Supplementary Note 1. SUMMARY OF ASSOCIATION RESULTS AT KNOWN AND NOVEL LOCI.

The exome-wide single variant association results are displayed in **Supplementary Table 2**. We first partitioned the significant ($P < 5 \times 10^{-7}$) and suggestive ($P < 5 \times 10^{-6}$) single variant association results into two sets: variants in previously reported associated regions (**Supplementary Table 2A**) and variants with potentially novel association signals (**Supplementary Table 2B**).

Of the 57 loci with common variants associated with FG or FI in multiple ancestries (1-13), twenty-one regions contained significant or suggestive association signals in our analysis. Of the seven regions harboring significant associations with non-synonymous variants, five (*GCKR*, *G6PC2*, *SLC30A8*, *PCSK1*, and *GLP1R*) were described previously by our group (13), where, when possible, conditional analyses and functional experiments are utilized to illuminate functional transcripts. In the *MADD* locus, a missense variant *ACP2* p.Arg29Gln showed significant association with FG levels (P = 1.91 x 10⁻⁷, MAF = 38%). This variant is in low LD ($r^2 = 0.138$) with the reported variant, rs7944584 (P = 2.62 x 10⁻¹¹, MAF = 39%), but after conditioning on rs7944584 the association was not significant (P = 0.003). An additional association with a low-frequency variant was observed at the *MTNR1B* locus. A variant upstream of *MTNR1B*, rs7950811, (effect = 0.057; P = 6.8 x 10⁻¹¹), has a MAF of 4.5% and in low LD with the index SNP, rs10830963 ($r^2 = 0.002$), in 1000 Genomes data (14). After conditioning on the index SNP, the association of rs7950811 with FG remained significant (P = 3.07 x 10⁻⁷). For FI, five regions contained significant or suggestive association signals. All of the insulin-associated variants were common with MAF > 25%. Two of these regions, the *GCKR* and *GRB14/COBLL1* loci, harbor significant missense variants and were previously described (13).

Association results at previously reported variants from genome-wide association studies are presented in **Supplementary Table 2C**. Of the 68 previously published common variant associations with FG and FI, we were able to carry out association tests at 36 FG and 16 FI variants. Thirty of the FG association loci showed P < 0.05, with 100 % having a consistent direction of effect. Thirteen FI associated loci had P < 0.05, with 100% demonstrating a consistent direction of effect.

Potentially novel association signals

We observed five and seven variants passing suggestive level of significance for FI and FG, respectively (**Supplementary Table 2B**). As this analysis focused on coding variation, we took the three coding variants forward to a replication analysis in four independent Finnish studies (N = 5,747) (15-18). The *AKT2* p.Pro50Thr variant in *AKT2* was present and well-imputed in the 1000 Genomes reference panel (imputation score: 0.886 to 0.957). The correlation between imputed and directly genotyped genotypes was high ($r^2 > 0.88$), and the association of this variant with FI levels replicated, (P_{replication} = 0.00054, N = 5,747) resulting in a combined (discovery and replication) sample P value of 9.98 × 10⁻¹⁰ (**Supplementary Table 2E**). *MMEL1* p.Glu323Gln, which has a MAF of only 0.2% (seven minor allele carriers in the HBCS subset), was poorly imputed and not tested for association (imputation score: 0.718 to 0.945, $r^2 = 0.57$). *TP53BP1* p.Thr1278IIe was not observed in the studies.

Summary of exome-wide significant gene based association results

The suggestive and significant gene based association signals from each ancestry group in the exome sequencing data and the exome chip data, as well as combined results, are displayed in **Supplementary Table 2D**. The *AKT2* gene based association with FI is described in the main text.

In gene-based tests using the PTV+NS_{broad} mask, *NDUFAF1* was significantly associated with FI levels ($P_{Burden} = 1.10 \times 10^{-6}$). This association was driven by a single missense variant (p.His309Asp, rs199599633, P = 9.3×10^{-5} , N = 1,673) that was not associated with FI levels in exome array data (P = 0.018, N = 19,569). NADH dehydrogenase (ubiquinone) complex I, assembly factor 1, or *NDUFAF1*, encodes for a complex I assembly factor protein, which is part of the first step of the respiratory chain. Mutations in both copies of this gene are reported to cause mitochondrial complex I deficiency, which manifests as cardioenphalomypathy or fatal hypertrophic cardiomyopathy while heterozygous parents were reported as healthy(19; 20).

Additionally, a third gene, *GIMAP8*, was associated with FG levels in the PTV-only mask ($P_{Burden} = 2.30 \times 10^{-6}$). This association was driven by singleton and doubleton variants. This gene encodes a GTPase of the immunity-associated protein family (21)

Supplementary Note 2. POPULATION GENETICS AND CONSTRAINT

We studied the population genetics properties of *AKT2* and *AKT2* p.Pro50Thr by cataloguing details of all the protein altering variants observed in the T2D-GENES exome sequence data (N=12,940). We phased variants in proteins or genes (including non-coding variants) using SHAPEIT (22) and calculated population statistics and diversity indices with Arlequin (v 3.5) (23), grouped by country of origin. We built the haplotype network using the pegas and igraph libraries in R. dN/dS for Human-Chimpanzee alignments were extracted from ENSEMBL database (24). We computed the "within-human" dN/dS with codeml (PAML) (25) using hg19 sequence as reference and alternative sequence containing all the observed segregating sites. The Mcdonald-Kreitman test (26) for *AKT2* was computed in Bioperl (Bio::PopGen::Statistics) using *AKT3* (hg19) as an outgroup.

There was modest heterogeneity across regions of Finland, with North Karelia (MAF=1.7%) different (0.001<pairwise F_{ST} <0.003; *P*<0.01) from all other tested regions, except Central Finland (MAF=1.3%, pairwise F_{ST} =0.0004, *P*=0.08). These geographical differences in Pro50Thr allele frequency are consistent with long-term drift (27) with no evidence of selection pressure differences at *AKT2* across Finland (dN/dS_{Finland}=0.1; 0.08<dN/dS_{European}<0.4).

In the complete GoT2D and T2D-GENES exome sequence data of 12,940 individuals (6,504 with type 2 diabetes), *AKT2* displayed some evidence of purifying selection (dN/dS<0.01 comparing human and chimpanzee) (**Supplementary Figure S3**; **Supplementary Figure S4**). We observed 36 non-synonymous variants in *AKT2* (35 with a MAC \leq 5 and Pro50Thr with MAC=61) (**Supplementary Table 3**). No other protein-altering variants had frequency greater than 0.3% in the 60,706 individuals (including 6,347 from the GoT2D and T2D-GENES studies) in the Exome Aggregation Consortium (ExAC) data.

Supplementary Note 3. PATHWAY ANALYSES

We used biological knowledge to test for enrichment of signal in pathways. Pathways and networks were selected from MSigDB (28), which includes Gene Ontology, pathways from KEGG, Ingenuity, Reactome, and Biocarta; and the manually curated monogenic pathways previously considered. We carried out a two-stage enrichment analysis: step one calculates gene aggregation scores using a function of single variant statistics; and step two calculates gene set scores using a function of aggregation scores from each gene in the set. In step one, we make use of a range of gene aggregation functions, including

the minimum p-value (or maximum Bayes' factor) for single-variant association (within ancestry or trans-ethnic) in the gene (with correction for the number of variants in the gene). In step two, we apply a pre-ranked GSEA method (28), which consists of a sensitive-improved Kolmogorov-Smirnov (random bridge) statistic, and which provides better correction of the null distribution for highly correlated gene sets (as we see for our hand curated gene sets). Additionally, we performed a biologically enhanced pathway analyses with DEPICT (29), an integrative tool that we used to highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed.

Gene set definitions: We assembled pre-defined, hand-curated lists to create four gene sets: "Monogenic All" (N = 81), including any gene with reported mutations that result in a disease or syndrome leading to either increased prevalence of diabetes or changes in glycemic traits. We further prioritized two subsets of genes, "Monogenic Glucose" (N = 41) and "Monogenic Insulin" (N = 37) including any gene with mutations leading to changes in respective glycemic traits as a primary feature. The list contains genes identified before September 2013. The fourth gene set, "Insulin Receptor Signaling," was created using Ingenuity Pathway Analysis (IPA) tools (30) by merging the insulin receptor signaling, IGF-1 signaling, and PI3K/AKT signaling pathways and adding all downstream phosphylated substrates of AKT.

Association Analysis: SKAT and burden tests were performed after aggregating functional variants (according to the previously described criteria) across all the genes in each gene set. Conditional analyses were performed using features implemented in RareMETALS (31; 32).

Enrichment of association signals: Empirical enrichment for the number of gene based tests with P < 0.001 and the number of single variant tests with P < 0.001 in each gene set was determined by first counting the number of tests below the threshold. For a particular gene set, let $N_{observed}$ denote the number of tests with P < 0.001. A pool of similar genes was assigned to each gene in the gene set, according to the quartile of exon length and quintiles of the number of the nonsynonymous and synonymous variants in the gene. For each gene set, 1,000 matched gene sets were created. An empirical distribution of N_i (the number of tests with P < 0.001 in matched set *i*) was constructed for each of the matched sets. The empirical enrichment P-value was calculated by observing the proportion of matched sets with $N_i \ge N_{observed}$.

Additional traits related to insulin resistance: We examined the single variant association of fasting adiponectin level (log-transformed, age, sex and BMI adjusted, and inverse-normalized), 2 hour glucose level (age, sex and BMI-adjusted, and inverse-normalized) and 2 hour insulin level (log-transformed, age, sex and BMI adjusted, and inverse-normalized) in these pathways using exome array data when available from the discovery cohorts (D2D2007, DPS, DRSEXTRA, FINRISK, FUSION, Health2008, Inter99, METSIM, ULSAM).

Summary of Results

To further assess the evidence of enriched signals in biologically related genes, we looked for enrichment across pathways using both hand curated and publically available pathways. This was conducted using GSEA (28; 33). While no gene-set was significant after multiple testing correction, there is enrichment for several pathways, including adipocytokine signaling, glucose transport, galactose metabolism, glycolysis and gluconeogenesis, and starch and sucrose metabolism pathways, all of which include both G6PC2 and G6PC. While the G6PC2 association with FG has previously been described (13), we note that G6PC mutations result in glycogen storage disorders (34).

Since AKT2 lies in the insulin receptor signaling pathway and AKT2 mutations are a known cause of both familial lipodystophy, severe insulin resistance and hypoglycemia (35-38) we next explored whether there was an enrichment of rare and low frequency variants in these gene sets ("Monogenic Genes," and "Insulin Receptor Signaling Genes") [Supplementary Table 6A]. First, we tested for global enrichment by aggregating all variants predicted to be deleterious using the annotation masks previously described for gene based testing (PTV-only, PTV+NS_{strict}, PTV+NS_{broad}, PTV+Missense). We found a significant enrichment of deleterious variants (protein truncating, splice site and non-synonymous) in the monogenic genes ($P = 2 \times 10^{-4}$) in exome array data [Supplementary Table 6B] but no such enrichment in an analysis of the exome sequencing data set (P = 0.87) [Supplementary Table 6C1. Conditional analyses demonstrated that in addition to AKT2 p.Pro50Thr (P conditional on AKT2 p.Pro50Thr = 0.0017), seven additional top ranked variants contribute to this signal (P conditional on AKT2 p.Pro50Thr, CFTR p.Asp1270Asn, INSR p.Val1012Met, ZMPSTE24 p.Arg178His, ZFP57 p.Arg178His, CFTR splice donor variant rs78756941 and PCNT p.Glu1785Lys jointly = 0.0104) [Supplementary Table S6D,E]. No other novel associations were detected with the other gene sets and variant masks, although when comparing the effects of the burden tests across the four variant aggregation categories, we observed a positive trend of effect as we examined the category containing the least predicted deleterious (PTV+missense) to the most predicted deleterious (PTV-only), although the confidence intervals widen as the number of included variants decrease [Supplementary Fig. 6].

To find specific genes harboring an enrichment of association with either FG or FI levels, we next focused on association results from the monogenic genes, testing each set for empirical enrichment. We found that a gene implicated in congenital generalized lipodystrophy, *CAV1* (39), showed enrichment of association with FG levels when considering the set of glucose-specific monogenic genes from the exome sequencing analysis (enrichment P = 0.03; *CAV1* $P = 1.9 \times 10^{-4}$ with protein truncating and low-frequency missense variants and $P = 7.0 \times 10^{-4}$ with protein truncating and predicted deleterious variants). Mutations in *CAV1* are characterized by extreme insulin resistance and lipodystrophy (39) but in our data no association of *CAV1* variants with FI levels was observed. We also observed a borderline enrichment for fasting insulin level with a gene-based burden test in the insulin receptor signaling pathway (enrichment P = 0.06; (*PTGS2* burden $P = 1.1 \times 10^{-4}$ with protein truncating and low-frequency missense variants; **[Supplementary Fig. 7, Supplementary Table S7A,B**].

We further examined the association of three quantitative traits related to insulin resistance: fasting adiponectin level, and 2 hour glucose and 2 hour insulin levels after an oral glucose tolerance test. Besides a nominally significance Other than the *AKT2* p.Pro50Thr allele association with 2 hour insulin level (Effect = 26% increase, 95% confidence interval = 16% - 38%, P = 7.86×10^{-8}), no other associations were observed [**Supplementary Fig. 7C**].

Supplementary Note 4. EXPRESSION PROFILE OF AKT2

GTEx

We compared the expression pattern of *AKT2* to the two other members of the *AKT* gene family, *AKT1* and *AKT3*, using multi-tissue RNA sequencing (RNA-seq) data from the pilot phase of the GTEx project. Detailed procedures for sample collection, RNA extraction, RNA-seq, and gene and transcript quantifications have been previously described (40). Briefly, in the pilot phase, a total of 9,365 tissue samples targeting more than 30 distinct human tissues were collected from 237 post-mortem donors. RNA was extracted, and 1,749 unique samples that passed QC (RIN value of 6.0 or higher and at least 1µg of total RNA), were selected for RNA-seq. Non strand-specific RNA sequencing after poly-A

selection was performed using Illumina TruSeq RNA Sample Preparation protocol on the Illumina HiSeq 2000, and aligned with Tophat (v 1.4.1) (41) to UCSC hg19. Gencode (v 12) (42) was used as a transcriptome model for the alignment, and gene and isoform quantifications. Gene and exon level expression was quantified using RNA-SeQC (43) and the Flux Capacitor (v 1.2.3, http://flux.sammeth.net) was used in the quantification of the expression of several transcriptional elements including gene transcript, splice junctions and introns. In total, 44 tissues had data from more than one individual and were used in the analyses.

Genotyping and imputation: Samples were genotyped on the Illumina HumanOmni5-4v1_B SNP array and imputed to the 1,000 Genomes Phase 1 reference (an updated data freeze version from 19 April 2012, release v3) using IMPUTE2 (44; 45) as described (40).

Age and BMI associations: We studied BMI and age associations using a linear mixed model as implemented in the lmer function in the lme4 R package (46). Sex, age, BMI, and three PCs were included in the model as fixed covariates and the date of sequencing and the date of nucleic acid isolation as random covariates. The gene expression RPKM values were inverse variance rank normalized for these analyses.

eQTL analysis: The cis-eQTL for AKT2 in subcutaneous adipose tissue was extracted from the eQTL data generated during the pilot phase of the GTEx project. The methods have been previously described in detail (47). Briefly, the association of common (MAF \geq 5%) SNPs with gene expression levels was studied using a linear model in MatrixEQTL (48) including sex, three genotyping PCs, and 15 expression PEER factors (49) as covariates. The cis-window was defined as one megabase (Mb) up- and down-stream of the transcription start site of each transcript. Prior to the eQTL analysis the RPKM values were inverse normalized across genes within each tissue and transformed into a standard normal based on rank.

EuroBATs

EuroBATs RNA-seq samples: Samples from photo protected subcutaneous adipose tissue from 766 twins were extracted (131 monozygotic twin pairs, 187 dizygotic twin pairs and 130 unrelated individuals) and processed as previously described (50; 51). In brief, samples were prepared for sequencing with the Illumina TruSeq sample preparation kit (Illumina, San Diego, CA) according to manufacturer's instructions and were sequenced on a HiSeq2000 machine. Afterwards, the 49-bp sequenced paired-end reads were mapped to the GRCh37reference genome (52) with BWA v0.5.9 (53). We use genes defined in the GENCODE 10 annotation (42), removing genes with more than 10% zero read count. RPKM values were root mean transformed.

Genotyping and imputation: Samples were genotyped on a combination of the HumanHap300, HumanHap610Q, 1M-Duo, and 1.2MDuo 1M Illumnia arrays, as described in Grundberg *et. al* (54). Samples were imputed into the 1000 Genomes Phase 1 reference panel (data freeze, 10/11/2010) (6) using IMPUTE2 (44; 45) and filtered (removing variants with MAF<1%, IMPUTE info value<0.8). Samples with both genotypes and expression values (N=720) were used in the subsequent analyses.

Gene-age, gene-BMI, and insulin associations: We used inverse normalized RPKM values to assess the effects of age and BMI on gene expression. We fit linear mixed models using R (55) with the lmer function in the lme4 package (46). Confounding factors in all models included fixed effects (primer insert size, GC content mean) and random effects (primer index, date of sequencing, family relationship)

and zygosity). In addition to the adjusting for these fixed and random covariates, the analysis of age also adjusted for BMI and the analysis of BMI was adjusted for age. The P values to assess significance for age and BMI effects were calculated from the Chi-square distribution with 1 degree of freedom using likelihood ratio as the test statistic. FI was measured at the same time point as the fat biopsies, following a previously described protocol (56). Natural log transformed FI were adjusted for age or for age and BMI and the residuals were inverse rank normalized. FI-SNP and FI-*AKT2* association was tested with a linear model using the lm function in R.

eQTL analysis: We ran the eQTL analysis on residuals from a mixed model including the first 20 PCs as fixed effects and family relationship and zygosity as random effects. SNP-expression association was performed with a t-test statistic using the NP-GWAS software. We assessed statistical significance through 100,000 permutations.

