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Serum metabolomic profiling highlights pathways associated
with liver fat content in a general population sample
M Koch1,2, S Freitag-Wolf3, S Schlesinger1, J Borggrefe4, JR Hov5,6,7,8, MK Jensen2, J Pick9, MRP Markus10,11,12, T Höpfner1, G Jacobs1,13,
S Siegert14, A Artati15, G Kastenmüller16,17, W Römisch-Margl16, J Adamski15,17,18, T Illig19,20, M Nothnagel14, TH Karlsen5,6,7,8,
S Schreiber21,22, A Franke21, M Krawczak3, U Nöthlings9,23 and W Lieb1,13,23

BACKGROUND/OBJECTIVES: Fatty liver disease (FLD) is an important intermediate trait along the cardiometabolic disease
spectrum and strongly associates with type 2 diabetes. Knowledge of biological pathways implicated in FLD is limited. An
untargeted metabolomic approach might unravel novel pathways related to FLD.
SUBJECTS/METHODS: In a population-based sample (n= 555) from Northern Germany, liver fat content was quantified as liver
signal intensity using magnetic resonance imaging. Serum metabolites were determined using a non-targeted approach. Partial
least squares regression was applied to derive a metabolomic score, explaining variation in serum metabolites and liver signal
intensity. Associations of the metabolomic score with liver signal intensity and FLD were investigated in multivariable-adjusted
robust linear and logistic regression models, respectively. Metabolites with a variable importance in the projection 41 were
entered in in silico overrepresentation and pathway analyses.
RESULTS: In univariate analysis, the metabolomics score explained 23.9% variation in liver signal intensity. A 1-unit increment in the
metabolomic score was positively associated with FLD (n= 219; odds ratio: 1.36; 95% confidence interval: 1.27–1.45) adjusting for
age, sex, education, smoking and physical activity. A simplified score based on the 15 metabolites with highest variable importance
in the projection statistic showed similar associations. Overrepresentation and pathway analyses highlighted branched-chain amino
acids and derived gamma-glutamyl dipeptides as significant correlates of FLD.
CONCLUSIONS: A serum metabolomic profile was associated with FLD and liver fat content. We identified a simplified
metabolomics score, which should be evaluated in prospective studies.
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INTRODUCTION
Progressive fat accumulation in the liver emerges as an important
intermediate phenotype along the cardiometabolic disease
spectrum. Fatty liver disease (FLD) is defined as the accumulation
of liver fat exceeding 5.56%.1 Prevalences of 35–40% were
observed in general population samples1,2 and even higher
prevalence proportions in certain clinical settings.3 In prospective
analyses, FLD is an important predictor of type 2 diabetes,
subclinical and clinical cardiovascular diseases,2 liver cirrhosis4 and
mortality.5 Abdominal obesity and insulin resistance are strongly
associated with FLD.6 However, the complex pathophysiology of

FLD and particularly the metabolic derangements associated with
FLD are poorly understood7,8 and deserve further investigations.
Metabolomics, the quantification of a broad spectrum of small-

molecule metabolites, including metabolic intermediates, signal-
ing molecules and secondary metabolites in biological specimens
might provide further insights into FLD etiology.8 So far, only few
studies have investigated associations of blood metabolomic
profiles with FLD8 and the studies have been limited to small
samples9 of patients undergoing liver biopsies,10 or severely
obese patients undergoing bariatric surgery.11 Furthermore,
many prior analyses were limited by the assessment of FLD only
as a dichotomous trait.9,12 Thus, the association of metabolomic
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profiles and liver fat accumulation in an unselected sample from
the community is not well known. Therefore, we investigated the
association of serum metabolites with liver signal intensity, a
continuous measure of liver fat content determined by magnetic
resonance imaging (MRI) in a large sample from the general
population. For comparison with previous studies, we further
related serum metabolites to FLD investigated as a binary trait.

