(associated with low �5- and high �6-desaturase activity 
in colostrum) was related to higher child cognitive scores. 
Replication of these results including further interaction 
analyses is highly recommended. The results obtained in 
the ALSPAC cohort  [51]  suggest that breastfeeding is ben-
eficial for all children irrespective of genetic background. 
However, these results (once they are replicated and con-
firmed) might be the first step towards the possibility for 
individualized recommendations and might help to 
guide mothers of children with a defined genetic back-
ground more easily in their decision whether to breast-
feed their children or not. Those children who cannot be 
breastfed due to various reasons might in the future ob-
tain individualized formula based on their genotype to 
achieve optimal developmental outcomes. Of note, the 
tested polymorphisms are very frequent in the general 
population (minor allele frequency of around 30% and 
higher in Europeans), which illustrates the high potential 
of public health relevance. 

  Gene-Nutrition Interaction and Atopic Diseases 

 Another field of high public interest that affects more 
and more children and adults, and that is considered as 
one of the health burdens of industrialized countries, is 
the field of allergic diseases. So far, inconsistent results ex-
ist on the direct association of  FADS  polymorphisms with 
atopic diseases. The only statistically significant associa-
tion between  FADS  gene variants and atopic eczema was 
reported in a subgroup  [41] , while in the entire cohort no 
association was found  [42] ; furthermore, another study 
did not find significant associations with atopic disease 
either  [8] . However, two recent gene-nutrition interaction 
studies suggest that  FADS  genotypes might indeed be im-
portant for the development of atopic disease outcomes. 

  In the first study, the influence of  FADS  genotypes on 
the association between dietary fatty acid intake, atopic 
diseases, and allergic sensitization in 10-year-old chil-
dren was analyzed in 2 German prospective birth cohort 
studies  [53] . Margarine and fatty acid intake were ana-
lyzed using a food frequency questionnaire, information 
on atopic diseases was collected using a questionnaire 
completed by the parents, and specific immunoglobulin 
E was measured. In this study, no direct association be-
tween  FADS  genotypes and allergic diseases or atopic 
sensitization was detected and dietary fatty acid intake 
was not associated with allergy in the crude analysis. 
However, in an additional analysis stratified by  FADS  
genotype, a higher daily margarine intake was signifi-
cantly associated with higher asthma risk only in indi-
viduals carrying two copies of the major allele. This result 
might explain the partly inconsistent results on dietary 
fatty acids and allergic outcomes and strengthens the im-

portance of including genetic data in such studies. Al-
though the presented study has several limitations (e.g. 
small sample size in stratified analysis), it seems likely 
that people with a certain genetic background are more 
sensitive to nutritional influences and more likely predis-
posed to the development of allergic disorders under cer-
tain nutritional conditions. The mechanisms that make 
 FADS  major allele carriers more susceptible to developing 
asthma are unknown. However, one could speculate that 
a higher percentage of inflammatory processes in major 

The mechanisms that make  FADS  
major allele carriers more susceptible 
to developing asthma are unknown.
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allele carriers might play a role in the predisposition to 
allergic diseases. This assumption is based on the higher 
capability of major allele carriers to convert n–6 fatty ac-
ids (which are highly abundant in margarine) to their 
longer-chain n–6 products, which are in turn precursors 
of pro-inflammatory eicosanoids. 

  The second study in the same child cohort investi-
gated the effect of the duration of exclusive breastfeeding 
on ever having asthma up to 10 years of age and the in-
fluence of  FADS  genotypes on this association  [54] . 
Breastfeeding is widely recognized as beneficial for a re-
duced risk of asthma and atopy  [55] , although not all
results are conclusive  [56] . The underlying biologi-
cal mechanisms are not entirely clear, but long-chain
PUFAs, which are contained in breast milk, might play 
one major role  [57] . In that study, asthma prevalence (de-
fined as ever having asthma up to age 10 years) decreased 
with increasing duration of exclusive breastfeeding (1–2 
months: 13% asthma prevalence, 3–4 months: 11%, 5–6 
months: 9%; p = 0.0172). Again,  FADS  genotypes were 
not directly associated with asthma prevalence, although 
prevalence was slightly lower in minor allele carriers. In-
terestingly, when looking at the effect of breastfeeding on 
asthma prevalence in a second analysis stratified by ge-
notype, asthma prevalence was significantly reduced 
only in children who had been exclusively breastfed for 
at least 3 months and were carrying at least one copy of 
the minor allele of the investigated SNPs. In contrast, 
children being homozygous for the major allele showed 
no significant benefit from having been exclusively 
breastfed. This effect was also confirmed in an addition-
al interaction analysis. 