METSIM

METSIM RNA samples: Subcutaneous fat biopsy samples were obtained from a sample of the participants of the baseline METSIM study. Total RNA was isolated from these samples using Qiagen miRNeasy Kit according to the manufacturer's instructions. RNA integrity number values were assessed with the Agilent Bioanalyzer 2100. High-quality samples (RNA integrity number>7.0) were used for transcriptional profiling with the Affymetrix Human Genome U219 Array. Genome Studio software (2010.v3) was used to obtain fluorescent intensities.

eQTL analysis and gene-age, gene-BMI and insulin associations: The SNP-gene associations were studied for all SNP within 1 Mb of a given gene. The RNA normalized expression data were adjusted for 35 PEER factors and inverse normal transformed PEER processed residuals were for used eQTL mapping (57). Linear mixed model EMMAX (58) accounts for sample relatedness and was implemented in EPACTS (http://genome.sph.umich.edu/wiki/EPACTS). The sample size for eQTL-mapping was N=770. BMI and age associations, as well as FI associations (with and without adjustment for BMI) were studied using the mixed linear model implemented in lme4 (46) in R. The fixed covariates including age and BMI were used as random covariates. Association between the SNPs associated with *AKT2* expression (eSNPs) and FI was tested with a linear model using the lm() function in R. The natural log transformed FI levels were adjusted for age and BMI and the residuals were inverse rank normalized. All analyses using expression data were conducted in 770 METSIM individuals, while for the tests of eSNP and FI association the sample size for analysis was 10,081. *Expression Profile of AKT2*

To gain further insights into the tissues relevant for AKT2 function we explored gene and transcript expression patterns of *AKT2* (ENSG00000105221) from multiple (N = 44) human tissues using RNA sequencing (RNA-seq) data from the Genotype Tissue Expression (GTEx) Project (47).

In the GTEx data AKT2 is ubiquitously expressed [Supplementary Fig. 13A,B]; the gene is present in all the available tissues (median expression across individuals RPKM(59) (reads per kb per million reads) > 7 in all tissues, [Supplementary Table 8] and in all individuals, in agreement with previous studies examining AKT2 expression via RT-PCR, Western blot, and Northern Blot analysis (60-63), and documented essential role of AKT isoforms in biological processes throughout the body (64). No enrichment of AKT2 expression is present in insulin sensitive tissues (i.e. pancreas, skeletal muscle, adipose tissue (both subcutaneous and visceral), liver and kidney cortex) via RNA sequencing as proposed in mouse and rat models, however, this is consistent with previous examination of AKT2

mRNA in human tissues (61-63; 65). This GTEx RNA sequencing data does not address insulinsensitive tissue enrichment seen at the level of AKT2 protein, yet in general mRNA levels correlate with protein abundance (66-68).

AKT2 has multiple alternatively spliced transcripts, yet little is known of their specific roles, and therefore we investigated which of the transcripts are the most abundant and which tissues these are active in Gencode version 12 used in the gene and transcript annotations lists 28 *AKT2* transcripts and 17 of these transcripts are expressed (mean RPKM > 1) in at least one of the studied tissues [**Supplementary Fig. 13C,D**]. However, majority of the expression appears to be due to three *AKT2* transcripts: *AKT2-004* (processed transcript) and *AKT2-001* (protein-coding) that span the full length of the gene, and *AKT2-008* (protein-coding), which does not include the downstream exons. Together these three transcripts constitute on average 44% (range 18-65%) of *AKT2* expression in the GTEx tissues. The two longer *AKT2* transcripts, *AKT2-004* and *AKT2-001*, follow similar expression pattern to the gene, while the shorter one, *AKT2-008*, shows more specific pattern of expression being most expressed in uterus, kidney cortex and esophagus mucosa.

The exon containing the p.Pro50Thr variant is included in 14 out of 28 expressed transcripts (all the 28 *AKT2* transcripts are expressed at a detectable level in at least one individual in at least one tissue), including in all the three most highly expressed transcripts [**Supplementary Fig. 13D**]. The expression profile of the exon containing p.Pro50Thr is similar to the whole *AKT2* gene with the tissues showing highest *AKT2* expression generally having the higher levels of expression of the exon containing p.Pro50Thr [**Supplementary Fig. 13B**]. Notably, the exon is expressed in all tissues and all individuals, further suggesting that the exon likely encodes part of the protein integral for its function.

Similarly to *AKT2*, the two other members of the *AKT* gene family, *AKT1* and *AKT3*, are expressed in all the tissues available in the GTEx data with the exception of rather low expression of *AKT3* in liver and whole blood. Of the three genes, *AKT1* is generally the most and *AKT3* the least abundant in all tissues. *AKT2* is the most highly expressed of the three homologs (P < 0.05 for all comparisons using one-sided paired Student's t-test and log2 transformed expression values) only in skeletal muscle, pituitary and cerebellum/cerebellar hemisphere, with the higher *AKT2* expression being most pronounced in skeletal muscle [**Supplementary Fig. 14**].

AKT2 expression in adipose tissue and association with FI

To assess whether Pro50Thr was associated with *AKT2* expression, we tested for gene expression quantitative trait loci (eQTL) in available adipose tissue data. We found an eQTL in the 5'UTR of *AKT2* (rs11880261; MAF=35%) with the common allele associated with lower *AKT2* expression levels (**Supplementary Figure 15**; **Supplementary Table 9**). For Pro50Thr, we found the rare allele was associated with lower *AKT2* expression in adipose tissue (METSIM effect=-1.0 SD; $P=8.9\times10^{-4}$, EAF=0.8%). The rare Pro50Thr coding allele (T) sits on the same haplotype as the common allele of rs11880261 (C, r²=0.002, D'=0.5 in the 1000 Genomes Finnish sample) that is associated with lower *AKT2* expression. A reciprocal conditional analysis showed that these are independent signals (Pro50Thr: $P_{\text{conditional}}=8.4\times10^{-3}$; eQTL: $P_{\text{conditional}}=1.9\times10^{-13}$). No association was detected between rs11880261 and FI levels (METSIM P=0.30, N=10,081; EuroBATS P=0.80, N=710), suggesting that the common variant eQTL does not drive the initial FI association.

Mendelian randomization analysis

To elaborate the potential causality behind the association between *AKT2* expression and fasting insulin association, we applied a Mendelian randomization based approach using the discovered eQTL SNPs as instrumental variables (IV) following a similar procedure as described recently (69). The association data for the SNP-gene, gene-FI, and SNP-FI analyses from EuroBATS and METSIM were first combined in a fixed-effects inverse-variance-weighted meta-analysis. We derived the IV estimator by taking the ratio of the regression coefficients from the SNP-FI and SNP-*AKT2* analyses, estimating standard error using the delta method. We used a Z test to determine the significance of the IV estimator and the difference between the IV estimator and the observational estimator. Power for this analysis was calculated using an online MR calculator (http://cnsgenomics.com/shiny/mRnd/) with the following values as input: sample size = 2091, alpha = 0.05, beta_xy =[0.01-0.1], beta_OLS = 0.05, R2_xz = 0.025, sigma_x = sigma_y = 1 (70).

Mendelian randomization with rs11880261 as an instrumental variable for AKT2 expression failed to show a causal relationship between AKT2 expression and FI (P=0.41) (Supplementary Table 10). However, power for the Mendelian randomization analysis is not sufficient to conclude there is no effect. Our instrument (rs11880261) explains about 2.5% of the variance in AKT2, but the observational association between AKT2 expression and FI is also weak. Depending on the estimate of the causal effect of AKT2 expression to FI, the power with the sample size of 2,091 can be as low as 5%.

Supplementary References

1. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, Loos RJ, Manning AK, Jackson AU, Aulchenko Y, Potter SC, Erdos MR, Sanna S, Hottenga JJ, Wheeler E, Kaakinen M, Lyssenko V, Chen WM, Ahmadi K, Beckmann JS, Bergman RN, Bochud M, Bonnycastle LL, Buchanan TA, Cao A, Cervino A, Coin L, Collins FS, Crisponi L, de Geus EJ, Dehghan A, Deloukas P, Doney AS, Elliott P, Freimer N, Gateva V, Herder C, Hofman A, Hughes TE, Hunt S, Illig T, Inouye M, Isomaa B, Johnson T, Kong A, Krestyaninova M, Kuusisto J, Laakso M, Lim N, Lindblad U, Lindgren CM, McCann OT, Mohlke KL, Morris AD, Naitza S, Orru M, Palmer CN, Pouta A, Randall J, Rathmann W, Saramies J, Scheet P, Scott LJ, Scuteri A, Sharp S, Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM, Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D, Wichmann HE, Willemsen G, Witteman JC, Yuan X, Zhao JH, Zeggini E, Schlessinger D, Sandhu M, Boomsma DI, Uda M, Spector TD, Penninx BW, Altshuler D, Vollenweider P, Jarvelin MR, Lakatta E, Waeber G, Fox CS, Peltonen L, Groop LC, Mooser V, Cupples LA, Thorsteinsdottir U, Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM, Stefansson K, McCarthy MI, Wareham NJ, Meigs JB, Abecasis GR: Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009;41:77-81

2. Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, McCarthy MI, Froguel P, Ruokonen A, Balding D, Jarvelin MR, Scott J, Elliott P, Kooner JS: Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009;58:2703-2708

3. Xing C, Cohen JC, Boerwinkle E: A weighted false discovery rate control procedure reveals alleles at FOXA2 that influence fasting glucose levels. Am J Hum Genet 2010;86:440-446

4. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Magi R, Morris AP, Randall J, Johnson T, Elliott P, Rybin D,

Thorleifsson G, Steinthorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JR, Egan JM, Lajunen T, Grarup N, Sparso T, Doney A, Voight BF, Stringham HM, Li M, Kanoni S, Shrader P, Cavalcanti-Proenca C, Kumari M, Qi L, Timpson NJ, Gieger C, Zabena C, Rocheleau G, Ingelsson E, An P, O'Connell J, Luan J, Elliott A, McCarroll SA, Payne F, Roccasecca RM, Pattou F, Sethupathy P, Ardlie K, Ariyurek Y, Balkau B, Barter P, Beilby JP, Ben-Shlomo Y, Benediktsson R, Bennett AJ, Bergmann S, Bochud M, Boerwinkle E, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Bottcher Y, Brunner E, Bumpstead SJ, Charpentier G, Chen YD, Chines P, Clarke R, Coin LJ, Cooper MN, Cornelis M, Crawford G, Crisponi L, Day IN, de Geus EJ, Delplanque J, Dina C, Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R, Franzosi MG, Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S, Gwilliam R, Gyllensten U, Hadjadj S, Hallmans G, Hammond N, Han X, Hartikainen AL, Hassanali N, Hayward C, Heath SC, Hercberg S, Herder C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J, Isomaa B, Johnson PR, Jorgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA, Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O, Lecoeur C, Li Y, Lyssenko V, Mahley R, Mangino M, Manning AK, Martinez-Larrad MT, McAteer JB, McCulloch LJ, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Morken MA, Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Orru M, Pakyz R, Palmer CN, Paolisso G, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AF, Pichler I, Polasek O, Posthuma D, Potter SC, Pouta A, Province MA, Psaty BM, Rathmann W, Rayner NW, Rice K, Ripatti S, Rivadeneira F, Roden M, Rolandsson O, Sandbaek A, Sandhu M, Sanna S, Sayer AA, Scheet P, Scott LJ, Seedorf U, Sharp SJ, Shields B, Sigurethsson G, Sijbrands EJ, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H, Syvanen AC, Tanaka T, Thorand B, Tichet J, Tonjes A, Tuomi T, Uitterlinden AG, van Dijk KW, van Hoek M, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waeber G, Wagner PJ, Walley A, Walters GB, Ward KL, Watkins H, Weedon MN, Wild SH, Willemsen G, Witteman JC, Yarnell JW, Zeggini E, Zelenika D, Zethelius B, Zhai G, Zhao JH, Zillikens MC, Consortium D, Consortium G, Global BC, Borecki IB, Loos RJ, Meneton P, Magnusson PK, Nathan DM, Williams GH, Hattersley AT, Silander K, Salomaa V, Smith GD, Bornstein SR, Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedoussis GV, Serrano-Rios M, Morris AD, Lind L, Palmer LJ, Hu FB, Franks PW, Ebrahim S, Marmot M, Kao WH, Pankow JS, Sampson MJ, Kuusisto J, Laakso M, Hansen T, Pedersen O, Pramstaller PP, Wichmann HE, Illig T, Rudan I, Wright AF, Stumvoll M, Campbell H, Wilson JF, Anders Hamsten on behalf of Procardis C, investigators M, Bergman RN, Buchanan TA, Collins FS, Mohlke KL, Tuomilehto J, Valle TT, Altshuler D, Rotter JI, Siscovick DS, Penninx BW, Boomsma DI, Deloukas P, Spector TD, Frayling TM, Ferrucci L, Kong A, Thorsteinsdottir U, Stefansson K, van Duijn CM, Aulchenko YS, Cao A, Scuteri A, Schlessinger D, Uda M, Ruokonen A, Jarvelin MR, Waterworth DM, Vollenweider P, Peltonen L, Mooser V, Abecasis GR, Wareham NJ, Sladek R, Froguel P, Watanabe RM, Meigs JB, Groop L, Boehnke M, McCarthy MI, Florez JC, Barroso I: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105-116

5. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang JY, Oh JH, Kim DJ, Kim NH, Kim S, Hong EJ, Kim JH, Min H, Kim Y, Zhang R, Jia W, Okada Y, Takahashi A, Kubo M, Tanaka T, Kamatani N, Matsuda K, consortium M, Park T, Oh B, Kimm K, Kang D, Shin C, Cho NH, Kim HL, Han BG, Lee JY, Cho YS: Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 2011;43:990-995

6. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME,

Navarro P, Perry JR, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Bottcher Y, Bouchard C, Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbaton-Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, Jarvelin MR, Jhun MA, Johnson PC, Jukema JW, Jula A, Kao WH, Kaprio J, Kardia SL, Keinanen-Kiukaanniemi S, Kivimaki M, Kolcic I, Kovacs P, Kumari M, Kuusisto J, Kyvik KO, Laakso M, Lakka T, Lannfelt L, Lathrop GM, Launer LJ, Leander K, Li G, Lind L, Lindstrom J, Lobbens S, Loos RJ, Luan J, Lyssenko V, Magi R, Magnusson PK, Marmot M, Meneton P, Mohlke KL, Mooser V, Morken MA, Miljkovic I, Narisu N, O'Connell J, Ong KK, Oostra BA, Palmer LJ, Palotie A, Pankow JS, Peden JF, Pedersen NL, Pehlic M, Peltonen L, Penninx B, Pericic M, Perola M, Perusse L, Peyser PA, Polasek O, Pramstaller PP, Province MA, Raikkonen K, Rauramaa R, Rehnberg E, Rice K, Rotter JI, Rudan I, Ruokonen A, Saaristo T, Sabater-Lleal M, Salomaa V, Savage DB, Saxena R, Schwarz P, Seedorf U, Sennblad B, Serrano-Rios M, Shuldiner AR, Sijbrands EJ, Siscovick DS, Smit JH, Small KS, Smith NL, Smith AV, Stancakova A, Stirrups K, Stumvoll M, Sun YV, Swift AJ, Tonjes A, Tuomilehto J, Trompet S, Uitterlinden AG, Uusitupa M, Vikstrom M, Vitart V, Vohl MC, Voight BF, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Wheeler E, Widen E, Wild SH, Willems SM, Willemsen G, Wilson JF, Witteman JC, Wright AF, Yaghootkar H, Zelenika D, Zemunik T, Zgaga L, Replication DIG, Metaanalysis C, Multiple Tissue Human Expression Resource C, Wareham NJ, McCarthy MI, Barroso I, Watanabe RM, Florez JC, Dupuis J, Meigs JB, Langenberg C: A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012;44:659-669

7. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Magi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PC, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Muller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJ, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJ, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, Liu Y, Atalay M, Kiess W, James AL, Rivadeneira F, Uitterlinden AG, Palmer CN, Doney AS, Willemsen G, Smit JH, Campbell S, Polasek O, Bonnycastle LL, Hercberg S, Dimitriou M, Bolton JL, Fowkes GR, Kovacs P, Lindstrom J, Zemunik T, Bandinelli S, Wild SH, Basart HV, Rathmann W, Grallert H, Replication DIG, Metaanalysis C, Maerz W, Kleber ME, Boehm BO, Peters A, Pramstaller PP, Province MA, Borecki IB, Hastie ND, Rudan I, Campbell H, Watkins H, Farrall M, Stumvoll M, Ferrucci L, Waterworth DM, Bergman RN, Collins FS, Tuomilehto J, Watanabe RM, de Geus EJ, Penninx BW, Hofman A, Oostra BA, Psaty BM, Vollenweider P, Wilson JF, Wright AF, Hovingh GK, Metspalu A, Uusitupa M, Magnusson PK, Kyvik KO, Kaprio J, Price JF, Dedoussis GV, Deloukas P, Meneton P, Lind L, Boehnke M, Shuldiner AR, van Duijn CM, Morris AD, Toenjes A, Peyser PA, Beilby JP, Korner A,

Kuusisto J, Laakso M, Bornstein SR, Schwarz PE, Lakka TA, Rauramaa R, Adair LS, Smith GD, Spector TD, Illig T, de Faire U, Hamsten A, Gudnason V, Kivimaki M, Hingorani A, Keinanen-Kiukaanniemi SM, Saaristo TE, Boomsma DI, Stefansson K, van der Harst P, Dupuis J, Pedersen NL, Sattar N, Harris TB, Cucca F, Ripatti S, Salomaa V, Mohlke KL, Balkau B, Froguel P, Pouta A, Jarvelin MR, Wareham NJ, Bouatia-Naji N, McCarthy MI, Franks PW, Meigs JB, Teslovich TM, Florez JC, Langenberg C, Ingelsson E, Prokopenko I, Barroso I: Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012;44:991-1005

8. Chen G, Bentley A, Adeyemo A, Shriner D, Zhou J, Doumatey A, Huang H, Ramos E, Erdos M, Gerry N, Herbert A, Christman M, Rotimi C: Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet 2012;21:4530-4536

9. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, Butte NF: Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 2012;7:e51954

10. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, Stancakova A, Barnes C, Widen E, Kajantie E, Eriksson JG, Viikari J, Kahonen M, Lehtimaki T, Raitakari OT, Hartikainen AL, Ruokonen A, Pouta A, Jula A, Kangas AJ, Soininen P, Ala-Korpela M, Mannisto S, Jousilahti P, Bonnycastle LL, Jarvelin MR, Kuusisto J, Collins FS, Laakso M, Hurles ME, Palotie A, Peltonen L, Ripatti S, Salomaa V: Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 2012;5:242-249