MATERIALS AND METHODS
Study design and sample
Study participants were drawn from the PopGen control cohort in
Northern Germany (n=1316), initially recruited between 2005 and 2007
into the PopGen biobank located in Kiel, Germany. The sample consisted of
a representative population sample (n= 747) enriched with blood donors
(n=569) and served primarily as a reference sample for genetic-
epidemiological analyses.13 At the second examination cycle, conducted
from 2010 to 2012 with a response proportion of 71% (n=930), more
comprehensive clinical and molecular phenotyping of the study partici-
pants was performed, as reported in detail elsewhere.14 In brief, study
participants were invited to the study center for a physical examination,
collection of biosamples (blood, stool, urine) and assessment of established
cardiometabolic risk factors. In a subsample of 656 participants, MRI
measures to determine liver fat content were available. Exclusion of study
participants with MRI images not interpretable for liver fat content because
of non-compliance to the MRI breathing protocol (n=43), missing
information on covariates (n=31), self-reported liver diseases (n=2614)
or missing blood sample (n= 1) resulted in a sample size of 555 individuals.
The study was approved by the ethical review board of the Medical Faculty
of the University Kiel (Kiel, Germany). Written informed consent was
obtained from all study participants.

Exposure and covariate assessment
Non-targeted metabolomics profiling analysis (see Supplementary
Methods for details) was performed in the Helmholtz Zentrum München,
Germany. Aliquots of a human serum sample (Seralab, London, UK) were
measured as a reference in addition to the participants’ samples. On the
basis of 116 aliquots of the reference, the mean coefficient of variation (CV)
for the measured metabolites was 15.8% (Supplementary Table 1). Routine
clinical biomarkers were assayed in fresh, unfrozen blood samples in a
standard clinical chemistry laboratory at the University hospital Schleswig-
Holstein, Campus Kiel, Germany.14 C-reactive protein (CRP) concentrations
were measured by immunoturbidimetry (Hitachi Modular, Roche, Rotkreuz,
Switzerland). The detection limit for CRP concentrations was 0.9 mg/l.
Study participants completed detailed self-administered questionnaires,

including questions on medical history and medication intake, educational
attainment, smoking habits and recreational physical activity. The reported
time being physically active was multiplied by the respective metabolic
equivalent task (MET) intensity level and summed up.15 Type 2 diabetes
was defined as either self-reported type 2 diabetes diagnosed by a
physician, reported intake of anti-diabetic medication, glycated hemoglo-
bin ⩾ 6.5% or by fasting blood glucose level ⩾ 126 mg/dl.16 Weight and
height were measured with participants dressed in light clothing without
shoes, subtracting 2 kg from weight measurements to account for
clothing. Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared. Waist circumference was measured at
the midpoint between the lower ribs and the iliac crest on the anterior
axillary line in resting expiratory position. Alcohol consumption over the
past year was assessed with a self-administered food frequency
questionnaire available as a web-based version, and optionally as a paper
version.17 This questionnaire was provided by the Department of
Epidemiology of the German Institute of Human Nutrition Potsdam-Rehbrü
cke.18 In previous analyses, we have assessed the association of dietary
intake and liver fat accumulation.14

Outcome assessment
Liver fat content was quantified by T1-weighted gradient echo MRI
according to previously published methods14 as the relative liver signal
intensity difference of the liver on out-of-phase images compared to in-
phase images in arbitrary units.14 A FLD indicator variable (log liver signal
intensity ⩾ 3.0) was defined according to a predefined cutoff1 correspond-
ing to the maximum Youden Index derived using spectroscopic

determined FLD (liver fat ⩾ 5.56%19) as the reference method.14 Liver
signal intensity was natural logarithmically transformed because of its
skewed distribution.

Statistical analysis
For each metabolite, the levels measured semi-quantitatively as raw ion
counts were divided by the median value of the samples’ run day to
account for instrumental day-to-day variations. Of 601 metabolites
detected, 69 metabolites with less than 10 distinct non-missing values
were excluded from the present analyses. For the remaining 532
metabolites, missing values were imputed with the minimum detected
value.20 Per metabolite, the median number of imputed values was 8.
Trend tests for continuous characteristics across liver signal intensity

quartiles were tested for statistical significance using the Wald test in a
linear regression model. For this purpose, we used the median liver signal
intensity value within quartiles as a continuous variable. Trends of
categorical variables across quartiles of liver signal intensity were assessed
for statistical significance using a Cochran-Armitage test.