  How can we interpret these results? Again, these re-
sults suggest that a certain group of children with a de-
fined genetic background are more sensitive to nutrition-
al influences, although a possible biological explanation 
is harder to find compared to the aforementioned study. 
Only those children who are less able to convert precur-
sor PUFA to their longer-chain products show a benefit 
after at least 3 months of exclusive breastfeeding. In a pre-
vious study, it has been shown that mothers carrying the 
minor alleles of several polymorphisms in the  FADS 
 genes have decreased levels of the pro-inflammatory 
eicosanoid precursor AA in their breast milk from 1.5 to 
6 months of breastfeeding  [16] . Children carrying at least 
one minor allele are more likely to have a mother that also 
carries a minor allele than children being homozygous 
for the major allele due to rules of inheritance. These chil-
dren might therefore gain advantage from the low supply 
with AA by maternal breast milk and their own low ca-

pacity to convert precursor n–6 PUFA in breast milk to 
AA. In contrast, a high supply with AA during lactation 
might not gain any benefit for breastfed children com-
pared to bottle-fed children in terms of asthma risk. Be-
cause maternal genotypes were not available in the pre-
sented study and breast milk fatty acids were not includ-
ed, the influence of the maternal genotype and fatty acid 
composition on the child’s asthma risk could not be de-
termined. 

 Outlook 

  Although a lot of questions remain open, these early 
results show a clear modulation of nutritional influences 
on complex outcomes by genetic variants in fatty acid 
metabolism ( fig. 3 ). How can we make use of these data 
in the future? Optimal health outcomes during develop-
ment are desirable for all children and the presented data 
might be a very first step towards the possibility for indi-
vidual nutritional recommendations in order to achieve 
optimal cognitive development and the reduction of 
atopic disease risk. Before that goal can be achieved, more 
detailed studies are required under well-defined nutri-
tional preconditions and with a sufficient and well-phe-
notyped number of subjects. Along with these further 
intervention studies on specified health outcomes, it is 
indispensable to focus on the biological mechanisms that 
make people with a certain genetic background more 
sensitive to nutritional influences. Once the genotype-
dependent effects of nutrition on the analyzed outcomes 
are confirmed and biological mechanisms become clear-
er, individualized dietary recommendations or specific 
interventions might be possible. 
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  Fig. 3.  Schematic diagram of the relationship between nutrition 
and genetic background on complex phenotypes. 
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  However, dispute exists among researchers whether 
genotype-dependent dietary recommendations are real-
istic in the future due to practical, financial and ethical 
reasons. Still, even if it will not be feasible in the future to 
test every pregnant woman for her  FADS  genotype, 
knowledge of the genetic influences on dietary fatty acid 
conversion is critical in understanding pathways and 
causalities of fatty acid-related phenotypes. In this con-
text,  FADS  genotypes can be very useful in future studies 
as surrogate variables of modifiable exposures such as de-
saturase activity or fatty acid supply. This approach is 
called the Mendelian randomization approach in genetic 
epidemiology  [58–60]  and is especially useful as alterna-
tive to such randomized controlled trials, which are dif-
ficult to conduct due to ethical reasons, e.g. trials on 
breastfeeding effects on disease risk. 

  An example of such a Mendelian randomization ap-
proach using  FADS  genotypes as proxy variables of de-
saturase activity and its potential causality in diabetes de-
velopment has been published recently by Kröger et al. 
 [44, 61] . Once the pathways and genetic influences are 
understood completely, refinement of current recom-
mendations might be possible in the future to enable ev-
ery child to achieve the maximum benefit with the lowest 
possible disease risk.

  Conclusion 

 The effect of genetic variants in the  FADS  gene cluster 
is one of the first examples for gene-nutrition interactions 
that influence complex phenotypes. The studies summa-
rized in this review show the high complexity of the in-
teraction between genetic background and environmen-
tal influences and remind us that genetic association 
studies are only the first step in understanding the mech-
anisms and pathways of specific phenotypes. The great 
opportunity of the post-genomic era is now to integrate 
data from different fields and bring together geneticists, 
epidemiologists, nutrition experts, and clinicians in or-
der to realize the full translational potential of the recent 
association findings. 
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