11. Go MJ, Hwang JY, Kim YJ, Hee Oh J, Kim YJ, Heon Kwak S, Soo Park K, Lee J, Kim BJ, Han BG, Cho MC, Cho YS, Lee JY: New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J Hum Genet 2013;58:362-365

12. Wessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, Dauriz M, Hivert MF, Raghavan S, Lipovich L, Hidalgo B, Fox K, Huffman JE, An P, Lu Y, Rasmussen-Torvik LJ, Grarup N, Ehm MG, Li L, Baldridge AS, Stancakova A, Abrol R, Besse C, Boland A, Bork-Jensen J, Fornage M, Freitag DF, Garcia ME, Guo X, Hara K, Isaacs A, Jakobsdottir J, Lange LA, Layton JC, Li M, Hua Zhao J, Meidtner K, Morrison AC, Nalls MA, Peters MJ, Sabater-Lleal M, Schurmann C, Silveira A, Smith AV, Southam L, Stoiber MH, Strawbridge RJ, Taylor KD, Varga TV, Allin KH, Amin N, Aponte JL, Aung T, Barbieri C, Bihlmeyer NA, Boehnke M, Bombieri C, Bowden DW, Burns SM, Chen Y, Chen YD, Cheng CY, Correa A, Czajkowski J, Dehghan A, Ehret GB, Eiriksdottir G, Escher SA, Farmaki AE, Franberg M, Gambaro G, Giulianini F, Goddard WA, 3rd, Goel A, Gottesman O, Grove ML, Gustafsson S, Hai Y, Hallmans G, Heo J, Hoffmann P, Ikram MK, Jensen RA, Jorgensen ME, Jorgensen T, Karaleftheri M, Khor CC, Kirkpatrick A, Kraja AT, Kuusisto J, Lange EM, Lee IT, Lee WJ, Leong A, Liao J, Liu C, Liu Y, Lindgren CM, Linneberg A, Malerba G, Mamakou V, Marouli E, Maruthur NM, Matchan A, McKean-Cowdin R, McLeod O, Metcalf GA, Mohlke KL, Muzny DM, Ntalla I, Palmer ND, Pasko D, Peter A, Rayner NW, Renstrom F, Rice K, Sala CF, Sennblad B, Serafetinidis I, Smith JA, Soranzo N, Speliotes EK, Stahl EA, Stirrups K, Tentolouris N, Thanopoulou A, Torres M, Traglia M, Tsafantakis E, Javad S, Yanek LR, Zengini E, Becker DM, Bis JC, Brown JB, Cupples LA, Hansen T, Ingelsson E, Karter AJ, Lorenzo C, Mathias RA, Norris JM, Peloso GM, Sheu

WH, Toniolo D, Vaidya D, Varma R, Wagenknecht LE, Boeing H, Bottinger EP, Dedoussis G, Deloukas P, Ferrannini E, Franco OH, Franks PW, Gibbs RA, Gudnason V, Hamsten A, Harris TB, Hattersley AT, Hayward C, Hofman A, Jansson JH, Langenberg C, Launer LJ, Levy D, Oostra BA, O'Donnell CJ, O'Rahilly S, Padmanabhan S, Pankow JS, Polasek O, Province MA, Rich SS, Ridker PM, Rudan I, Schulze MB, Smith BH, Uitterlinden AG, Walker M, Watkins H, Wong TY, Zeggini E, Consortium EP-I, Laakso M, Borecki IB, Chasman DI, Pedersen O, Psaty BM, Tai ES, van Duijn CM, Wareham NJ, Waterworth DM, Boerwinkle E, Kao WH, Florez JC, Loos RJ, Wilson JG, Frayling TM, Siscovick DS, Dupuis J, Rotter JI, Meigs JB, Scott RA, Goodarzi MO: Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015;6:5897

13. Mahajan A, Sim X, Ng HJ, Manning A, Rivas MA, Highland HM, Locke AE, Grarup N, Im HK, Cingolani P, Flannick J, Fontanillas P, Fuchsberger C, Gaulton KJ, Teslovich TM, Rayner NW, Robertson NR, Beer NL, Rundle JK, Bork-Jensen J, Ladenvall C, Blancher C, Buck D, Buck G, Burtt NP, Gabriel S, Gjesing AP, Groves CJ, Hollensted M, Huyghe JR, Jackson AU, Jun G, Justesen JM, Mangino M, Murphy J, Neville M, Onofrio R, Small KS, Stringham HM, Syvanen AC, Trakalo J, Abecasis G, Bell GI, Blangero J, Cox NJ, Duggirala R, Hanis CL, Seielstad M, Wilson JG, Christensen C, Brandslund I, Rauramaa R, Surdulescu GL, Doney AS, Lannfelt L, Linneberg A, Isomaa B, Tuomi T, Jorgensen ME, Jorgensen T, Kuusisto J, Uusitupa M, Salomaa V, Spector TD, Morris AD, Palmer CN, Collins FS, Mohlke KL, Bergman RN, Ingelsson E, Lind L, Tuomilehto J, Hansen T, Watanabe RM, Prokopenko I, Dupuis J, Karpe F, Groop L, Laakso M, Pedersen O, Florez JC, Morris AP, Altshuler D, Meigs JB, Boehnke M, McCarthy MI, Lindgren CM, Gloyn AL, consortium TDG, Go TDC: Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet 2015;11:e1004876

14. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI: SNAP: a webbased tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008;24:2938-2939

15. Eriksson JG: Epidemiology, genes and the environment: lessons learned from the Helsinki Birth Cohort Study. J Intern Med 2007;261:418-425

16. Perttila J, Merikanto K, Naukkarinen J, Surakka I, Martin NW, Tanhuanpaa K, Grimard V, Taskinen MR, Thiele C, Salomaa V, Jula A, Perola M, Virtanen I, Peltonen L, Olkkonen VM: OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J Mol Med (Berl) 2009;87:825-835

17. Raitakari OT, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, Pietikainen M, Hutri-Kahonen N, Taittonen L, Jokinen E, Marniemi J, Jula A, Telama R, Kahonen M, Lehtimaki T, Akerblom HK, Viikari JS: Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol 2008;37:1220-1226

18. Vartiainen E, Laatikainen T, Peltonen M, Juolevi A, Mannisto S, Sundvall J, Jousilahti P, Salomaa V, Valsta L, Puska P: Thirty-five-year trends in cardiovascular risk factors in Finland. Int J Epidemiol 2010;39:504-518

19. Dunning CJ, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT: Human CIA30 is involved in the early assembly of mitochondrial complex I

and mutations in its gene cause disease. EMBO J 2007;26:3227-3237

20. Fassone E, Taanman JW, Hargreaves IP, Sebire NJ, Cleary MA, Burch M, Rahman S: Mutations in the mitochondrial complex I assembly factor NDUFAF1 cause fatal infantile hypertrophic cardiomyopathy. J Med Genet 2011;48:691-697

21. Krucken J, Schroetel RM, Muller IU, Saidani N, Marinovski P, Benten WP, Stamm O, Wunderlich F: Comparative analysis of the human gimap gene cluster encoding a novel GTPase family. Gene 2004;341:291-304

22. Delaneau O, Marchini J, Zagury JF: A linear complexity phasing method for thousands of genomes. Nat Methods 2012;9:179-181

23. Excoffier L, Lischer HE: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010;10:564-567

24. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009;19:327-335

25. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007;24:1586-1591

26. McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991;351:652-654

27. Palo JU, Ulmanen I, Lukka M, Ellonen P, Sajantila A: Genetic markers and population history: Finland revisited. Eur J Hum Genet 2009;17:1336-1346

28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550

29. Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, Lui JC, Vedantam S, Gustafsson S, Esko T, Frayling T, Speliotes EK, Genetic Investigation of ATC, Boehnke M, Raychaudhuri S, Fehrmann RS, Hirschhorn JN, Franke L: Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 2015;6:5890

30. Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003;100:9440-9445

31. Feng S, Liu D, Zhan X, Wing MK, Abecasis GR: RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics 2014;30:2828-2829

32. Liu DJ, Peloso GM, Zhan X, Holmen OL, Zawistowski M, Feng S, Nikpay M, Auer PL, Goel A, Zhang H, Peters U, Farrall M, Orho-Melander M, Kooperberg C, McPherson R, Watkins H, Willer CJ, Hveem K, Melander O, Kathiresan S, Abecasis GR: Meta-analysis of gene-level tests for rare variant association. Nat Genet 2014;46:200-204

33. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003;34:267-273

34. Lei KJ, Shelly LL, Pan CJ, Sidbury JB, Chou JY: Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 1993;262:580-583

35. Arya VB, Flanagan SE, Schober E, Rami-Merhar B, Ellard S, Hussain K: Activating AKT2 mutation: hypoinsulinemic hypoketotic hypoglycemia. J Clin Endocrinol Metab 2014;99:391-394

36. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, Dunger DB, Barford D, Umpleby AM, Wareham NJ, Davies HA, Schafer AJ, Stoffel M, O'Rahilly S, Barroso I: A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004;304:1325-1328

37. Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJ, Savage DB, Ramaswami U, De Lonlay P, O'Rahilly S, Barroso I, Semple RK: An activating mutation of AKT2 and human hypoglycemia. Science 2011;334:474

38. Tan K, Kimber WA, Luan J, Soos MA, Semple RK, Wareham NJ, O'Rahilly S, Barroso I: Analysis of genetic variation in Akt2/PKB-beta in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes 2007;56:714-719

39. Cao H, Alston L, Ruschman J, Hegele RA: Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis 2008;7:3

40. GTEx-Consortium: Multi-tissue transcriptome analysis in a population sample: the Genotype-Tissue Expression (GTEx) pilot study. submitted 2015;

41. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25:1105-1111

42. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760-1774

43. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, Winckler W, Getz G: RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 2012;28:1530-1532

44. Howie BN, Donnelly P, Marchini J: A Flexible and Accurate Genotype Imputation Method for the

Next Generation of Genome-Wide Association Studies. PLoS Genet 2009;5:e1000529

45. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007;39:906-913

46. Bates D, Maechler M, Bolker B: lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-41. 2011;

47. Consortium GT: The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013;45:580-585

48. Shabalin AA: Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012;28:1353-1358

49. Stegle O, Parts L, Piipari M, Winn J, Durbin R: Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 2012;7:500-507

50. Buil A, Brown AA, Lappalainen T, Vinuela A, Davies MN, Zheng H-F, Richards JB, Glass D, Small KS, Durbin R, Spector TD, Dermitzakis ET: Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nat Genet 2015;47:88-91

51. Brown AA, Buil A, Viñuela A, Lappalainen T, Zheng H-F, Richards JB, Small KS, Spector TD, Dermitzakis ET, Durbin R: *Genetic interactions affecting human gene expression identified by variance association mapping*. Khaitovich P, Ed., 2014

52. The International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 2001;409:860-921

53. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-1760

54. Grundberg E, Small KS, Hedman AK, Nica AC, Buil A, Keildson S, Bell JT, Yang T-P, Meduri E, Barrett A, Nisbett J, Sekowska M, Wilk A, Shin S-Y, Glass D, Travers M, Min JL, Ring S, Ho K, Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S, Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O'Rahilly S, Soranzo N, Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, McCarthy MI, Deloukas P, Dermitzakis ET, Spector TD: Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 2012;44:1084-1089

55. The R Project for Statistical Computing [article online], Available from http://www.r-project.org/.

56. Falchi M, Wilson SG, Paximadas D, Swaminathan R, Spector TD: Quantitative Linkage Analysis for Pancreatic B-cell Function and Insulin Resistance in a Large Twin Cohort. Diabetes 2008;57:1120-1124

57. Stegle O, Parts L, Durbin R, Winn J: A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol

2010;6:e1000770

58. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. Nat Genet 2010;42:348-354

59. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-628

60. Jones PF, Jakubowicz T, Hemmings BA: Molecular cloning of a second form of rac protein kinase. Cell Regul 1991;2:1001-1009

61. Konishi H, Shinomura T, Kuroda S, Ono Y, Kikkawa U: Molecular cloning of rat RAC protein kinase alpha and beta and their association with protein kinase C zeta. Biochem Biophys Res Commun 1994;205:817-825

62. Yang ZZ, Tschopp O, Di-Poi N, Bruder E, Baudry A, Dummler B, Wahli W, Hemmings BA: Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 2005;25:10407-10418

63. Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, Sandusky G, Thomas JE, Neubauer BL, Lai MT, Graff JR: AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res 2001;7:2475-2479

64. Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 2003;17:1352-1365

65. Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR: Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 1998;16:2407-2411

66. Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003;4:117

67. Ning K, Fermin D, Nesvizhskii AI: Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J Proteome Res 2012;11:2261-2271

68. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011;473:337-342

69. Fall T, Hagg S, Magi R, Ploner A, Fischer K, Horikoshi M, Sarin AP, Thorleifsson G, Ladenvall C, Kals M, Kuningas M, Draisma HH, Ried JS, van Zuydam NR, Huikari V, Mangino M, Sonestedt E, Benyamin B, Nelson CP, Rivera NV, Kristiansson K, Shen HY, Havulinna AS, Dehghan A, Donnelly LA, Kaakinen M, Nuotio ML, Robertson N, de Bruijn RF, Ikram MA, Amin N, Balmforth AJ, Braund PS, Doney AS, Doring A, Elliott P, Esko T, Franco OH, Gretarsdottir S, Hartikainen AL, Heikkila K, Herzig KH, Holm H, Hottenga JJ, Hypponen E, Illig T, Isaacs A, Isomaa B, Karssen LC, Kettunen J,

Koenig W, Kuulasmaa K, Laatikainen T, Laitinen J, Lindgren C, Lyssenko V, Laara E, Rayner NW, Mannisto S, Pouta A, Rathmann W, Rivadeneira F, Ruokonen A, Savolainen MJ, Sijbrands EJ, Small KS, Smit JH, Steinthorsdottir V, Syvanen AC, Taanila A, Tobin MD, Uitterlinden AG, Willems SM, Willemsen G, Witteman J, Perola M, Evans A, Ferrieres J, Virtamo J, Kee F, Tregouet DA, Arveiler D, Amouyel P, Ferrario MM, Brambilla P, Hall AS, Heath AC, Madden PA, Martin NG, Montgomery GW, Whitfield JB, Jula A, Knekt P, Oostra B, van Duijn CM, Penninx BW, Davey Smith G, Kaprio J, Samani NJ, Gieger C, Peters A, Wichmann HE, Boomsma DI, de Geus EJ, Tuomi T, Power C, Hammond CJ, Spector TD, Lind L, Orho-Melander M, Palmer CN, Morris AD, Groop L, Jarvelin MR, Salomaa V, Vartiainen E, Hofman A, Ripatti S, Metspalu A, Thorsteinsdottir U, Stefansson K, Pedersen NL, McCarthy MI, Ingelsson E, Prokopenko I, European Network for G, Genomic Epidemiology c: The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med 2013;10:e1001474

70. Brion MJ, Shakhbazov K, Visscher PM: Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 2013;42:1497-1501

Supplementary Figure S1.

A. Fasting Plasma Glucose *

Manhattan and QQ plots for exome-wide association analysis with FG (A) and FI levels (B). On the Manhattan plots, variants within regions of known association are colored in dark blue, and variants outside those regions are colored in gray. The red horizontal line represents the exome-wide significance threshold for single variant associations ($P < 2.5 \times 10^{-7}$). * For readability, the FG Manhattan plot is truncated at $-\log 10(P) = 20$, although variants in the *G6PC2* region on chromosome 2 have $-\log 10(P)$ values) > 20.

Supplementary Figure S2.

QQ plots from the gene based association tests for FI and FG. Two tests were applied, SKAT (left column) and Burden (right column) to four annotation masks (PTV, PTV+NS_{Broad}, PTV+NS_{Strict}, PTV+Missense). A. FI with variants in exome sequencing data set. B. FG with variants in exome sequencing data set. C. FI with variants in exome chip data set. The point deviating from the diagonal is the association test for *AKT2*; see **Supplementary Table 2A** for association details. D. FG with variants in exome chip data set.

Supplementary Figure S3.

Population structure and diversity indices of AKT2 protein in the exome sequencing data set. Each pie represents the frequency of different haplotypes, estimated from phased exome sequencing data in the five continental ancestries (grouped by study or country

of origin). Significance of Tajima's D and F-statistics (global F_{ST} , F_{IS} , F_{IT} , and pairwise F_{ST} (gray line), and within population F_{IS}) are indicated with asterisk: * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001.

S: Number of segregating sites; Na: expected number of alleles; Pi (π): Mean number of pairwise differences; Theta (θ): Watterson's θ estimate; dN/ds: ratio of non-synonymous nucleotide substitutions per non-synonymous site (dN) and number of synonymous

nucleotide substitutions per synonymous site (dS); MK: McDonald-Kreitman test.

African-American: AJ – Jackson Heart Study, AW – Wake Forest School of Medicine Study; East-Asian: EK – Korea Association Research Project, ES – Singapore Diabetes Cohort Study and Singapore Prospective Study Program; European: UA – Ashkenazi (US, Israel), UB – UKT2D Consortium (UK), UF (Finland) – Metabolic Syndrome in Men Study (METSIM), Finland-United States Investigation of NIDDM Genetics (FUSION) Study, Malmo-Botnia Study, UG (Germany) – KORA-gen

Investigation of NIDDM Genetics (FUSION) Study, Malmo-Botnia Study, UG (Germany) – KORA-gen (Germany), US (Sweden) – Malmo-Botnia Study; **Hispanic**: HA – San Antonio Family Heart Study, San Antonio Family Diabetes/ Gallbladder Study, Veterans Administration Genetic Epidemiology

Study, and the Investigation of Nephropathy and Diabetes Study family component, HS – Starr County, Texas; **South-Asian**: SL – London Life Sciences Population Study, SS – Singapore Indian Eye Study.

Supplementary Figure S4.

AKT family conservation compared to other genes. The dN/dS ratio is calculated by comparing homologous coding sequences between human and chimpanzee. It shows the degree to which selection is acting on a gene: ratio<1 points to negative selection/purifying selection, i.e. evolutionary pressure to conserve the sequence in ancestral state, ratio>1 to positive selection, and ratio=1 to neutral evolution. Three *AKT* homologs are highly conserved when compared to the set of "Insulin monogenic" genes (37 genes), to which *AKT*2 belongs, and two other gene sets: 1,002 anatomical structure development genes ("conserved"), and 132 sexual reproduction genes ("fast evolving").