Partial least squares regression. The partial least square (PLS) regression
procedure in SAS21 was applied to examine the joint association of serum
metabolites with liver signal intensity. All metabolites with a variable
importance projection VIP value 41 (n= 156 metabolites) were used in a
second PLS model to derive a metabolomics score explaining variation in
serum metabolites relevant for variation in liver signal intensity.

Linear and logistic regression. To assess the association between
metabolites and liver signal intensity or FLD, we performed 2 sets of
analyses. First, the association of a metabolomic score with liver fat
intensity and FLD was analyzed using multiple robust linear regression and
logistic regression models, respectively. Second, the top 15 metabolites
(with the highest VIP values) were associated individually with liver signal
intensity and FLD using robust linear and logistic regression models, as
appropriate. Model 1 was adjusted for sex and age, model 2 was further
adjusted for the following a priori-selected potential confounding factors:
years of education, smoking status and physical activity. We investigated
potential effect modifications by age, sex, type diabetes status, BMI, waist
circumference (o88 cm versus ⩾ 88 cm in women; o102 cm versus
⩾ 102 cm in men) and alcohol consumption (o20 g per day versus ⩾ 20 g
per day in women; o30 g per day versus ⩾ 30 g per day in men) by
including respective multiplicative interaction terms in the regression
models and by stratified analysis.22 In sensitivity analyses, we additionally
adjusted for BMI, CRP, glycated hemoglobin, contraceptive use, lipid
lowering and antihypertensive medication intake. For this analysis, for
participants with a CRP value below the detection limit (0.9 mg/l), we
imputed a value of 0.45 mg/l.

Overrepresentation and pathway analysis. Additionally, we performed a
metabolite set enrichment analysis,23 and a metabolomic pathway
analysis24 using MetaboAnalyst software version 3.0.25 Metabolites with
VIP values 41 in the PLS regression model26 of known identity were
considered for overrepresentation and pathway analyses. Since glucose,
fructose, mannose, galactose, allose and altrose all have the same mass
and retention time, these metabolites cannot be detected independently
by the Metabolon platform used.20 Therefore, we obtained a cumulative
value for these sugars. For the overrepresentation and pathway analyses,
we included glucose as representative of this group in our analyses. The
overrepresentation analysis is based on a hypergeometric test, evaluating
whether the metabolites of an entered metabolite list are overrepresented
in predefined pathway-associated metabolite sets.27 One-sided,
Bonferroni-corrected P-values are reported, quantifying the probability to
reveal at least a specific number of metabolites in the entered metabolite
list belonging to one metabolite set.27 In pathway topology analysis, the
importance of a metabolite as a node within a specific network was
quantified based on a pathway impact score, ranging between 0 and 1.24

RESULTS
Participants’ characteristics across quartiles of liver signal intensity
are shown in Table 1. Age, anthropometrical measures, alanine
aminotransferase, triglycerides and the metabolomic score were
all higher with higher liver signal intensity (reflecting a higher
degree of fat accumulation in the liver; P for trend o0.001). In
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higher liver signal intensity quartiles, individuals were more likely
to have a lower educational attainment (P for trend = 0.039), and
to have type 2 diabetes (P for trend o0.001). A total of 16 women
reported intake of contraceptives, 76 participants reported intake
of lipid lowering medication and 133 participants reported intake
of antihypertensive medication.

Association of metabolite score with liver signal intensity and FLD
Out of the 532 metabolites considered in PLS regression, 156
metabolites had a VIP value 41. A scatter diagram illustrates the
relation between liver signal intensity and the metabolomic score
(Figure 1). In unadjusted robust linear regression analysis, the
metabolomic score based on the 156 metabolites explained 23.9%
variation in liver signal intensity. The score included 6 different
gamma-glutamyl-amino acids with a VIP value 41, which were all
positively related to liver signal intensity in PLS regression analysis:
gamma-glutamylisoleucine, gamma-glutamylleucine, gamma-glu-
tamylmethionine, gamma-glutamylphenylalanine, gamma-
glutamyltyrosine and gamma-glutamylvaline.
In the multivariable-adjusted models, a 1-unit increment in the