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2017} American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 and the state of the state of$

Supplementary Figure S5A.

Trait values among *AKT2* **variant carriers.** Profile of the inverse normalized, adjusted metabolic trait values (top plot) and scaled (normalized by overall mean and standard deviation) raw trait values (bottom plot) of carriers of three *AKT2* variants: *AKT2* p.Pro50Thr, *AKT2* p.Arg208Lys and *AKT2* p.Arg467Trp from the T2D-GENES whole exome sequencing data set. Points on the graph are observed trait values for heterozygous (black) and homozygous (red) carriers of the variants, split by type 2 diabetes status. Trait abbreviations: HBA1C- glycated hemoglobin, FAST_INS- fasting insulin, FAST_GLU- fasting plasma glucose, TG- triglycerides, CHOL- total cholesterol, LDL-C, low-density lipoprotein cholesterol, HDL-C- high-density lipoprotein cholesterol, BMI- body mass index, WHR-waist to hip ratio, WASITC- waist circumference, HIPC- hip circumference, DBP- diastolic blood pressure, SBP- systolic blood pressure. adjBMI- trait adjusted for BMI

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

Supplementary Figure S5B.

HbA1c, Fasting Glucose and Fasting Insulin distributions in T2D-GENES exome sequence data subset of Finnish cohorts (Botnia, FUSION, and METSIM). Scaled (normalized by overall mean and standard deviation) trait distributions are displayed by genotype group and type 2 diabetes status.

Supplementary Figure S5C.

Phenotype clustering of *AKT2* **missense variant carriers in the T2D-GENES whole exome sequencing dataset on seven metabolic traits**: all missense carriers (**A**), carriers of *AKT2* p.Pro50Ala variant (**B**), and carriers of the other variants (**C**), (see **Supplementary Table 3**). The row labels indicate the variant carried by an individual. P50Talleles: the number of Ala alleles carried; T2D: 0 for controls and 1 for individuals with type 2 diabetes.

Supplementary Figure S6.

The trend in the estimate of the effect size of the global gene burden test for the four variant aggregation categories. The effect estimates (and 95% confidence interval) were provided as output of the burden test result in the RareMETALS package in R.

Supplementary Figure S7A.

Monogenic enrichment in single variant association tests. Single variant association results from the FG and FI association analysis for variants in the four masks in the monogenic gene sets (top) and the insulin receptor signaling genes (bottom).

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

Supplementary Figure S7B.

Pathway enrichment in gene-based tests. Gene burden association results from the fasting glucose and fasting insulin analysis for variants in the PTV+Missense mask in the monogenic gene sets (top) and the insulin receptor signaling genes (bottom).

Supplementary Figure S7C.

Pathway associations in traits related to insulin resistance. Single variant association results for three traits related to insulin resistance: fasting adiponectin levels, 2 hour glucose level and 2 hour insulin level after an oral glucose tolerance test. The variants in these plots are in the PTV+Missense annotation category, with results from variants in the monogenic gene sets (top) and the insulin receptor signaling genes (bottom).

Supplementary Figure S8.

Predicted structure change in AKT2 due to *AKT2* **p.Pro50Thr**. The left plot shows the predicted structure of wild-type AKT2. The right plot shows the predicted structure of AKT2.Thr50.

Supplementary Figure S9.

A. General linear analysis

"Round" model: Variance Variables DF explained (%) F Pr(>F)Round 2 2.73% 1.228 0.300 1 7.572 0.008 Assay 8.42% Insulin induction 1 12.38% 11.125 0.001 Round:Assay 2 1.60% 0.718 0.492 Round:Insulin 2 4.52% 2.033 0.140 0.088 Assay:Insulin 1 3.34% 2.999 Round:Assay:Insulin 2 0.27% 0.121 0.887

B. Assay:Insulin interaction

Full model:

Round	2	2.75%	1.220	0.500
Assay	1	8.42%	7.572	0.008
Insulin induction	1	12.38%	11.125	0.001
Round:Assay	2	1.60%	0.718	0.492
Round:Insulin	2	4.52%	2.033	0.140
Assay:Insulin	1	3.34%	2.999	0.088
Round:Assay:Insulin	2	0.27%	0.121	0.887
Full model:				1
Full model:	DF	Variance explained (%)	F	Pr(>F)
Full model: Variables Assay	DF 1	Variance explained (%) 8.42%	F 14.71	Pr(>F) 3.12E-04
Full model: Variables Assay Insulin induction	DF 1 1	Variance explained (%) 8.42% 12.38%	F 14.71 21.61	Pr(>F) 3.12E-04 1.98E-05
Full model: Variables Assay Insulin induction Variants	DF 1 1 5	Variance explained (%) 8.42% 12.38% 23.52%	F 14.71 21.61 8.21	Pr(>F) 3.12E-04 1.98E-05 6.49E-06
Full model: Variables Assay Insulin induction Variants Assay:Insulin	DF 1 1 5 1	Variance explained (%) 8.42% 12.38% 23.52% 3.34%	<i>F</i> 14.71 21.61 8.21 5.83	Pr(>F) 3.12E-04 1.98E-05 6.49E-06 1.90E-02

In vitro kinase (IVK) assay. A. Results of a generalized linear model (GLM) applied on rescaled raw

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

data. The relative substrate phosphorylation values were generated by dividing each value in each round of analysis with the value for nonstimulated, serum-starved AKT2. A first GLM ("Round" model) was analyzed including the Round as variable; the three independent rounds were not significant: we used them as replicate in the Full model. The plots represent the GLM estimates (and 95% CI) in the Full model for the two significant interactions: **B**. Assay:Insulin. **C**. Assay:Variants. For the Glycogen Synthase Kinase 3 β (GSK3 β), the different AKT2 variants show significant relative phosphorylation (pairwise comparison p-values from contrast analysis reported in inset table). For GST-GSK3 peptide, none of the AKT2 variants showed different relative phosphorylation values. * P < 0.05, ** P < 0.01, *** P < 0.001. DF: degrees of freedom, F: statistic testing the importance of the grouping term, Pr(>F): P value of the F statistic.

Supplementary Figure S10.

©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

C.

General linear analysis

"Round" model:

Variables	df	Variance explained (%)	F	Pr(>F)
Round	2	1.86%	0.903	0.409
Assay	2	1.04%	0.504	0.606
Insulin induction	1	2.00%	1.941	0.167
Round:Assay	4	0.20%	0.049	0.995
Round:Insulin	2	0.11%	0.055	0.946
Assay:Insulin	2	1.37%	0.664	0.517
Round:Assay:Insulin	4	0.63%	0.152	0.962

Full model:

Variables	df	Variance explained (%)	F	Pr(>F)
Assay	2	1.04%	1.96	1.47E-01
Variants	5	46.52%	35.13	2.20E-16
Insulin induction	1	2.00%	7.56	7.28E-03
Assay:Variant	10	26.02%	9.83	8.39E-11
Assay:Insulin	2	1.37%	2.59	8.11E-02

Phosphorylation of AKT2 activation sites in HuH7 liver cells (A) HuH7 cells cells were infected

©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

Assay: Insulin interaction
with lentiviral control, V5-AKT2, V5-AKT2-Lys17, V5-AKT2-Thr50, V5-AKT2-Lys208, V5-AKT2-His274, V5-AKT2-Trp467, blasticidin selected and starved for 18 hr (white bar), and stimulated for 20 min with 100nm insulin (grey bar). V5-tagged AKT2 was isolated from cell lysates with anti-V5 agarose beads and immunoblots (IB) were probed with indicated antibodies. (B) Phosphorylated AKT2 Thr308 and Ser473 were quantified and normalized to total by V5-AKT2. (C) Linear model for the statistical analysis of quantified pAKT2. The "Round" model tests for significant differences between the three rounds of analysis. The Full model examines significance of assay (V5, pAKT2 T308 and pAKT2 S473) and variants (AKT2, AKT2.Lys17, AKT2.Thr50, AKT2.Lys208, AKT2.His274 and AKT2.Trp467) and their interactions. * P < 0.05, ** P < 0.01, *** P < 0.001. DF: degrees of freedom, F: statistic testing the importance of the grouping term, Pr(>F): P value of the F statistic.

Supplementary Figure S11.

Time-course analysis of AKT2 phosphorylation (A) HeLa cells were infected with lentiviral V5-AKT2, V5-AKT2-Thr50, or control pLX304, blasticidin selected and starved for 18 hours and then stimulated for 0, 2, 60, and 240 minutes with 100nm insulin. V5-tagged AKT2 was isolated from cell lysates with anti-V5 agarose beads. Immunoprecipitated (IP) V5-AKT2 and whole cell lysates (WCL) were immunoblotted (IB) with the indicated antibodies. Immunoblots are representative of three independent replicates. (B) Quantification of the three replicates of indicated immunoblots relative to total V5-AKT2. (C) Linear Model (LM) statistical analysis across all three independent replicates. Error bars represent the standard deviation (SD). * P < 0.05, ** P < 0.01, *** P < 0.001.

Supplementary Figure S12.

A. General linear analysis

Variables	df	Variance explained (%)	F	Pr(>F)
Round	2	33.41%	1186.3	2.20E-16
Variants	2	28.95%	1028.2	2.20E-16
Round:Variants	4	37.13%	659.3	2.20E-16

C. Variants variable D. Round variable Control Akt2 Akt2.Thr50 Round 1 Round 2 Round 3 5.5 5.5 (GLM estimates from rescaled raw data using mean control values) (GLM estimates from rescaled raw data using mean control values) 5 5 4.5 4.5 Relative proliferation Relative proliferation 4 4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 NS 0.5 0.5

Proliferation assay. A. Results of a generalized linear model (GLM) applied on rescaled raw data (absorbance value) to test for significant difference in proliferation between the three rounds of analysis,

B. Round:Variants interaction

the three variants and an interaction between round and variants. The rescaling was performed by dividing all the values in each round by the average absorbance in controls. The plots represent the GLM estimates (and 95% CI) for the **B**. Round:Variant interaction and individual variables: **C**. Round and **D**. Variants. * P < 0.05, ** P < 0.01, *** P < 0.001. DF: degrees of freedom, F: statistic testing the importance of the grouping term, Pr(>F): P value of the F statistic.

Supplementary Figure S13.

AKT2 expression in human tissues. A. Boxplot displaying the level and distribution of *AKT2* gene expression (in reads per kilobase per million mapped reads, RPKM) in 44 human tissues available in the GTEx RNA-seq data. **B**. Box plot of the expression (in RNA-seq reads) of the *AKT2* exon of affected by the p.Pro50Thr variant. Read counts are not normalized by the total number of reads per sample, resulting in larger variance in the expression within each tissue. **C**. Heat map of expression patterns of the 28 *AKT2* transcripts in the GTEx tissues, as annotated in Gencode version 12. Intensity of color in each cell represents the expression of the transcript in that tissue; white indicating no expression, and red indicating higher expression. **D**. Visualization of the transcript structure of *AKT2* (Gencode v12). The affected exon, highlighted with the red dashed line, is included in the majority of the *AKT2* transcripts and in all the three most highly expressed transcripts. The tissues are presented in the same order across panels A-C, and colored similarly in panels A and B. Tissue abbreviations are listed in **Supplementary Table 8**.

Supplementary Figure S14.

Expression of the *AKT* **gene family across human tissues**. Each cluster of three boxplots represents the expression of *AKT1* (left), *AKT2* (middle) and *AKT3* (right) in each tissue. *AKT2* is the isoform with the highest expression (P-value < 0.05) in BRNCHA (Brain – Cerebellum), BRNCHB (Brain – Cerebellar Hemisphere), MSCLSK (Muscle – Skeletal) and PTTARY (Pituitary). Tissue abbreviations are listed in Supplementary Table 8.

Supplementary Figure S15.

	Increasing allele / decreasing alleles	Frequency of decreasing allele	Initial Effect of decreasing allele	Ρ	Conditional Effect of decreasing allele	Conditional P
AKT2 Pro50Thr	G/T	0.0083	-0.980	8.9E-04	-0.754	8.4E-03
Lead eSNP rs8104727	T/C	0.647	-0.403	3.6E-14	-0.391	1.9E-13

Expression analysis with common eQTL SNP and AKT2 **p.Pro50Thr**. Top left plot: The regional association plot of variants in the AKT2 region testing association with AKT2 expression. The SNP showing the most significant signal in this plot, rs8104727, is a proxy for rs11880261 (r2 = 1, D' = 1 in the 1000 Genomes phase 3 Finnish sample). Top right plot: observed AKT2 expression levels for the two AKT2 p.Pro50Thr genotypes observed in the METSIM cohort. Bottom table: eQTL statistics and reciprocal conditional analysis with the two SNPs: rs8104727 and AKT2 p.Pro50Thr. The "Beta conditional" and "P conditional" columns highlight the associations with AKT2 expression after conditioning on the other SNP.

Supplementary Table S1.

Details and characteristics of studies included in the analysis.

Supplementary Table S1A. Study details including references, ascertainment, sample QC, variant QC and association covariates.

Stage	Ancestry	Study	Citation(s)	PubMed ID(s)	Sample Ascertainment	Genotypin g array	Call rate	Exclusion criteria	Call rate	Filtering criteria	Calling algorithm	Association covariates
Discovery [ExameChip]	European (Famish)	FIN-D2D 2007	Kotronen, A. et al. Non-stocholic and alcoholic faitly liver disease - tho disease of affluence associated with the metabelie synteme and type 2 diseases. In FTN 2 diseases of a place and a social disease of a place and a social survey. BMC Public Health. 2010 May 10:10:237.		 Population-based survey Obcose toimance classified according to WHO 1999 criteria TD and T2D Kalling plasma glucose concentration 27.0 mmold for 2-A plasma glucose concentration a11.1 mmol1) rummer advected individuals with HBA1c 26.5% according to ADA 2012 criteria for T2D 	Wumina HumanExo me 12v1 1_A	>99%	 - call rate s99% - heterozygosiły >median + 31/GR - technical duplicates with lower call rate - Non-European population oudiers - alex discrepancy - contamination score >10% 	295%	 exclude 101 index with different alive mapping across the two intex exclude values that ad chromosome or poston or atelete mismatch exclude duplicated variants, keeping the one with higher and note. The oad rate is the same attriburity take the one with that comes first in the file call rate <95% exact HVE <10⁶ 	illumina GenCall using standard Illumina cluster files + Zcall	- bpe, age2, sex, BMI for EMMAX- analysis - bgo, age2, sex, BMI, PC1, PC2, PC3, PC4 for intest analysis
Discovery [ExomeChip]	European (Finnish)	The Finnsh Diabetes Prevention Study (DPS)	Tuominhito, J. et al. Prevention of type 2 diabetes metitius by changes in lifestyle among subjects with impaired glucose telerance. N Engl J Med. 2001 May. 3;344(18):1343-50.	11333990	Randomiand controlled ital - All coloniand controlled ital - All coloniand controlled ital - All coloniand the second	illumina HumanExo me-12v1- 1_A	>99%	- call rate s99% - hoterozygosky >median + 3*02R - technical duplicates with lower call rate - Non-European population undirer - exert discrepancy - contamination score >10%	295%	 enclude 101 index with different allele mapping across the two heles enclude variants that bac chromosome or position or unlike manuato. enclude duplicated variants, keeping the one with higher call rate. If the call rate is the same arbitrary's take the one with that comes first in the Tile call rate +69% call rate +69% 	Genotype calls generated on cluster boundaries trained on using study samples * manual review of clusterplots	- age: age2, sex. BMI for EMMAX- analysis - age: age2, sex. BMI, PC1, PC2, PC3, PC4 for rvtesl analysis
Discovery [ExomeChip]	European [Finnish]	The Dose Responses to Exercise Training (DR's EXTRA) Study	Kouki, R. et al. Diet, fitness and metabolic synchrome-the DY's DCTRA study. Num Metab Cerolovers: Dis. 2012 Jul (22(7) 553-60.	21186108	Randommed controlled thal Chucoe tolerance classified according to WHO 1999 criteria TD and T20 (tasing plasma glucoes concentration at 7.0 rest T20 (tasing plasma glucoes concentration at 7.1 menoli or physician diagnosed) cases excluded	HumanExo me-12v1- 1_A	>99%	- call rate 129% - hotero2ygosity >median + 310/R - technical duplicates with lower call rate - Non-European population outlere - set discrepancy - contamination score >10%	255%	 exclude 101 vodes with different alies mapping across the two lies exclude variants that had chromosome or position or zitle imitantiation in the second second second exclude duplicated variants, keeping the one with higher call rate. If the call rate is the same attributivity take the one with that comes first in the file call rate-695% exact HVE <10⁵ 	Illumina GenCali using standard Illumina cluster files + Zcali	- age, age2, sex, BMI for EMMXX- analysis - age, age2, sex, BMI, PC1, PC2, PC3, PC4 for nitest analysis
Discovery [ExomeChip]	European (Finnish)	National FINRISK 2007 Study (FINRISK 2007)	Variainen, E., et al. Thrity-five-year trends in castdowascular risk factors in Finland. Int J Epidemiol. 2010 Apr.39(2):504-18.	19959603	T2D case control study Clucose toirrance classified according to WHO 1999 criteria T1D and T2D (stamp planna glucose concentration a7.0 cases exclude) cases exclude?	HumanExo me-12v1- 1_A	>99%	- call rate s99% - hoterozygosky >median + 3102R - technical duplcates with lower call rate - Non-European population oudiers - sex discepancy - contamination score >10%	255%	- exclude 101 incide with different allele mapping across the nos ites across the nos ites - exclude valants that had chromosome or postion or allele misination - exclude diplicated variants, keeping the one with higher call rate. If the call rate is the same autioury take the one with that some first in the file - call rate +90% - exact HMVE <10 ⁵	illumina GenCall using standard Illumina cluster fries - Zoall	- age, age2, sex, BMI for EMMAX- analysis - age, age2, sex, BMI, PC1, PC2, PC3, PC4 for rytesl analysis
Discovery [ExomeChip]	European (Finnish)	Faland-United States Investigation of NIDOM Genetics (FUSION) Study	Vale, T. et al. Mapping genes for NIDDM. Design of the Financial-billed States Investigation of NIDDM Genetics Scott, L.J., et al. A genome-wide association study of Type 2 diabetes in Finns detect multiple succeptibility variants. Science. 2007 Jun 1:316(5829):1341-5.	9614613; 17463248	 120 care control study - Guosa toitenana classified according to WHO 1999 ordensi - T20 (tasting plasma glurona conventration > 2.0 minuti or 2- h glasma glucosa cancentration >1.11 minuti, by report di diabeter melicino uso, et based or medical record review), vere excluded. 	HumanEva me-12v1+ 1_A	>99%	- call rate stiff% - heterozygosity >median + 3192R - technical duplicates with inwer call rate - Non-European population outliens - aex discrepancy - contaminaton score >10%	295%	 exclude 101 index with different alive mapping across the horo bits exclude variants had chromosome or poston or any eleven manufacture manufacture exclude variants. Keeping the one with higher call and. If the call rates the same administration with that comes first in the file eard TMP <10⁵ 	Illumina GenCall using standard Illumina cluşter Nes + Zcall	- age, age2, sex, BMI, study origin for EMMAX- analysis - age, age2, sex, BMI, study origin, PC1, PC2, PC3, PC4 for rytest analysis
Discovery [ExomeChip]	European [Finnish]	Metabolic Syndrome in Men Study (METSIM)	Standarod, A et al. Charges in molin sensitivity and multin networks in validator to glycomia and glucosa. forerance in 6.414 Filmisti men. Dubates. 2009 May 58(5):1212-21.	19223598	Population-based costs-excisional study Oknows bitmacod classified according to VHVD 1992 cottenis T1D and T2D kinding pitures glucose concentration 21.0 mmoll of 2-b gluerus glucose concentration 21.1.1 mmoll) castes exclude A classified conditionals with PbA112 dd 5% according to ADA 2012 contens for T2D	HumanExo me-12v1_A	>99%	- call rate st99% - heteroxygosity rmedian + 310/2 - technical duplicates with lower call rate - Non-European population outlain - exe discrepancy - contamination score >10%	295%	 exclude 101 index with different alive mapping across the too tale exclude to tale exclude discleration and the tail the terms one ex- evations or exclude displication and the terms of the term with higher call rate. If the call line is the same, arbitrarily take the one with that comes first in the field table -405%; 	Genotype calls generated on cluster boundaries trained on using study samples + manual review of clusterplots	- ege, ege2, BMI for EMMAX- analysis - age, age2, BMI, PC1, PC2, PC3, PC4 for rvtest analysis
Discovery [ExomeChip]	European [Danish]	Health2006	Thuesan, B.H. et al. Cohort Profile: The Heath2006 cohort, Research Centre for Prevention and Health. Int J Epidemiol. 2013 Apr 24.	23615486	Population-based cohort - Glucose tolerance classified according to WHO 1999 criteria - TD and T20 (fasting plasma glucose concentration ≥7.0 mmol/l) cases excluded	Buttina HumanExo me-12v1	298%	 call rate <98% heterozygosity sex discepancy discordance with previous genotypes 	295%	 exclude duplicated variants, keeping the one with higher call rate. call rate <95% HWE <10⁴ cluster separation score 0.4 	tfumina GenCall using standard Ifumina cluster files + Zcall	- age, age ² , BMI for EMMAX-analysis - age, age ² , BMI, PC1-10 for RareMetaWorker analysis
Discovery [ExomeChip]	European (Danish)	inter90	Jergensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99: Eur J Cantiovasc Prev Rehabil. 2003 Oct;10(5):377-86.	14663300	Population-based cohort Olucose tolerance classified according to WHO 1999 criteria TO and T20 (dating plasma glucose concentration 27.0 mmoN or 27.4 plasma glucose concentration 21.1 mmoN() cases excluded	Bumina HumanExo me-12v1	298%	 call rate <98% heterozygosity sex discrepancy discordance with previous genotypes 	a95%	- exclude duplicated variants, keeping the one with higher call rate, - call rate <25%, - HWE <10^{\circ} - cluster separation score 0.4	illumina GenCall using standard Illumina cluster files + Zcall	- nge, age ¹ , BMI fis EMMAX-analysis - age, age ² , BMI, PC1-10 for RareMetalWorker analysis
Discovery [ExomeChip]	European (Danish)	Vejle Biobank	Albrechten, A. et al. Exime sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia. 2013 Feb:56(2):206-310.	23160641	Controls from T2D case-control Gurzose tointance classified according to WHO 1999 criteria TO and T2D (fasting plasma glucose concentration 21.0 mmobil or 2-h plasma glucose concentration 21.1 mmobil) cases excluded	Burnina HumanExo me-12v1	298%	- call rate <98% - helerozygosity - sex discrepancy - discordance with previous genotypes	295%	- exclude duplicated variants, keeping the one with higher call rate, - call rate <55%, - HWE < $10^{\rm A}$ - cluster separation score 0.4	illumina GenCall using standard illumina cluster files + Zcall	- age, age", BMI for EMMAX-analysis - age, age", BMI, PC1-10 for RareMetafWorker analysis
Discovery [ExomeChip]	European (UK)	Genetics of Diabetes Audit and Research Tayside (GoDARTS)	Morris. A.D. et al. The dabates audit and research in Tayside Scotland (DARTS) study: electronic record linkage to create a diabetes register. DARTS/NEMO Colladornicol. BMJ: 1997 Aug 30;315(7107) 324-8.	9329309	 Population-based colors T2D cases, sample with flasting plasma glucose concentration 27.0 mmc01 and pregnant women were excluded 	Bumina HumanExo me-12v1_A	>99%	call rate 599% helerozyposity 45D of mean sechoiz dupicates with lower call rate - Non-European publishin outliers, or non-European reported ancestry - sex discrepancy	×99%	 exclude variants that had chromosome or position or arise manwich encude dynamicate variants. Keeping the one with higher call rate. call rate «40% for Cencil and «90% for zCall eacat HVE «10⁴ GenTfam score «0 & and Cluster separation score «0.4 	Illumina GenCali using standard Illumina cluster files + Zcall	- age, age ² sex, and BMI for EMMAX-analysis - age, age', sex, BMI, PC1, and PC2 for RareMetaWorker analysis
Discovery [ExomeChip]	European [UK]	Twins UK	Moayyeri A, Hammond CJ, Hart DJ, Spector TD. The UK Adut Twin Regatry (TwinsLK Resource). Twin Res Hum Genet. 2013 Feb;16(1):144-9.	23088889	 Unvested samples selected as controls from the Twins UK study 11D and 12D cases and samples with recorded family history of diabetes, or if ether twin was ever recorded as impared glucos birardi (defined as fasting planes glucose concentration -6.1mmolik, in any reading), non-fasting were excluded. 	Bumina HumanExo me-12v1_A	>99%	call rate \$9% technical duplicates with lower call rate Non-European population outliner, unon-European reported ancestry sex discrepancy	>99%	exclude variants that had othermosome or position or alive minimatch exclude tuplicative variants, keeping the one call rate <98% for Genchal and <99% for sCall exact HWS 107 elentrain score <0.6 and Duster separation score <0.6 and Duster separation	Illumina GenCall using standard Illumina cluster files + Zcall	- age, age ² , sex, and BMI for EMMAX-analysis - age, age ² , sex, BMI, PC1, and PC2 for RamMetarWorker analysis

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

Stage	Ancestry	Study	Citation(s)	PubMed	Sample Ascertainment	Genotypin	Call rate	Exclusion criteria	Call rate	Filtering criteria	Calling	Association
Discovery [ExomeChip]	European [UK]	Oxford BioBank (OBB)	http://www.cofortbiobank.org.uk/	NA.	- T2D cases (on diabetic treatment or fasting glucose 27 mmotil) were excluded.	g array Illumina HumanExp me-12v1_A	>99%	 call rate st9% haterozygosiły 4SD of mean technical duplicates with lower call rate Non-European population outliers, or non-European reported ancestry sex discrepancy 	-59%	 exclude variants that had chromosome or position or allele manutch with higher call rate. call rate «38% for dismical and «99% for 2Call «call rate «38% for dismical and «99% for 2Call «call rate sets) for dismical and sets exact HWE «10⁴ Gen Train score «0.6 and Cluster separation score «0.4 	Illumina GenCall using standard Illumina cluster files + Zcall	- ope, app ⁴ , sex, and BMI for EMMAX-analysis - ape, app ⁵ , sex, BMI, PC1, and PC2 for RareMetalWorker analysis
Discovery (ExomeChip)	European [Swedish]	Prospective Investigation of the Vasculature in Uppsata Seniors (PIVUS)	Lind, L. et al. A comparison of three different methods to evaluate endothelium-dependent vasioditation in the elderly the Pospocitie Investigation of the Vasculature in Uppsala Sonice (PPUS) shortly. Antenooleir Throma Vasc Biol. 2005 Nor;25(11):2365-75.	16141402	 Population-based cohort T1D. T2D cases or fasting plasma glucose concentration k7 mmolt, pregnant individuals, and samples with non-fasting blood excluded 	IBumina HumanExo me-12v1_A	>99%	call rate s99% heteroxyposity 4SD of mean technical duplicates with lower call rate Non-European population outliers sex discrepancy	>99%	 exclude variants that had chromotome or position or allelem manable. exclude duplicated variants, keeping the one with higher call rate. call rate <99% for GenCall and <99% for ZCall exact HVE <10⁴ GenTrain score <0.8 and Cluster separation score <0.4 	illumina GenCall using standard illumina cluster tiles + Zcall	- age, age", sex, and BMI for EMMAX-analysis - age, age", sex, BMI, PC1, and PC2 for RanoMeta/Worker analysis
Discovery (ExomeChip)	European (Swedish)	Uppsala Longitudinal Study of Adult Men (ULSAM)	Hedstrand, H. A study of middle-aged men with particular reference to risk factors for cardiovascular disease. Ups J Med Sci Suppl. 1975;19:1-61.	1216300	- Population-based cohort - T1D, T2D cases or fasting plasma glucose concentration x? minolit, and samples with non-fasting blood excluded	Illumina HumanExo me-12v1_A	89916	call rate s19% heterozygosity 4SD of mean heterozygosity 4SD of mean heterozygosity 4SD of mean hon-European population outliers exc discrepancy	>995	 exclude variants that had chromosome of position or available mismutch - exclude displicated variants, keeping the one with higher call rate. call rate <09% for (GenCall and <09% for ZCall exact HVG <10⁴ GenTain score <0.6 and Cluster separation score <0.4 	Illumina GenCall using standard Illumina cluster files + Zcall	- age, age ⁵ , and BMI for EMMAX- analysis - age, age ⁵ , sex, BMI, PC1, and PC2 for RareMetalWorker analysis
Discovery [ExomeChip]	European (Finnish)	Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study	Isomaa, B. et al. A family history of diabetes is associated with reduced physical fitness in the Ptenalence, Prediction and Prevention of Diabetes (PPP)-Bibnia study. Diabetelogia. 2010 Aug.55(8):1709-13.	20454776	 Population-based cohort T1D, T2D cares of fasting plasma glucose concentration 27 mmolil, pregnant individuals, and samples with non-fasting blood excluded 	Ilumina HumanExe me-12v1.1	>90%	-call rate s99% - heterozygosity 4SD of mean - gender discordance - GWAS discordance - genotyping platform fingerprint discordance - population outliers	>90%	- genotyping cluster checks within batches, outline removed - exact HWE +10*	Birdseed with cluster filter	 age, age2, and BMI for EMMAX, analysis age, age2, sex, BMI, PC1, PC2, PC3, and PC4 for RaroMeta/Worker analysis
Discovery [ExomeSeq]	Atrican American	Jackson Heart Study (AJ)	Taylor, H. A. et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis 15, 58–4 (2005)	16320381	No T2D by ABA 2004 definition, fasting plasma glucose e100 migit and BAA1 ceBA is also of two exami- e100 migit and BAA1 ceBA is also of two exami- tions and the A10 ceBA is also of two exami- tions and the A10 ceBA is also of two exami- bility within 1 unit, and algo within 3 by and 10 keBA is allowed and the A10 ceBA is also of BAI > 25, for females, BABI within 5 units and algo within 20 years, for matched pairs) within and algo within 20 years. (bit 17 middle) algo allowed and algo within 20 years. (bit 17 middle) algo allowed and algo within 20 years. (bit 17 middle) algo allowed algo within 20 years. (bit 17 middle) algo allowed algo within 20 years. (bit 17 middle) algo allowed algo algo algo algo algo algo algo algo							
Discovery (ExomeSec)	African American	Wake Forest School of Medicine Study (AW)	Paimer, N. D. et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS	22238593	 No current diagnosis of diabetes or renal disease Individuals recruited from community and internal medicine 	1						
Discovery [ExomeSeq]	East Asian [Korean]	Korea Association Research Project (EK)	Che 7 62/2002 (2012) Che, Y. S. et al. A large-scale genome-wide association study of Asian occulations uncovers genetic factors influencing eight quantitative trans. Nat. Genet. 41, 527– 534 (2009)	19396169	Critica - No part history of diabetes - No ami-cabete medication - Parting plasma glucose 2 file il glucose plasma glucose 2 - Parting plasma glucose 2 file il glucose and 18 mmol at both baseline and follow up timepoint - Older sublests with normal discose prioritized	-	 poor quality samples temoved on the basis of multiple metrics array genotype concordance (where available). 					
Discovery (ExomeSeq)	East Asian [Singapore Chinese]	Singapore Diabetes Cohort Study and Singapore Prospective Study Program (ES)	Sim, X. et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 7(4), e1001363 (2011)	21490949	Fasting blood glucose <6 mmol/l No personal history of diabetes No anti-diabete medication Clear controls servermlably sufficient		mean heterozygosity and homozygosity, high singleton counts	- sequence reads from all				
Discovery [ExomeSeq]	European [Ashkenazi m]	Astikenazi (UA)	Atzmon. G. et al. Lipoprotein genergyse and conserved pathway for exceptional loopping to humans. PLoG Biol. 4(4), 413 (2006); Atzmon. G. et al. Evolution in health human telebrease is associated with telebrease isorgh in Animate intermetatic and and the telebrease isorgh in Animate intermetatic and the telebrease isorgh and animate isorgh and the telebrease isorgh and the generatically isorated population. Diabetes 50(3), 681-682. (2001): Elistic and a Predicting genetic nephropathy using a multifactorial genetic model. PLoS One 6(4), a18743 (2011)	16602826: 19915151; 11248891; 21533139	- Fasting blood glucose +7 mmol/l - Ko personal hatory of dubetes - No anti-dubeto médications	- Agilent Trusoq	engleton courts by assemption to assemption Recalibration (VSDR) for SNNa, Markinston (VSDR) for SNNa by the state pendiple caling with GATK - using autoomal by the state pendiple caling with GATK - using autoomal by the state pendiple caling with GATK - assemption passed extended OC and with MAR-15 in all state trans-strinic kinship randyses, compute the state rans-strinic kinship randyses, compute the state of an extension assemption	exome sequenced samples processed pinty and aligned) to the reference percent (hg18) (http://www.sourcelope.net) - polymorphic alies and gencypes called with GATK (http://www.broadinatilute.org/ gatk/) - poor quality samples and variants removed on the basis of multiple methods array gencypes concretance (envention				
Discovery (ExomeSeq)	European [Finnish]	Metabolic Syndrome in Men Study (METSIM)	Stancabova A. et al. Charges in Insulin sensitivity and insulin release in relation to groemia and guocee followance in 6,414 Finnish men. Diabetes 58, 1212–1221 (2009)	19223598	- Normal glucose tolerance at baseline and follow-up visits - Prototy at anobes with no turnly history of diabetes and - Prototy at anobes with no turnly history of diabetes and - Prototy at anobes and the normal index of the normal and 2: hour post-diabetes selected with faiting glucose -6.1 mmobil and 2 hour post-charging glucose -7.2 mmobil - Older controls preferentially selected - Older controls preferentially selected	capture reagents, and individually -barcoded samples sequenced on illumina Hi5eg2000		genorpsic concordance (entries available), main hieterczyposity and homozygosity, high singletin counts for samples. Variant Quality Score Recalization (VSQR) (for SNVs, and hard filtering for INVELS, within each ancesity group (African-American, East-Asian, European, Hispanic, and South-Asian), extended QC further excluded variants on the	"- within each study, age, sex, BML and other study-specific covariates for EMMAX-analysis			
Discovery [ExomeSeq]	European [Finnah]	Finland-United States Investigation of NIDDM Genetics (FUSION) Study	Vale, T. et al. Mapping genes for NIDDM. Design of the Finited-United States Investigation of NIDDM Genetics. (FOISON Using Contents Care 2 (16) SH4-950 (1996) (FOISON Using Content Care 2 (16) SH4-950 (1996) 2 datettes in Finns detects multiple susceptibility variants. Science 316(5629), 1341-1345 (2007)	9614613; 17463248	 Unnested controls with normal glucose toterance NGT) based or WHO (1999) definition, Easting plasma glucose «8.1 mM and 2 hour posticul glucose during an OGTI <7.8 mM Prequency matched to cases by bith province; BMI 218 Bagimis, gas 200 Within each bith province, prioritized samples from stage 2 Within each bith province, prioritized samples from stage 2 			study in ancestry group, deviation from Hardy-Weinberg equilibrium (exact p+10-8, females only for X chromosome, in any study in ancestry group) or differential call rate between T2D cases and controls (p+10-4, all studies combined across				
Discovery [ExomeSeq]	European (German)	KORA-gen	Wichmann, H. E., Gieger, C. and Ilig, T. KORA-gen- resource for population genetics, controls and a broad spectrum of disease benetypes. Gesundheitswesen 67 Suppl 1, 26–30 (2005)	10032514	 Contrain selected from KORA F4 All controls are normal glucose tolerant; fasting glucose level 46, it mmol/ and two hour glucose level after oral glucose tolerance text <7.8 mmol/ 1, controls are effair <90 years of age with BMI >32 or over 65 years of age with BMI >32 		outliers - identified duplicates on the basis of IBS, and excluded the sample from each	ancesity group)				
Discovery [ExomeSeq]	European [UK]	UKT2D Consortium	Wellcome Trust Case Control Consoltium. Genome-wide association study of 14,000 cases of server common deceases and 2-000 shared controls. Nature 447, 661–78 (2007); Voght, B.F. et al. Tevelv type 2 databetes susceptibility of entitled through large-scale association analyses. Nat. Genet. 42, 575–589 (2019); Registry (TwinsUR), Tain Res. Hum. Genet. 9, 899–906 (2006)	17554300; 20581827; 23088889	 Unvisited samples searched as controls from the Twins LIK study. A twin pair was considered for selection if there was no recorded family hadroy of databetics, holder twin was ever recorded as impaired places biseard (otherd as fasting) quantitative mark and genetic (CWAM data, and no videore of admitsure in MDB analysis of GWAs data. From self quantitative mark and genetic (CWAM data. To the optimized and genetic (CWAM data. To the optimized as angles howed to the data on the was selected from each pair with the towart ratio of fasting glucose that had the lowest fasting quucoes to (QMT equ) ratios paramise sample marking between cases and possible controls. And the dot control for was case and selected 		pair with lowest call rate and/or mismatch with external information.					