metabolomic score was positively associated with liver signal
intensity (regression coefficient (ß): 0.05; 95% CI: 0.05, 0.06) and
FLD (OR: 1.36; 95% CI: 1.27, 1.45; Table 2). There was no evidence
for effect modification by age, sex, type 2 diabetes and alcohol
intake (all P for interaction 40.05). However, the association
of the metabolomic score with liver signal intensity, and FLD,
respectively, was significantly modified by BMI (P for interaction
o0.001). The association between the metabolomic score and
liver fat content/FLD was much stronger in individuals with
overweight and obesity as compared to individuals with normal
weight (see Table 2). Similarly, the association was significantly
modified by waist circumference (P for interaction o0.001). The
metabolomics score was more strongly associated with liver signal

intensity and FLD in women and men with a waist circumference
488 cm and 4102 cm, respectively, as compared to participants
with lower waist circumference.
In sensitivity analyses, we observed that additional adjustment

for BMI, CRP, glycated hemoglobin and medication intake did not
substantially alter the results (the effect estimates for the
association per 1-unit increase of the metabolomic score with
liver signal intensity, or FLD were ß: 0.05; 95% CI: 0.04, 0.05 and OR:
1.33; 95% CI: 1.24, 1.43; as compared to ß: 0.05; 95% CI: 0.05, 0.06
and OR: 1.36; 95% CI: 1.27, 1.45 without the additional
adjustment).

Table 1. Characteristics of the study participants according to quartiles of the liver signal intensity (sample size n= 555)

Participant characteristics Quartile of liver signal intensity P for trenda

1 (n= 138) 2 (n= 139) 3 (n= 139) 4 (n= 139)

Liver signal intensity (median (Q1, Q3)) 2.54 (2.32, 2.63) 2.81 (2.76, 2.87) 3.02 (2.96, 3.08) 3.41 (3.28, 3.68) —
Fatty liver disease (n (%))b 0 (0.0) 0 (0.0) 80 (57.6) 139 (100.0) o0.001
Age, years (median (Q1, Q3)) 59.2 (49.3, 67.6) 60.2 (49.8, 69.1) 64.7 (56.0, 71.8) 64.8 (58.5, 71.5) o0.001
Men (n (%)) 83 (60.1) 74 (53.2) 77 (55.4) 85 (61.2) 0.780

Education (n (%))
⩽ 9 years 36 (26.1) 39 (28.1) 45 (32.4) 50 (36.0) 0.052
10 years 44 (31.9) 49 (35.3) 46 (33.1) 47 (33.8) 0.841
⩾ 11 years 58 (42.0) 51 (36.7) 48 (34.5) 42 (30.2) 0.039

Smoking status (n (%))
Never 73 (52.9) 67 (48.2) 63 (45.3) 59 (42.5) 0.071
Former 55 (39.9) 56 (40.3) 60 (43.2) 68 (48.9) 0.110
Current 10 (7.3) 16 (11.5) 16 (11.5) 12 (8.6) 0.714
Smoking duration, years (median (Q1, Q3)) 0.0 (0.0, 15.0) 2.0 (0.0, 18.0) 5.0 (0.0, 20.0) 10.0 (0.0, 25.0) 0.015

Alcohol intake, g per day 8.5 (3.3, 15.8) 7.9 (3.5, 16.6) 7.9 (2.6, 15.5) 12.4 (3.0, 24.9) o0.001
Physical activity, MET h per week (median (Q1, Q3)) 89.3 (56.0, 136.5) 94.8 (62.0, 135.7) 90.1 (56.6, 130.5) 94.9 (63.9, 136.7) 0.953
BMI, kg/m2 (median (Q1, Q3)) 25.3 (23.1, 27.6) 25.9 (23.3, 28.4) 26.3 (24.2, 28.8) 29.2 (26.8, 31.9) o0.001
Waist circumference (Median (Q1, Q3)) 90.3 (83.6, 99.7) 93.5 (83.0, 102.0) 95.7 (87.8, 102.0) 103.2 (95.1, 110.5) o0.001
Alanine aminotransferase, U/l (median (Q1, Q3)) 21 (16, 26) 20 (16, 29) 20 (17, 27) 29 (21, 37) o0.001
Triglycerides, mmol/l (median (Q1, Q3)) 0.94 (0.71, 1.43) 1.14 (0.88, 1.43) 1.21 (0.90, 1.49) 1.43 (1.06, 2.12) o0.001
Type 2 diabetes (n (%))c 6 (4.4) 7 (5.0) 14 (10.1) 32 (23.0) o0.001
Glycated hemoglobin, % 5.6 (5.4, 5.9) 5.5 (5.3, 5.8) 5.6 (5.4, 5.9) 5.8 (5.5, 6.0) o0.001
C-reactive protein, mg/ld 1.9 (1.2, 3.0) 2.1 (1.4, 3.4) 1.9 (1.3, 3.1) 2.0 (1.5, 3.9) 0.380
Metabolomic score (median (Q1, Q3)) − 2.17 (−4.17, − 0.07) − 1.66 (−3.59, 0.32) − 0.03 (−2.57, 2.45) 3.45 (1.10, 6.51) o0.001