Stage	Ancestry	Study	Citation(s)	PubMed ID(s)	Sample Ascertainment	Genotypin g array	Call rate	Exclusion criteria	Call rate	Filtering criteria	Calling algorithm	Association covariates
Discovery [ExomeSeq]	European (Pinnah, Swedan)	Maimo Botnia Study	Groop, L. et al. Metabolic consequences of a limity history of NCOM, the Bolina Judy 2: working for sea- buchdham, E., Agarth, E., Tachi, T., Groop, J., & Agarth, C., C. D. Classify allocations according to the new WHO division stages. <i>Eur. J. of Epid.</i> 17, 939–9, 2001); Parter, A. et al. A gene contenting socceptibility by by 2 achonoxone 16(911). Diabetes 50, 675–60 (2001). Berglund G. et al. The Matrino Dist and Caccer Study. Design and fastability. J Intern Med. Jan;233(1):45–51 Marine Prevention Project. Micraity and cardiovascular mothbility. J. of Intern. Med. 247, 15–29 (2000). Cyserekov, V. et al. Choral rais Record. Disk variantics, and Caccer Study. (2006). Iomas, B. et al. A family Interloy of diabetes is associated with induced physical Rines is the Provainance. Tech Vision Caccer Study, 1770-13 (2016). Benini theory. Disk Study, 2016). Benini theory. Caccer Study, 2016). Benini theory. Cac	88665565; 12360709; 11246890; 8428286; 10627127; 19020324; 28454776; 9627160	Controls selected from the extreme of a labelity score distribution. Raned upon sprearer, age and BM at 100 ex- on the selection of the selection of the selection of the selection study - Etglete controls limited to individual advers 80 years of age at hote-up and with a BM between 20 and 40 - Techcied from the Bohn and Matting budges - Selected from the Bohn and Matting budges							
Discovery [ExomeSeq]	Hispanic	San Antonio Family Heart Study, San Antonio Family Diabates/ Galibaidder Study, Veterans Administration Genetic Epidemiology Stody, and The Investigation of Neptringative and Diabates Study family component (HA)	Michell, B. D. et al. Genetic and environmental contributions to calcular submitted and an environmental Americana. The San Antonio Family Heart Study, Circulation 44: 266-2176 (1986). HINK, J. et al. Generative Michael and Sange analysis of type 2 disbetises in Disbetises Gatherine 64: 266-267. Control 100-000 Disbetises Gatherine (Explorational exploration) and Unitensis Antoniotation (Generative Study). Study Disbetises Gatherine Johanna Tulyconetic levels in the Yearcana Antoniotation (Generative Study). Study Disbetises Gatherine Johanna Tulyconetic levels in the Family Investigation of Nephropathy and Diabetise (TARD), Colona in entrods J. Disbetise Complexit, 19	8901667; 16123354; 18931038; 15642484	 Fasting glucose <120 mg/dl at each visit II GOTT performed, Zhour glucose must be <200mg/dl Inits elif-reported addiabatic threeys at any visit, including onal agents or insuin prescribed as a result of hybrican- diagnosed diabaties mi sercit AOT with no family instany first, then NGT in teo visits, followed by oldest age 							
Discovery [ExomeSeq]	Hispanic	Starr County, Texas (HS)	Hanis, C. L. et al. Diabetes among Mexican Americans in Star County, Taxas, Am. J. Epidemick. 116, 659–672 (1983); Below JE, et al. Oenome-wide association and meta-analysis in populations from Starr County, Texas and Mexico City dentify type 2 diabetes succeptibility tool and enrichment for eQTLs in top signals. Diabetologie 54, 2047-2055 (2011)	6637993 21573907	 Controls ascertained from epidemiotogically represented sample of individuals in Starr County, TX Individuals with norwn diaponsis of diabeties excluded Impaired glucoes tolerant and impaired fasting glucoes controls retained due to the age difference between cases and controls (controls are younger on average) and to allow sufficient samelies size 							
Discovery [ExomeSeq]	South Asian [UK Indian Asians]	London Life Sciences Population Study (SL)	Chambers, J.C. et al. Genome-wide association sludy identifies variants in IMPR398 associated with hemopolekin levels. Nat. Genet. 41, 1170-1172 (2009); melationin recorder MINRIE conclusions in tailable plasma glucose and increased risk of type 2 diabetes among indian Asiana and Europeen Coccasann. Clabetes 50, 2703-2708 (2009); van der Hanst, P. et al. Simentr-free 492, 396-3708 (2019).	19820698; 19651812; 23222517	No previous history of diabetes No previous history of diabetes No anti-diabete medication Fasting please glucose +6.0 mm(d)L.							
Discovery [ExomeSeq]	South Asian [Singapore Indians]	Singapore Indian Eye Study (SS)	Sim, X. et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 7(4), e1001363-(2011)	21490949	HDA1c <6% No personal history of diabetes Not taking antidiabetes medication Older controls preferentially selected							
Replication [Array]	European (Finnish)	The Cardiovascular Risk in Young Finns Study (YFS)	Rallakari, O.T. et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int. J. Epidemiol., 37, 1220– 1226 (2008)	18263651	Population-based survey T1D and T2D (lasting plasma glucose concentration #7.0 mmol/l or on diabetes medication) cases excluded Further excluded pregnant individuals	Custom generated illumina 670K array	290%	 excessive heterozygosity closely related individuals sex discrepancy 	±95%	- call rate <95%	See methods	- age, sex, BMI, PCs 1-10
Replication (Array)	European (Finnish)	Helsinki Birth Cohort Study (HBCS)	Eriksson, J.G. Epidemiology, genes and the environment: lessons learned from the Helsinki Birth Cohort Study, J. Intern. Med., 261, 418–425 (2007)	17444881	- Birth cohort - T1D and T2D (lasting pleams glucose concentration ≥7.0 mmol/l) cases excluded	Gustom generated Illumina 670K array	×95%	 excessive histerozygosity closely related individuals sex discrepancy 	>95%	- cull rate <95%	See methods	- age, sex, BMI, PCs 1-10
Replication (Array)	European (Finnish)	The Health 2000 GenMets Study (GenMets)	Pertitia, J. et al. OSBPL10, a novel candidate garie for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J. Mol. Med., 67, 825– 835 (2009)	19554302	Population-based survey T1D and T2D (lasting plasma glucose concentration 37.0 mmolil or on diabetes medication) cases excluded	illumina 610K array	>95%	 excessive heterozygosity closety related individuals sex discrepancy 	≥95%	- call rate <95%	See methods	- age, sex, BMI, PCs 1-10
Replication [Array]	European [Finnish]	The National FINRISK Study 1997 and 2002 (FINRISK 1997 and 2002)	Vartiainen E. et al. Thirty-live-year trends in cardiovascular risk factors in Finland. Int J Epidemiol., 39, 504-518 (2010)	19959603	Population-based survey T1D and T2D (lasting pleama glucose concentration ≥7.0 mmol1 or on diabotes medication) cases excluded Non-fasting individuals excluded	Illumina HumanCor eExome- 12v1-0	>95%	 excessive heterozygosity closety related individuals sex discrepancy 	>95%	- call rate <95%	See methods	- age, sex, BMI, PCs 1-10

Supplementary Table S1B. Sample characteristics of the studies contributing to the analysis.

						~									
	Ancestry	European (Finnish)	European [Finnish]	European [Finnish]	European [Finnish]	European [Finnish]	European [Finnish]	European [Danish]	European [Danish]	European [Danish]	European [UK]	European [UK]	European [UK]	European [Swedish]	European [Finnish]
	Study	FIN-D2D 2007	The Finnish Diabetes Prevention Study (DPS)	The Dose Responses to Exercise Training (DR's EXTRA) Study	National FINRISK 2007 Study (FINRISK 2007)	Finland-United States Investigation of NIDDM Genetics (FUSION) Study	Metabolic Syndrome in Men (METSIM)	Health2006	Inter99	Vejle Biobank	Genetics of Diabetes Audit and Research Tayside (GoDARTS)	Twins UK	Oxford BioBank (OBB)	Pivus and Ulsam	Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study
Single variant analysis (relateds)	# available	2132	328	622	549	1414	6599	3371	5546	439	802	701	4513	1859	4533
	Mean fasting glucose (SD), mmol/l	F: 5.79 (0.45)	F: 5.86 (0.59)	F: 5.45 (0.47)	F: 5.58 (0.30)	F: 5.22 (0.46)	F: 0 (0)	F: 5.31 (0.52)	F: 5.28 (0.47)	F: 5.07 (0.32)	F: 4.81 (0.45)	F: 4.71 (0.59)	F: 5.11 (0.41)	F: 4.96 (0.56)	F: 5.24 (0.54)
	# Fermales (%)	M: 6.04 (0.43)	M: 5.93 (0.54)	M: 5.68 (0.48) 448 (72.03)	M: 5.71 (0.27) 328 (59.74)	M: 5.37 (0.49) 653 (46.18)	M: 5.72 (0.48)	M: 5.58 (0.51) 1459 (43.3)	M: 5.58 (0.48) 2626 (47.3)	M: 5.19 (0.3)	M: 4.98 (0.48) 369 (46.01)	M: 4.88 (0.64) 582 (83.02)	M: 5.41 (0.45) 2474 (54.82)	M: 5.26 (0.58)	M: 5.29 (0.56) 2448 (0.54)
	Mean age (SD), years	F: 58.76 (8.23)	F: 55.06 (7.19)	F: 66.29 (5.22)	F: 63.97 (7.53)	F: 62.65 (7.70)	F: 0 (0)	F: 47.89 (12.32)	F: 45.45 (7.91)	F: 55 (12.5)	F: 57.07 (11.09)	F: 44.13 (12.98)	F: 41.57 (5.98)	F: 70.26 (0.15)	F: 48.73 (15.67)
	Mean BMI (SD), kg/m ²	F: 27.00 (4.96)	F: 31.78 (4.88)	F: 27.23 (4.66)	F: 30.08 (4.91)	F: 26.52 (4.24)	F: 0 (0)	F: 25.11 (4.7)	F: 25.46 (4.77)	F: 21.75 (1.92)	F: 26.61 (4.78)	F: 23.75 (4.01)	F: 25.44 (4.80)	F: 26.92 (4.70)	F: 25.85 (4.66)
	# available (with BMI)	2128	.328	622	549	1414	6597	3369	5542	439	801	701	4513	1857	4532
	Mean fasting glucose (SD) mmol/l	F: 5.79 (0.45)	F: 5.86 (0.59)	F: 5.45 (0.47)	F: 5.58 (0.30)	F: 5.22 (0.46)	F: 0 (0)	F: 5.31 (0.52)	F: 5.28 (0.47)	F: 5.07 (0.32)	F: 4.81 (0.45)	F: 4.71 (0.59)	F: 5.11 (0.41)	F: 4.96 (0.56)	F: 5.24 (0.54)
	(coy, million	M: 6.04 (0.42)	M: 5.93 (0.54)	M: 5.68 (0.48)	M: 5.71 (0.27)	M: 5.37 (0.49)	M: 5.72 (0.48)	M: 5.58 (0.51)	M: 5.58 (0.48)	M: 5,19 (0.3)	M: 4.98 (0.48)	M: 4.88 (0.64)	M: 5.41 (0.45)	M: 5.26 (0.58)	M: 5.29 (0.56)
	# Females (%) Mean age (SD), years	1152 (54.14) F: 58.77 (8.23)	224 (68.29) F: 55.06 (7.19)	448 (72.03) F: 66.29 (5.22)	328 (59.74) F: 63.97 (7.53)	653 (46.18) F: 62.65 (7.70)	0 (0.00) F: 0 (0)	1459 (43.3) F: 47.9 (12.31)	2625 (47.4) F: 45.46 (7.91)	147 (33.5) F: 55 (12.5)	368 (45.94) F: 57.04 (11.09)	582 (83.02) F: 44.13 (12.98)	2474 (54.82) F: 41.57 (5.98)	444 (23.91) F: 70.26 (0.15)	2447 (0.54) F: 48.73 (15.67)
	in a second s	M: 59.47 (8.43)	M: 56.10 (7.16)	M: 67.90 (6.38)	M: 65.64 (6.49)	M: 60.40 (8.11)	M: 57.40 (7.24)	M: 48.77 (12.14)	M: 45.84 (7.82)	M: 62.36 (10.21)	M: 58.95 (10.80)	M: 45.18 (12.06)	M: 42.04 (5.62)	M: 70.72 (0.67)	M: 48.43 (15.56)
	Mean BMI (SD), kg/m*	F: 27.00 (4.96) M: 26.81 (3.74)	F: 31,78 (4.88) M: 29.54 (3.46)	F: 27.23 (4.66) M: 27.25 (3.59)	F: 30.08 (4.91) M: 28.59 (3.85)	F: 26.52 (4.24) M: 26.56 (3.49)	F: 0 (0) M: 26.89 (3.83)	F: 25.11 (4.7) M: 26.37 (3.84)	F: 25.46 (4.77) M: 26.58 (3.86)	F: 21.75 (1.92) M: 23.05 (1.47)	F: 26.68 (4.78) M: 27.59 (4.05)	H: 23.75 (4.01) M: 23.81 (3.85)	F: 25.44 (4.80) M: 26.61 (4.00)	F: 26.92 (4.70) M: 26.21 (3.37)	F: 25.85 (4.66) M: 26.66 (3.75)
	# available	2111	306	657	548	1342	6596	3370	5337	0	244	0	4136	1853	4492
	Mean fasting insulin (SD), pmol/l	F: 40.90 (20.63)	F: 82.99 (41.26)	F: 41.66 (25.96)	F: 40.74 (21.64)	F: 52.18 (33.05)	F: 0 (0)	F: 37.98 (24.96)	F: 38.73 (25.22)	NA	F: 64.15 (31.44)	NA	F: 94.71 (39.61)	F: 58.00 (35.62)	F: 8.46 (6.6)
		M: 43.84 (26.76)	M: 84.39 (42.06)	M: 44.82 (32.97)	M: 37.02 (19.73)	M: 49.27 (30.38)	M: 50.70 (36.47)	M: 40.78 (28.24)	M: 42.59 (27.82)	NA	M: 80.97 (55.91)	NA	M: 105.54 (51.97)	M: 77.45 (45.29)	M: 9.16 (7.5)
	W Females (%) Mean age (SD), years	F: 58.75 (8.23)	214 (69.93) F: 54.98 (7.09)	4/2 (/1.84) F: 66.33 (5.21)	327 (59.67) F: 64.02 (7.48)	632 (47.09) F: 62.71 (7.80)	0 (0.00) F: 0 (0)	1458 (43.3) F: 47.89 (12.32)	2538 (47.6) F: 45.4 (7.92)	NA	F: 56.40 (10.82)	NA	2240 (54.16) F: 41.65 (5.99)	445 (24.02) F: 70.26 (0.15)	2426 (0.54) F: 48.69 (15.68)
		M: 59.49 (8.46)	M: 55.77 (7.27)	M: 67.89 (6.34)	M: 65.64 (6.49)	M: 60.70 (8.11)	M: 57.40 (7.24)	M: 48.78 (12.14)	M: 45.82 (7.8)	NA	M: 60.04 (9.25)	NA	M: 42.11 (5.63)	M: 70.72 (0.67)	M: 48.39 (15.53)
	Mean BMI (SD), kg/m*	F: 27.01 (4.97) M: 26.79 (3.73)	F: 31.92 (4.89) M: 29.64 (3.47)	F: 27.19 (4.66) M: 27.10 (3.68)	F: 30.05 (4.89) M: 28.59 (3.85)	F: 26.52 (4.23) M: 26.51 (3.42)	F: 0 (0) M: 26 89 (3.83)	F: 25.11 (4.7) M: 26.37 (3.83)	F: 25.5 (4.79) M: 26.58 (3.87)	NA	F: 25.66 (4.29) M: 27.36 (3.02)	NA	F: 25.46 (4.75) M: 26.58 (3.97)	F: 26.92 (4.69) M: 26 18 (3.38)	F: 25.85 (4.66) M: 26.67 (3.759)
	# available (with BMI)	2107	306	657	548	1342	6594	3368	5333	0	244	NA	4136	1851	4491
	Mean fasting insulin (SD), pmol/l	F: 40.91 (20.65)	F: 82.99 (41.26)	F: 41.66 (25.96)	F: 40.74 (21.64)	F: 52.18 (33.05)	F: 0 (0)	F: 37.96 (24.96)	F: 38.7 (25.2)	NA	F: 64.15 (31.44)	NA	F: 94.71 (39.61)	F: 58.00 (35.62)	F: 8.46 (6.6)
	(coo) process	M: 43.79 (26.74)	M: 84.39 (42.06)	M: 44.82 (32.97)	M: 37.02 (19.73)	M: 49.27 (30.38)	M: 50.70 (36.47)	M: 40.78 (28.24)	M: 42.6 (27.82)	NA	M: 80.97 (55.91)	NA	M: 105.54 (51.97)	M; 77.40 (45.19)	M: 9.16 (7.5)
	# Females (%) Mean age (SD), years	1139 (54.06) F: 58.77 (8.23)	214 (69.93) F: 54.98 (7.09)	472 (71.84) F: 66.33 (5.21)	327 (59.67) F: 64.02 (7.48)	632 (47.09) F: 62.71 (7.80)	0 (0.00) F: 0 (0)	1458 (43.3) F: 47.9 (12.31)	2537 (47.6) F: 45.41 (7.92)	NA NA	127 (52.05) F: 56.40 (10.82)	NA	2240 (54.16) F: 41.65 (5.99)	445 (24.04) F: 70.26 (0.15)	2425 (0.54) F: 48.69 (15.69)
	meen ege (en), jen e	M: 59.47 (8.45)	M: 55.77 (7.27)	M: 67.89 (6.34)	M: 65.64 (6.49)	M: 60.70 (8.11)	M: 57.40 (7.24)	M: 48.78 (12.14)	M: 45.82 (7.8)	NA	M: 60.04 (9.25)	NA	M: 42.11 (5.63)	M: 70.72 (0.67)	M: 48.39 (15.53)
	Mean BMI (SD), kg/m²	F: 27.01 (4.97) M: 26.79 (3.73)	F: 31.92 (4.89) M: 29.64 (3.47)	F: 27.19 (4.66) M: 27.10 (3.58)	F: 30.05 (4.89) M: 28.59 (3.85)	F: 26.52 (4.23) M: 26.51 (3.42)	F: 0 (0) M: 26.89 (3.83)	F: 25.11 (4.7) M: 26.37 (3.83)	F: 25.5 (4.79) M: 26.58 (3.87)	NA NA	F: 25.66 (4.29) M: 27.36 (3.02)	NA	F: 25.46 (4.75) M: 26.58 (3.97)	F: 26.92 (4.69) M: 26.22 (3.38)	F: 25.85 (4.66) M: 26.67 (3.759)
Gene-level analysis (unrelateds)	# available	2132	328	622	549	1414	6599	3159	5481	431	801	697	4442	1804	4206
20	Mean fasting glucose (SD), mmol/l	F: 5.79 (0.45)	F: 5.86 (0.59)	F: 5.45 (0.47)	F: 5.58 (0.30)	F: 5.22 (0.46)	F: 0 (0)	F: 5.31 (0.51)	F: 5.28 (0.47)	F: 5.08 (0.32)	F: 4,81 (0.45)	F: 4.71 (0.59)	F: 5.11 (0.41)	F: 4.96 (0.56)	F: 5.24 (0.55)
		M: 6.04 (0.43)	M: 5.93 (0.54)	M: 5.68 (0.48)	M: 5.71 (0.27)	M: 5.37 (0.49)	M: 5.72 (0.48)	M: 5.58 (0.5)	M: 5.58 (0.48)	M: 5.19 (0.3)	M: 4.98 (0.48)	M: 4.87 (0.64)	M: 5.41 (0.45)	M: 5.26 (0.58)	M: 5.29 (0.56)
	# Females (%) Mean ane (SD) years	1154 (54.13) E- 58.76 (8.23)	224 (68.29) E: 55 06 (7.19)	448 (72.03) E: 66 29 (5.22)	328 (59.74) F: 63.97 (7.53)	653 (46.18) F: 62 65 (7.70)	0 (0.00) E: 0 (0)	1371 (43.4) F: 48 (13 (12 17)	2593 (47.3) E: 45.46 (7.91)	145 (33.6) E: 55.05 (12.61)	369 (46.07) E: 57 07 (11.09)	580 (83.21) F: 44 19 (12.95)	2430 (54.71) F: 41 57 (5.99)	437 (24.22) F: 70.28 (0.15)	2302 (0.55) E: 48.7 (15.53)
	mean age (ob), years	M: 59.49 (8.44)	M: 56.10 (7.16)	M: 67.90 (6.38)	M: 65.64 (6.49)	M: 60.40 (8.11)	M: 57.40 (7.24)	M: 48.87 (12.06)	M: 45.85 (7.81)	M: 62.29 (10.26)	M: 58.92 (10.80)	M: 45.08 (12.12)	M: 42.09 (5.61)	M: 70.72 (0.67)	M: 48.36 (15.58)
	Mean BMI (SD), kg/m²	F: 27.00 (4.96)	F: 31.78 (4.88)	F: 27.23 (4.66)	F: 30.08 (4.91)	F: 26.52 (4.24)	F: 0 (0)	F: 25.13 (4.75)	F: 25.47 (4.77)	F: 21.73 (1.93)	F: 26.61 (4.78)	F: 23.76 (4.01)	F: 25.43 (4.81)	F: 26.93 (4.71)	F: 25.87 (4.64)
	# available (with BMI)	2128	328	622	549	1414	6597	3157	5477	431	800	697	4442	1802	4205
	Mean fasting glucose	F: 5.79 (0.45)	F: 5.86 (0.59)	F: 5.45 (0.47)	F: 5,58 (0.30)	F: 5.22 (0.46)	F: 0 (0)	F; 5.31 (0.51)	F: 5.28 (0.47)	F: 5.08 (0.32)	F; 4.81 (0.45)	F: 4,71 (0.59)	F: 5.11 (0.41)	F: 4.96 (0.56)	F: 5.24 (0.55)
	(00), 1110001	M: 6.04 (0.42)	M: 5.93 (0.54)	M: 5.68 (0.48)	M: 5.71 (0.27)	M: 5.37 (0.49)	M: 5.72 (0.48)	M: 5.58 (0.5)	M: 5.58 (0.48)	M: 5.19 (0.3)	M: 4.98 (0.48)	M: 4.87 (0.64)	M: 5.41 (0.45)	M: 5.26 (0.58)	M: 5.29 (0.56)
	# Females (%)	1152 (54.14)	224 (68.29) E: 55.06 (7.10)	448 (72.03)	328 (59.74)	653 (46.18)	0 (0.00)	1371 (43,4) E: 48 04 (12,16)	2592 (47.3)	145 (33.6)	368 (46,00) E: 57 04 (11,00)	580 (83.21)	2430 (54.71)	437 (24.25)	2301 (0.55)
		M: 59.47 (8.43)	M: 56.10 (7.16)	M: 67.90 (6.38)	M: 65.64 (6.49)	M: 60.40 (8.11)	M: 57.40 (7.24)	M: 48.87 (12.06)	M: 45.85 (7.81)	M: 62.29 (10.26)	M: 58.92 (10.80)	M: 45.08 (12.12)	M: 42.09 (5.61)	M: 70.72 (0.67)	M: 48.36 (15.58)
	Mean BMI (SD), kg/m²	F: 27.00 (4.96)	F: 31.78 (4.88) M: 29.54 (3.46)	F: 27.23 (4.66)	F: 30.08 (4.91)	F: 26.52 (4.24)	F; 0 (0)	F: 25.13 (4.75)	F: 25.47 (4.77)	F: 21.73 (1.93)	F: 26.68 (4.78)	F: 23.76 (4.01)	F: 25.43 (4.81)	F: 26.93 (4.71)	F: 25.87 (4.64)
	# available	2111	306	657	548	1342	6596	3158	5272	0	244	0	4075	1799	4171
	Mean fasting insulin	F: 40.90 (20.63)	F: 82.99 (41.26)	F: 41.66 (25.96)	F: 40.74 (21.64)	F: 52.18 (33.05)	F: 0 (0)	F: 37.99 (24.95)	F: 38.68 (25.22)	NA	F: 64.15 (31.44)	NA	F: 94.69 (39.65)	F: 58.06 (35.82)	F: 8.42 (6.1)
	(ou), priori	M: 43.84 (26.76)	M: 84.39 (42.06)	M: 44.82 (32.97)	M: 37.02 (19.73)	M: 49.27 (30.38)	M: 50.70 (36,47)	M: 40.9 (28.46)	M: 42.59 (27.79)	NA	M: 80.97 (55.91)	NA	M: 105.55 (51.87)	M: 77.50 (45.65)	M: 9.02 (7.1)
	# Females (%)	1141 (54.05)	214 (69.93)	472 (71.84)	327 (59.67)	632 (47.09)	0 (0.00)	1370 (43.4)	2505 (47.5)	NA	127 (52.05)	NA	2204 (54.09)	438 (24.35)	2283 (0.55)
	mean age (SD), years	M: 59.49 (8.46)	M: 55.77 (7.27)	M: 67.89 (6.34)	M: 65.64 (6.49)	M: 60.70 (8.11)	M: 57.40 (7.24)	M: 40.9 (28.46)	M: 42.59 (27.79)	NA	M: 60.04 (9.25)	NA	M: 42.15 (5.63)	M: 70.72 (0.67)	M: 48.32 (15.55)
	Mean BMI (SD), kg/m ²	F: 27.01 (4.97)	F: 31.92 (4.89)	F: 27.19 (4.66)	F: 30.05 (4.89)	F: 26.52 (4.23)	F: 0 (0)	F: 25.13 (4.75)	F: 25.51 (4.79)	NA	F: 25.66 (4.29)	NA	F: 25.45 (4.77)	F: 26.94 (4.71)	F: 25.87 (4.64)
	# available (with BMI)	2107	306	657	548	1342	6594	3156	5268	0	244	NA	4075	1797	4170
	Mean fasting insulin	F: 40.91 (20.65)	F: 82.99 (41.26)	F: 41.66 (25.96)	F: 40.74 (21.64)	F: 52.18 (33.05)	F: 0 (0)	F: 37.97 (24.96)	F: 38.65 (25.2)	NA	F: 64.15 (31.44)	NA	F: 94.69 (39.65)	F: 58.06 (35.82)	F: 8.42 (6.1)
	(SD), pmoul	M: 43.79 (26.74)	M: 84.39 (42.06)	M: 44.82 (32.97)	M: 37.02 (19.73)	M: 49.27 (30.38)	M: 50.70 (36.47)	M: 40.9 (28.46)	M: 42.6 (27.8)	NA	M: 80.97 (55.91)	NA	M: 105.55 (51.87)	M: 77.45 (45.55)	M: 9.02 (7.1)
	# Females (%)	1139 (54.06)	214 (69.93)	472 (71.84)	327 (59.67)	632 (47.09)	0 (0.00)	1370 (43.4)	2504 (47.5)	NA	127 (52.05)	NA	2204 (54.09)	438 (24.37)	2282 (0.55)
	wean age (SD), years	F: 58.77 (8.23) M: 59.47 (8.45)	F: 54.98 (7.09) M: 55.77 (7.27)	P: 66.33 (5.21) M: 67.89 (6.34)	M: 65.64 (6.49)	M: 60.70 (8.11)	F: 0 (0) M: 57,40 (7,24)	M: 48.87 (12.06)	P: 38.65 (25.2) M: 45.83 (7.78)	NA	M: 60.04 (9.25)	NA	F: 41.64 (6.00) M: 42.15 (5.63)	M: 70.26 (0.15)	P: 48.85 (15.55) M: 48.32 (15.55)
	Mean BMI (SD), kg/m ²	F: 27.01 (4.97)	F: 31.92 (4.89)	F: 27.19 (4.66)	F: 30.05 (4.89)	F: 26.52 (4.23)	F: 0 (0)	F: 25.13 (4.75)	F: 25.51 (4.79)	NA	F: 25.66 (4.29)	NA	F: 25.45 (4.77)	F: 26.94 (4.71)	F: 25.87 (4.64)
1	And the second second second second second	M: 26.79 (3.73)	M: 29.64 (3.47)	M: 27.10 (3.58)	M: 28.59 (3.85)	M: 26.51 (3.42)	M: 26.89 (3.83)	M: 26.37 (3.85)	M: 26.58 (3.85)	NA	M: 27.36 (3.02)	NA	M: 26.58 (3.97)	M: 26.23 (3.41)	M: 26.59 (3.758)