Abbreviations: Q1, quartile 1; Q3, quartile 3; BMI, body mass index; MET, metabolic equivalent task. aP for trend values across quartiles of liver signal intensity
were based on the Cochran-Armitage test for categorical variables and linear regression analysis for continuous variables with the median liver signal intensity
variable within quartiles. bLiver signal intensity ⩾ 3.0. cDefined using baseline and follow-up information as either self-reported type 2 diabetes diagnosed by
a physician, anti-diabetic medication, glycated hemoglobin ⩾ 6.5% or by fasting blood glucose level ⩾ 126 mg/dl. dn= 328 participants with CRP values above
the detection limit (0.9 mg/l).

Figure 1. Scatter diagram of liver signal intensity and the
metabolomic score.
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Individual associations of most significant metabolites with liver
signal intensity and FLD
The relative concentrations of the top 15 metabolites according to
quartiles of liver signal intensity are displayed in Supplementary
Table 2. Specifically, the relative concentrations of cysteine-
glutathione disulfide, and of two metabolites of unknown identity
were lower with higher liver signal intensity quartile, whereas
relative concentrations of glutamate, isoleucine, valine, gamma-
glutamylvaline, leucine, tyrosine, gamma-glutymylisoleucine,
3-methyl-2-oxovalerate, propionylcarnitine, gamma-glutamylleu-
cine, urate and cyclo(leucylprolyl) were higher with higher liver
signal intensity (all P for trend o0.001). Additional information on
these top 15 metabolites, including VIP values, PLS regression
coefficients and relevant pathways, is provided in Table 3,
Supplementary Table 3). The highest VIP values were obtained
for glutamate (VIP = 3.35) and isoleucine (VIP = 3.11).

Overrepresentation and pathway analysis
Of the 156 metabolites with a VIP value greater than one, 111
metabolites were of known identity in the Metabolon Reference
Library Database.28 Of these, 93 metabolites registered in the
Human Metabolome Database28 and in the MetaboAnalyst
metabolite set library for metabolomic pathway-associated
metabolite sets were entered into overrepresentation analysis
using MetaboAnalyst.25 The only enriched metabolite set was the

protein biosynthesis metabolite set, which was six-fold enriched
(corrected P= 2.64E− 07; Supplementary Figure 1). Whereas two
hits—metabolites of the entered list matching the metabolites of
the set—would have been expected by chance, 13 metabolites
matched the protein biosynthesis metabolite set.
Pathways enriched with the 93 metabolites entered were the

aminoacyl-tRNA biosynthesis pathway (corrected P= 7.50E− 07),
the nitrogen metabolism pathway (corrected P= 0.02), and the
valine, leucine and isoleucine biosynthesis pathway (corrected
P= 0.03) (Supplementary Table 4, Supplementary Figure 2). Of
these pathways, the highest pathway impact values were
observed for the aminoacyl-tRNA biosynthesis pathway (impact
score = 0.17) and the valine, leucine and isoleucine biosynthesis
pathway (impact score = 0.15).

DISCUSSION
Principal findings
In this study, we report associations of fasting serum metabolites
with continuous liver fat content, quantified by MRI, in a sample
from the general population. Our main observations are as follows.
First, a metabolomic score was positively associated with liver
signal intensity and FLD, even after adjusting for relevant
confounders. The observed associations were stronger in obese
individuals compared to individuals with overweight or normal
BMI and in individuals with higher waist circumference compared

Table 2. Difference in liver signal intensity and ORs (95% CIs) for fatty liver disease per 1-unit increase in the metabolomic score stratified by age, sex,
BMI, alcohol consumption and diabetes status (sample size n= 555)

Total n Regression coefficient (95% CI) No. of cases OR (95% CI) for fatty liver disease

Model 1a Model 2 Model 1 Model 2

Overall 555 0.05 (0.05, 0.06) 0.05 (0.05, 0.06) 219 1.35 (1.27, 1.43) 1.36 (1.27, 1.45)
Age

o62.3 years 277 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 134 1.38 (1.26, 1.51) 1.40 (1.27, 1.54)
⩾ 62.3 years 278 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 85 1.33 (1.22, 1.45) 1.35 (1.23, 1.47)
P for interaction 0.719 0.728 0.612 0.553

Sex
M 319 0.06 (0.05, 0.06) 0.06 (0.05, 0.07) 81 1.37 (1.26, 1.49) 1.39 (1.28, 1.51)
F 236 0.05 (0.04, 0,06) 0.05 (0.04, 0.06) 138 1.32 (1.20, 1.46) 1.33 (1.20, 1.47)
P for interaction 0.644 0.660 0.566 0.610

BMIb

Normal weight (18.5–24.9 kg/m2) 172 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 41 1.11 (1.00, 1.24) 1.12 (1.00, 1.25)
Overweight (25.0–29.9 kg/m2) 267 0.06 (0.04, 0.07) 0.06 (0.04, 0.07) 108 1.41 (1.27, 1.56) 1.41 (1.27, 1.57)
Obese (⩾30.0 kg/m2) 112 0.07 (0.05, 0.08) 0.07 (0.05, 0.09) 68 1.68 (1.37, 2.07) 2.01 (1.50, 2.70)
P for interaction o0.001 o0.001 o0.001 o0.001

Waist circumference
o88 cm in women, o102 cm in men 293 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 80 1.18 (1.09, 1.28) 1.18 (1.09, 1.29)
⩾ 88 cm in women, ⩽ 102 cm in men 262 0.06 (0.05, 0.07) 0.06 (0.05, 0.08) 139 1.51 (1.35, 1.68) 1.56 (1.39, 1.75)
P for interaction o0.001 o0.001 0.001 0.001

Type 2 diabetes
No 496 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 180 1.32 (1.24, 1.41) 1.33 (1.24, 1.42)
Yes 59 0.06 (0.04, 0.08) 0.06 (0.04, 0.09) 39 1.67 (1.24, 2.26) 2.01 (1.35, 3.00)
P for interaction 0.369 0.331 0.123 0.127

Alcohol consumption, g/d3

o20 g in women, o30 g in men 476 0.06 (0.05, 0.06) 0.06 (0.05, 0.06) 184 1.36 (1.27, 1.45) 1.36 (1.27, 1.46)
⩾ 20 g in women, ⩾ 30 g in men 79 0.05 (0.03, 0.06) 0.05 (0.03, 0.06) 35 1.33 (1.13, 1.56) 1.34 (1.12, 1.59)
P for interaction 0.331 0.310 0.704 0.638

Abbreviations: BMI, body mass index; F, female, M, male. aModel 1 was adjusted for age (years) and sex (male, female). Model 2 was adjusted for age (years), sex
(male, female) except sex strata, education (⩽9 years, 10 years, ⩾ 11 years), smoking status (never, former, current), smoking duration (years) and physical
activity (metabolic equivalent task h per week). bn= 4 individuals with underweight (BMI o18.5 kg/m2) were excluded from the analysis.
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to individuals with lower waist circumference. Second, the
metabolomic score was associated with liver signal intensity also
in individuals free of FLD. Third, the 15 metabolites most strongly
associated with liver signal intensity comprised cysteine-
glutathione disulfide (inversely related to liver signal intensity),
and glutamate, isoleucine, valine, gamma-glutamylvaline, leucine,
tyrosine, gamma-glutamylisoleucine, 3-methyl-2-oxovalerate,
gamma-glutamylleucine, urate and cyclo(leucylprolyl) (all posi-
tively related to liver signal intensity), as well as three metabolites
of unknown identity. Fourth, strongly associated metabolites were
overrepresented in metabolite sets relevant for protein biosynth-
esis with particular impact on the aminoacyl-tRNA biosynthesis
pathway and the valine, leucine and isoleucine biosynthesis
pathway.

In the context of current literature
Glutathione metabolism, branched-chain amino acids and liver
fat. FLD has been linked to a broad spectrum of metabolic
complications, including dyslipidemia and dysglycemia6 but
comprehensive blood metabolomic profiles associated with FLD
are largely unknown.8 Prior studies investigating metabolimic
profiles of FLD have been limited by relatively small sets of clinical
patients9,11,29 undergoing liver biopsies or bariatric surgery.11 and
by the assessment of FLD as a dichotomous trait.9,12 In a relatively
small clinical sample (n= 60), different metabolites have been
investigated in relation to steatohepatitis and FLD.9 Specifically,
the concentration of plasma cysteine-glutathione disulfide was
lower and the concentrations of different glutamyl dipeptides and
amino acids (including glutamate, tyrosine and isoleucine) were
higher in individuals with histological-confirmed hepatic steatosis
(n= 11) compared to controls (no evidence for FLD on ultrasound;
n= 25).9 The authors discuss that lower cysteine-glutathione
disulfide levels and higher gamma-glutamyl peptide level—both
of which also linked to FLD in the present study—might be
attributable to an increased glutathione turnover in response
to oxidative stress.9,12 In concordance with our study, the
concentration of branched-chain amino acids were positively

associated with the 10-year risk of FLD detected by ultrasound in
the Young Finns Study.30

We expand these prior reports by demonstrating that these
biomarkers are indeed associated with FLD, but also with liver fat
on a continuous scale (determined by MRI) in a large sample from
the general population (n= 555). The association between
glutamate and liver fat content is further supported by observa-
tional and the experimental data from the Framingham Heart
Study and the Malmö Diet and Cancer Study that linked glutamate
to metabolic traits (for example, obesity, insulin resistance, high
blood pressure and dyslipidemia).31 However, the association of a
non-targeted metabolomics panel with liver fat has not been
reported previously in a large community-dwelling sample.
In a prior analysis from our group, limited to a targeted set of

metabolites (n= 138) and a subsample (n= 230), we reported that
branched-chain amino acids (including isoleucine, leucine, valine)
discriminate well between individuals with and without ultra-
sonographic evidence of FLD.32 The present analysis, by contrast,
was conducted in a larger sample (n= 555), used liver signal
intensity on a continuous scale and a much broader set of
metabolites (n= 532), applying a non-targeted metabolomic
approach.

Lipids and liver fat. Lipid accumulation in the liver is one of the
hallmarks of FLD.33 Using a targeted mass-spectrometry-based
lipidomic approach, Puri et al.34 identified circulating plasma
lipids, associated with nonalcoholic FLD, including saturated fatty
acids, monounsaturated fatty acids and specific polyunsaturated
fatty acids. In our analyses, however, only one lipid biomarker,
namely propionylcarnitine, was among the 15 most important
(with the highest VIP values) metabolites associated with liver
signal intensity. Propionylcarnitine, however, was not assessed in
the former targeted lipidomic analysis.34

Effect modification by BMI and waist circumference. We obtained
evidence that the association between the metabolomic score
and liver signal intensity was modified by BMI and waist
circumference. Specifically, the association between the

Table 3. Most important metabolitesa in the PLS regression analysis for liver signal intensity (sample size n= 555)

Metabolites Subpathway or brief description Regression coefficient for standardized
metabolites

VIP
statistic

Inverse association with liver signal intensity
Cysteine-glutathione
disulfide

Glutathione metabolism − 0.019 3.05

X—16137 Unknown − 0.018 2.87
X—13543 Unknown − 0.016 2.60

Positive association with liver signal intensity
Glutamate Glutamate metabolism 0.021 3.35
Isoleucine Leucine, isoleucine and valine metabolism 0.019 3.11
Valine Leucine, isoleucine and valine metabolism 0.019 3.05
Gamma-glutamylvaline Gamma-glutamyl amino acid 0.018 2.93
Leucine Leucine, isoleucine and valine metabolism 0.018 2.82
Tyrosine Phenylalanine and tyrosine metabolism 0.017 2.76
Gamma-glutamylisoleucine Gamma-glutamyl amino acid 0.016 2.59
3-Methyl-2-oxovalerate Leucine, isoleucine and valine metabolism 0.016 2.57
Propionylcarnitine Fatty acid metabolism and branched-chain amino acid

metabolism
0.015 2.48

Gamma-glutamylleucine Gamma-glutamyl amino acid 0.015 2.48
Urate Purine metabolism, (hypo)xanthine/Inosine containing 0.015 2.47
Cyclo(leucylprolyl) Dipeptide 0.015 2.41

PLS, partial least squares; VIP, variable importance in the projection; X, number, metabolites of unknown identity. aThe variable importance in the projection
statistic 23 was used to assess the importance of a metabolite in the PLS model. Metabolites with the 15 highest VIP statistics in the PLS model were included in
the table.
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metabolomic score and liver fat was stronger in obese as
compared to normal-weight individuals and in participants with
a higher waist circumference compared to participants with a
lower waist circumference. Consistent with this observation, a
BMI-dependent association between serum metabolites and liver
steatosis has been reported in 467 individuals biopsied for
laparoscopic cholecystectomy, bariatric surgery or suspected
nonalcoholic FLD.10

Strengths and limitations
Major strengths of the present study are the assessment of serum
metabolites over a broad range of metabolic pathways by
applying a non-targeted metabolomic approach in a relatively
large population-based setting, and the assessment of liver fat
content on a continuous scale using MRI. To minimize measure-
ment error a standardized sample handling protocol was applied
in the pre-analytical phase, and samples were stored at − 80 °C
until metabolome analyses were conducted. Metabolomic scores
can be derived on one hand based on prior physiological
knowledge and thus include only metabolites that have been
linked to liver fat accumulation in prior publications. However, also
metabolites beyond aspects already known may be of relevance in
the pathophysiology of FLD. Empirical approaches enable the
assessment of metabolomics profiles in a comprehensive and
unbiased manner. Furthermore, as opposed to traditional analyses
that focus on single metabolites, this approach takes interactions
of metabolites into account. Limitations of the study are as
follows. The cross-sectional design allows no conclusion with
regard to time sequence and causality of the reported associa-
tions. The chemical identity of some of the metabolites analyzed is
unknown and has to be identified in future studies. As we relied
on one single measurement of metabolites, intra-individual
variation in serum metabolites concentrations over time could
not be assessed within the present study. However, reliability of
concentrations of serum metabolite over periods of months35 and
years36 has been demonstrated . Though the association of
carbohydrates with liver fat accumulation might vary by
carbohydrate type, no distinction of types of carbohydrates was
possible based on this non-targeted metabolomics approach that
we applied. Although we believe that insulin resistance might play
an important role, no direct measure of insulin resistance such as
homeostasis model assessment was available in our sample. Given
that a considerable proportion of liver fat variance is not explained
by the circulating metabolites investigated, further research on
the correlates and determinants of liver fat is warranted.

CONCLUSIONS
In the present study, we identified fasting metabolomic profiles
associated with FLD and continuous liver fat content, quantified
by MRI, in a general population sample. A metabolomic score,
consisting mainly of branched-chain amino acids and derived
gamma-glutamyl dipeptides, was related to liver signal intensity
and FLD. We observed effect modification by BMI and waist
circumference in the sense that the association between these
metabolites and liver fat content was stronger in obese and
overweight individuals compared to normal-weight individuals
and in individuals with a higher waist circumference compared to
participants with a lower waist circumference. Furthermore, these
associations of these metabolites with liver fat (on a continuous
scale) persisted when the analyses were restricted to individuals
free of FLD. Overrepresentation and pathway analyses highlighted
the importance of branched-chain amino acids and derived
gamma-glutamyl dipeptides in FLD. These metabolites are
considered to be involved in insulin resistance and oxidative
stress. Further studies are warranted to validate our observations
in other samples and to specifically assess the correlation of these

metabolomic markers with established markers of insulin resis-
tance and oxidative stress. It should be assessed in longitudinal
settings whether the identified metabolites are predictive of new
onset incident FLD or of change of liver fat content over time.
Finally, functional studies are warranted to explore the molecular
mechanisms linking the observed metabolites to FLD and liver fat
content.
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