	Ancestry	African American	African American	East Asian [Korean]	East Asian [Singapore Chinese]	European [Ashkenazim]	European	European (Einnish)	European	European	European (Einnish, Swedish)	Hispanic	Hispanic	South Asian	South Asian [Singapore Indians]
	Study	Jackson Heart Study (AJ)	Wake Forest School of Medicine Study (AW)	Korea Association Research Project (EK)	Singapore Diabetes Cohort Study and Singapore Prospective Study Program (ES)	Ashkenazi (UA)	Metabolic Syndrome in Men Study (METSIM)	Finland-United States Investigation of NIDDM Genetics (FUSION) Study	KORA-gen	UKT2D Consortium	Maimo-Botnia Study	San Antonio Family Heart Study, San Antonio Family Diabetes' Galibladder Study, Veterans Administration Genetic Epidemiology Study, and the Investigation of Nephropathy and Diabetes Study family component (HA)	Starr County, Texas (HS)	London Life Sciences Population Study (SL)	Singapore Indian Eye Study (SS)
jle variant analysis (relateds)	# available	508	NA	556	549	332	498	476	90	320	442	154	699	508	NA
	Mean fasting glucose	F: 4.83 (0.35)	NA	F: 4.42 (0.37)	F: 4.73 (0.43)	F: 4.69 (0.73)	F: 0 (0)	F: 5.28 (0.39)	F: 5.97 (0.38)	F: 4.72 (0.47)	F: 5.10 (0.38)	F: 5.06 (0.56)	F: 4.63 (0.45)	F: 5.09 (0.42)	NA
	(5D), mmoei	M: 4.84 (0.32)	NA	M: 4.44 (0.41)	M: 4.95 (0.48)	M: 4.78 (0.75)	M: 5.49 (0.32)	M: 5.44 (0.36)	M: 6.16 (0.43)	M: 4.70 (0.53)	M: 5.18 (0.33)	M: 5.19 (0.58)	M: 4.82 (0.46)	M: 5.15 (0.38)	NA
	# Females (%) Mean ane (SD), years	321 (63.19) F: 55.81 (11.40)	NA	326 (58.63) F: 62 91 (3.52)	335 (61.02) F: 57 92 (6.45)	191 (57.53) F: 80.29 (14.74)	0 (0.00) E: 0 (0)	214 (44.96) F: 63 78 (7.05)	57 (63.33) F-68.95 (5.43)	265 (82.81) F: 60.93 (10.23)	194 (43.89) F: 68 04 (8 04)	92 (59.74) F: 51.89 (14.28)	502 (71.82) F-39 12 (9.40)	80 (15.75) F: 63.51 (8.64)	NA
	the set of the set	M: 56.49 (11.25)	NA	M: 63.72 (3.60)	M: 58.54 (7.61)	M: 76.96 (11.68)	M: 54.74 (4.54)	M: 62.19 (7.29)	M: 70.91 (5.79)	M: 59.80 (8.99)	M: 65.57 (8.08)	M: 49.42 (15.24)	M: 39.49 (11.10)	M: 63.14 (9.32)	NA
	Mean BMI (SD), xg/m*	F: 32.98 (6.87) M: 30.01 (5.14)	NA	F: 24.19 (3.14) M: 23.10 (2.83)	F: 22.63 (3.41) M: 22.83 (3.20)	F: 24.17 (4.27) M: 26.24 (3.71)	F: 0 (0) M: 25.82 (3.15)	F: 28.49 (4.44) M: 27.48 (3.35)	F: 34.65 (3.51) M: 34.17 (3.42)	F: 31.04 (6.17) M: 28.41 (3.71)	F: 33.70 (4.11) M: 32.25 (3.85)	F: 31.60 (7.34) M: 28.40 (4.54)	F: 30.42 (6.52) M: 29.49 (5.32)	F: 28.26 (4.39) M: 26.96 (3.35)	NA NA
	# available (with BMI)	508	NA	556	548	323	498	476	90	315	442	145	699	508	NA
	(SD), mmol/l	F: 4.83 (0.35)	NA	F: 4.42 (0.37)	F: 4.73 (0.43)	F: 4.70 (0.72)	F: 0 (0)	F: 5.28 (0.39)	F: 5.97 (0.38)	F: 4.73 (0.46)	F: 5.10 (0.38)	F: 5.05 (0.57)	F: 4.63 (0.45)	F: 5.09 (0.42)	NA
	# Enmains (%)	M: 4.84 (0.32)	NA	M: 4.44 (0.41) 326 (58 63)	M: 4.95 (0.48)	M: 4.79 (0.76) 185 (57 28)	M: 5.49 (0.32)	M: 5.44 (0.36)	M: 6.16 (0.43) 57 (63.33)	M: 4.70 (0.53) 260 (82 54)	M: 5.18 (0.33) 194 (43.89)	M: 5.15 (0.56) 86 (59 31)	M: 4.82 (0.46) 502 (71.82)	M: 5.15 (0.38) 80 (15.75)	NA NA
	Mean age (SD), years	F: 55.81 (11.40)	NA	F: 62.91 (3.52)	F: 57.92 (6.45)	F: 80.33 (14.66)	F: 0 (0)	F. 63.78 (7.05)	F: 68.95 (5.43)	F: 61.17 (10.10)	F: 68.04 (8.04)	F: 52.12 (14.33)	F: 39.12 (9.40)	F: 63.51 (8.64)	NA
	Mean BMI (SD), kg/m ²	M: 56.49 (11.25) F: 32.96 (6.87)	NA	M: 63.72 (3.60) F: 24.19 (3.14)	M: 58.63 (7.51) F: 22.63 (3.41)	M: 76.51 (11.40) F: 24.17 (4.27)	M: 54.74 (4.54) F: 0 (0)	M: 62.19 (7.29) F: 28.49 (4.44)	M: 70.91 (5.79) F: 34.65 (3.51)	M: 59.80 (8.99) F: 31.04 (6.17)	M: 65.57 (8.08) F: 33.70 (4.11)	M: 48.71 (14.82) F: 31.68 (7.39)	M: 39.49 (11.10) F: 30.42 (6.52)	M: 63.14 (9.32) F: 28.26 (4.39)	NA NA
		M: 30.01 (5.14)	NA	M: 23.10 (2.83)	M: 22.83 (3.20)	M: 26.24 (3.71)	M: 25.82 (3.15)	M: 27.48 (3.35)	M: 34.17 (3.42)	M: 28.41 (3.71)	M: 32.25 (3.85)	M: 28.28 (4.55)	M: 29.49 (5.32)	M: 26.96 (3.35)	NA
	Mean fasting insulin	507	NA	000 E: AT CR (DE DT)	548 E 43 65 (30 0T)	117	497	4/3 E ED 7E (30 AA)	90	293 E: 64 85 (47 30)	200	104	597 E: 40 03 (45 64)	431	NA NA
	(SD), pmol/l	M-83.26 (50.50)	NA	M- 38 44 (20 40)	M 40 54 (32 61)	M: 112 64 (51 51)	M: 38 32 (22 83)	M- 52 86 (20 22)	M- #3.71 (38.14)	M: 62.60 (85.24)	M-80 28 (43 87)	M- 88 95 (52 30)	M-48.72 (51.01)	M: 66 27 (41 37)	NA
	# Females (%)	321 (63.31)	NA	326 (58.63)	334 (60.95)	62 (52.99)	0 (0.00)	214 (45.24)	57 (63.33)	242 (82.59)	96 (46.60)	92 (59.74)	500 (71.74)	59 (13.69)	NA
	Mean age (SD), years	F: 55.81 (11.40) M: 56.47 (11.27)	NA	F: 62.91 (3.52) M: 63.72 (3.60)	F: 57.94 (6.45) M: 58.54 (7.61)	F: 81.21 (13.43) M: 76.51 (10.20)	F: 0 (0) M: 54.74 (4.55)	F: 63.78 (7.05) M: 62.21 (7.30)	F: 68.95 (5.43) M: 70.91 (5.79)	F: 61.39 (10.26) M: 59.98 (9.25)	F: 66.23 (9.38) M: 63.92 (10.16)	F: 51.89 (14.28) M: 49.42 (15.24)	F: 39.11 (9.41) M: 39.49 (11.10)	F: 62.50 (8.31) M: 62.47 (9.14)	NA NA
	Mean BMI (SD), kg/m ²	F: 32.98 (6.87)	NA	F: 24,19 (3,14)	F: 22.60 (3.38)	F: 24.45 (3.85)	F: 0 (0)	F: 28.49 (4.44)	F: 34.65 (3.51)	F: 31.25 (6.27)	F: 31.07 (3.74)	F: 31.60 (7.34)	F: 30.42 (6.53)	F: 28.14 (3.95)	NA
	# available (with BMI)	507	NA	556	547	114	497	473	90	293	206	145	697	431	NA
	Mean fasting insulin (SD), emol/1	F: 95.25 (52.59)	NA	F: 47.68 (35.27)	F: 42.55 (26.07)	F: 86.40 (57.75)	F: 0 (0)	F: 52.75 (26.44)	F: 48.41 (54.15)	F: 64.85 (47.30)	F: 62.98 (36.10)	F: 108.08 (105.91)	F: 40.03 (45.84)	F: 59.76 (34.45)	NA
		M: 83.26 (50.58)	NA	M: 38.44 (29.40)	M: 39.69 (30.22)	M: 112.07 (51.58)	M: 38.32 (22.83)	M: 52.86 (29.22)	M: 63.71 (38.14)	M: 62.60 (85.24)	M: 69.28 (43.87)	M: 89.46 (53.64)	M: 48.72 (51.91)	M: 66.27 (41.37)	NA
	Mean age (SD), years	F: 55.81 (11.40)	NA	520 (58.63) F: 62.91 (3.52)	57.94 (6.45)	60 (52.63) F: 81.77 (13.22)	F: 0 (0)	F: 63.78 (7.05)	57 (63.33) F: 68.95 (5.43)	F: 61.39 (10.26)	F: 66.23 (9.38)	F: 52.12 (14.33)	F: 39.11 (9.41)	F: 62.50 (8.31)	NA
		M: 56.47 (11.27)	NA	M: 63.72 (3.60)	M: 58.63 (7.51)	M: 76.11 (9.85)	M: 54.74 (4.55)	M: 62.21 (7.30)	M: 70.91 (5.79)	M: 59.98 (9.25)	M: 63.92 (10.16)	M: 48.71 (14.82)	M: 39.49 (11.10)	M: 62.47 (9.14)	NA
i	Mean BMI (SO), kg/m*	P: 32.98 (6.87) M: 30.02 (5.15)	NA	P: 24.19 (3.14) M: 23.10 (2.83)	P: 22.60 (3.38) M: 22.83 (3.20)	F: 24,45 (3.85) M: 27.18 (3.24)	P: 0 (0) M: 25.82 (3.15)	F; 28,49 (4,44) M; 27,47 (3.36)	P: 34.05 (3.51) M: 34.17 (3.42)	P: 31.25 (0.27) M: 28.62 (3.72)	P: 31.07 (3.74) M: 29.22 (3.58)	F: 31.68 (7.39) M: 28.28 (4.55)	P: 30.42 (6.53) M: 29.49 (5.32)	P: 28.14 (3.95) M: 26.89 (3.19)	NA
(unrelateds)	# available	483	NA	555	549	332	496	470	90	320	436	154	699	503	NA
	Mean fasting glucose (SD), mmo//	F: 4.84 (0.35)	NA	F: 4.42 (0.37)	F: 4.73 (0.43)	F: 4.69 (0.73)	F: 0 (0)	F: 5.28 (0.39)	F: 5.97 (0.38)	F: 4.72 (0.47)	F: 5.10 (0.38)	F: 5.06 (0.56)	F: 4.63 (0.45)	F: 5.08 (0.42)	NA
	a Francisco (NI)	M: 4.84 (0.33)	NA	M: 4.44 (0.41)	M: 4.95 (0.48)	M: 4.78 (0.75)	M: 5.50 (0.32)	M: 5.45 (0.35)	M: 6.16 (0.43)	M: 4.70 (0.53)	M: 5.18 (0.33)	M: 5.19 (0.58)	M: 4.82 (0.48)	M: 5.15 (0.38)	NA
	Mean age (SD), years	503 (62.73) F: 55.64 (11.26)	NA	526 (58.74) F: 62.91 (3.52)	535 (61.02) F: 57.92 (6.45)	F: 80.29 (14.74)	F: 0 (0)	F: 63.75 (7.08)	F: 68.95 (5.43)	F: 60.93 (10.23)	F: 68.13 (7.81)	92 (59.74) F: 51.89 (14.28)	F: 39.12 (9.40)	F: 63.38 (8.62)	NA
	Mean RMI (SD), kn/m ²	M: 56.63 (11.30) E: 33.03 (6.87)	NA	M: 63.70 (3.59) E: 24.19 (3.14)	M: 58.54 (7.61) E: 22.63 (3.41)	M: 76.96 (11.68) E- 24 17 (4.27)	M: 54.75 (4.55) E: 0.(0)	M: 62.14 (7.26) E: 28.51 (4.45)	M: 70.91 (5.79)	M: 59.80 (8.99)	M: 65.78 (7.85) E- 33.71 (4.11)	M: 49.42 (15.24) E: 31.60 (7.34)	M: 39,49 (11.10) E: 30,42 (6.52)	M: 63.14 (9.31) E: 28.23 (4.41)	NA
	mean pain (pp); sgm	M: 30.06 (5.18)	NA	M: 23.11 (2.83)	M: 22.83 (3.20)	M: 26.24 (3.71)	M: 25.82 (3.15)	M: 27.44 (3.35)	M: 34,17 (3.42)	M: 28.41 (3.71)	M: 32.24 (3.86)	M: 28.40 (4.54)	M: 29.49 (5.32)	M: 26.96 (3.34)	NA
	# available (with BMI) Mean fastion ducose	483	NA	555	548	323	496	470	90	315	436	145	699	503	NA
	(SD), mmol/l	F: 4.84 (0.35)	NA	F: 4.42 (0.37)	F: 4.73 (0.43)	F: 4.70 (0.72)	F: 0 (0)	F: 5.28 (0.39)	F: 5.97 (0.38)	F: 4.73 (0.46)	F: 5.10 (0.38)	F: 5.05 (0.57)	F: 4.63 (0.45)	F: 5.08 (0.42)	NA
	# Females (%)	M: 4,84 (0.33) 303 (62.73)	NA	M(4.44 (0.41) 326 (58.74)	M: 4.95 (0.48) 335 (61.13)	185 (57.28)	M; 5.50 (0.32) 0 (0.00)	M; 5.45 (0.35) 212 (45.11)	M: 6.16 (0.43) 57 (63.33)	M: 4.70 (0.53) 260 (82.54)	M: 5.18 (0.33) 191 (43.81)	M: 5.15 (0.56) 86 (59.31)	M: 4.82 (0.46) 502 (71.82)	M; 5.15 (0.38) 79 (15.71)	NA NA
	Mean age (SD), years	F: 55.64 (11.26)	NA	F: 62.91 (3.52)	F: 57.92 (6,45)	F: 80.33 (14.66)	F: 0 (0)	F: 63.75 (7.08)	F: 68.95 (5.43)	F: 61.17 (10.10)	F: 68.13 (7.81)	F: 52.12 (14.33)	F: 39.12 (9.40)	F: 63.38 (8.62)	NA
	Mean BMI (SD), kg/m ²	F: 33.03 (6.87)	NA	F: 24.19 (3.14)	F: 22.63 (3.41)	F: 24.17 (4.27)	F: 0 (0)	F: 28.51 (4.45)	F: 34.65 (3.51)	F: 31.04 (6.17)	F: 33.71 (4.11)	F: 31.68 (7.39)	F: 30.42 (6.52)	F: 28.23 (4.41)	NA
	# avaitable	M: 30.06 (5.18) 482	NA	M: 23.11 (2.83) 555	M: 22.83 (3.20) 548	M: 26.24 (3.71) 117	M: 25.82 (3.15) 495	M: 27.44 (3.35) 467	M: 34.17 (3.42) 90	M: 28.41 (3.71) 293	M 32.24 (3.86) 201	M: 28.28 (4.55) 154	M: 29.49 (5.32) 697	M: 20.96 (3.34) 426	NA
	Mean fasting insulin	F: 96.08 (53.19)	NA	F: 47.68 (35.27)	F: 42.55 (26.07)	F: 87.65 (57.64)	F: 0 (0)	F: 52.75 (26.51)	F: 48.41 (54.15)	F: 64.85 (47.30)	F: 61.64 (35.24)	F: 109.11 (103.46)	F: 40.03 (45.84)	F: 59.96 (34.72)	NA
	(SD), pmovi	M: 83.77 (51.28)	NA	M: 38.53 (29.43)	M: 40.54 (32.61)	M: 112.94 (51.51)	M: 38.31 (22.83)	M: 52.96 (29.30)	M: 63.71 (38.14)	M: 62.60 (85.24)	M: 68.76 (43.75)	M: 88.95 (52.39)	M: 48.72 (51.91)	M: 66.13 (41.51)	NA
	# Females (%) Mean age (SD), years	303 (62.86) F: 55.64 (11.26)	NA	326 (58.74) F: 62 91 (3.57)	334 (60.95) F: 57.94 (6.45)	62 (52.99) F: 81.21 (13.43)	0 (0.00) F: 0 (0)	212 (45.40) F: 63.75 (7.08)	57 (63.33) F: 68.95 (5.43)	242 (82.59) F: 61.39 (10.26)	94 (46.77) F: 66 22 (9.09)	92 (59.74) F: 51.89 (14.28)	500 (71.74) F: 39.11 (9.41)	58 (13.62) F: 62 31 (8.26)	NA NA
	and the second second	M: 56.61 (11.33)	NA	M: 63.70 (3.59)	M: 58.54 (7.61)	M: 76.51 (10.20)	M: 54.76 (4.55)	M: 62.16 (7.27)	M: 70.91 (5.79)	M: 59.98 (9.25)	M: 64.34 (9.86)	M: 49.42 (15.24)	M: 39.49 (11.10)	M: 62.47 (9.12)	NA
	Mean BMI (SD), kg/m*	F; 33.03 (6.87) M: 30.07 (5.20)	NA	F: 24.19 (3.14) M: 23.11 (2.83)	F: 22.60 (3.38) M: 22.83 (3.20)	F: 24.45 (3.85) M: 27.18 (3.24)	F: 0 (0) M: 25.82 (3.15)	F: 28.51 (4.45) M: 27.43 (3.36)	P: 34.65 (3.51) M: 34.17 (3.42)	F: 31.25 (6.27) M: 28.62 (3.72)	P: 31.04 (3.72) M: 29.11 (3.55)	F: 31.60 (7.34) M: 28.40 (4.54)	F: 30.42 (6.53) M: 29.49 (5.32)	F: 28.09 (3.97) M: 26.88 (3.18)	NA NA
	# available (with BMI)	482	NA	555	547	114	495	467	90	293	201	145	697	426	NA
	(SD), pmoil	F: 96.08 (53.19)	NA	F: 47.68 (35.27)	F: 42.55 (26.07)	F: 86.40 (57.75)	F: 0 (0)	F: 52.75 (26.51)	F: 48.41 (54.15)	F: 64.85 (47.30)	F: 61.64 (35.24)	F: 108.08 (105.91)	F: 40.03 (45.84)	F: 59.96 (34.72)	NA
	# Females (%)	M: 83.77 (51.28) 303 (62.86)	NA NA	M: 38.53 (29.43) 326 (58.74)	M: 39.69 (30.22) 334 (61.06)	M: 112.07 (51.58) 60 (52.63)	M: 38.31 (22.83) 0 (0.00)	M. 52.96 (29.30) 212 (45.40)	M: 63.71 (38.14) 57 (63.33)	M: 62.60 (85.24) 242 (82.59)	M: 68.76 (43.75) 94 (46.77)	M: 89.46 (53.64) 86 (59.31)	M: 48.72 (51.91) 500 (71.74)	M: 66.13 (41.51) 58 (13.62)	NA NA
	Mean age (SD), years	F: 55.64 (11.26)	NA	F: 62.91 (3.52)	F: 57.94 (6.45)	F:81.77 (13.22)	F: 0 (0)	F: 63.75 (7.08)	F: 68.95 (5.43)	F: 61.39 (10.26)	F: 66.22 (9.09)	F: 52.12 (14.33)	F: 39.11 (9.41)	F: 62.31 (8.26)	NA
	Mean BMI (SD), kg/m ²	F: 33.03 (6.87)	NA	F: 24.19 (3.14)	F: 22.60 (3.38)	F: 24.45 (3.85)	F: 0 (0)	F: 28.51 (4.45)	F: 34.65 (3.51)	F: 31.25 (6.27)	F: 31.04 (3.72)	F: 31.68 (7.39)	F: 30.42 (6.53)	F; 28.09 (3.97)	NA
		M: 30.07 (5.20)	NA	M: 23.11 (2.83)	M: 22.83 (3.20)	Mt 27.18 (3.24)	M: 25.82 (3.15)	M: 27.43 (3.36)	Mt 34.17 (3.42)	M: 28.62 (3.72)	M: 29.11 (3.55)	M: 28.28 (4.55)	M: 29.49 (5.32)	Mt 26.88 (3.18)	NA

Supplementary Table S2.

Association results from the discovery phase.

Supplementary Table S2A. Significant ($P < 5 \times 10^{-7}$) and suggestive ($P < 5 \times 10^{-6}$) single variant association results in previously published regions associated with FI levels or FG levels. The published association statistics are shaded in gray. The association results for each region in our analyses are presented in the non-shaded rows.

Insulin										2. 25. 25		
GWAS Loci	Location	rsID	Gene	Consequence	Protein Change	ETH	Allele	Allele Freg	Beta estimate	Standard	P value	N
LYPLAL1		rs4846565					G	0.67	0.013		1.8E-09	99014
	1:219644224	rs2605100	NA	NA	NA	1	A	0.31	-0.019	0.0039	4.5E-07	30825
	1:219652033	rs2791552	NA	NA	NA	1	A	0.32	-0.018	0.0039	8.7E-07	30824
GCKR		rs780094					С	0.62	0.015		3.6E-20	96126
	2:27730940	rs1260326	GCKR	missense.splice region	p.L446P	5	т	0.39	-0.021	0.0036	2.2E-10	35380
	2:27741237	rs780094	GCKR	intron	NA	1	т	0.37	-0.023	0.0038	6.3E-11	30825
	2:27742603	rs780093	GCKR	intron	NA	1	т	0.37	-0.023	0.0038	5.4E-11	30815
	2:27801493	rs1919127	C2orf16	missense	p.V685A	5	Ť	0.73	0.022	0.0047	4.7E-07	26227
	2:27801759	rs1919128	C2orf16	missense	p.1774V	5	A	0.73	0.021	0.0040	1.9E-08	35381
	2:27851918	rs3749147	GPN1	missense	p.R12K	5	A	0.25	-0.020	0.0044	5.4E-07	30846
GRB14	ELET COTOTO	rs10195252	01111	1110001100	pircharc		Т	0.60	0.017	010011	1.3E-16	00010
511511	2.165540800	rs12328675	COBLL1	downstream gene	NA	1	Ť	0.89	0.029	0.0058	1.6E-07	30739
	2:165551201	rs7607980	COBLL1	missense	n N939D	4	Ť	0.88	0.020	0.0056	3 1E-09	34278
	2:165528876	re7578326	NA	NA	NA	1	Ť	0.38	-0.019	0.0038	4 2E-07	30824
IRS1	2.100020070	rs2043645	100	100	11/3		Ť	0.63	0.019	0.0000	2 3E-19	99023
1101	2.227020653	re7578326	NA	NA	NA	1	A	0.65	0.073	0.0038	5.8E-11	30823
	2:227020000	137070520	NA	NA	NA	1	2	0.00	0.025	0.0038	7.75.13	30816
	2.227000000	152545054		NA	N/A		-	0.34	-0.025	0.0030	1.12-15	30010
	2:22/093/45	rs2943641	NA	NA	NA	1	1	0.37	-0.028	0.0038	1.4E-15	30825
	2:227100698	152972146	NA	NA	NA	1	-	0.63	0.028	0.0038	1.1E-15	30818
	2:22/105921	rs2943650	NA	NA	NA	1	-	0.62	0.049	0.0083	3.8E-09	6792
ANKRD55:MAP3K1	rs459193			10	5775-	0.92	G	0.73	0.015	100000000000000000000000000000000000000	1.1E-12	
0.01/2	5:55806751	rs459193	AC022431.2.1	downstream_gene	NA	1	A	0.29	-0.019	0.0040	1.5E-06	30825
GCKR		rs780094					C	0.62	0.03		5.8E-38	118032
	2:27424636	rs1395	SLC5A6	missense	p.S481F	5	A	0.69	-0.02	0.0036	4.0E-08	38338
	2:27550967	rs1049817	GTF3C2	synonymous	p.P782P	5	A	0.58	-0.02	0.0033	1.4E-07	38339
	2:27711893	rs1260327	IFT172	intron	NA	1	A	0.52	-0.02	0.0035	2.9E-09	33231
	2:27730940	rs1260326	GCKR	missense,splice_region	p.L446P	5	т	0.37	-0.03	0.0034	3.1E-18	38338
	2:27741237	rs780094	GCKR	intron	NA	1	т	0.37	-0.03	0.0037	1.4E-18	33231
	2:27742603	rs780093	GCKR	intron	NA	1	т	0.37	-0.03	0.0037	8.0E-18	33221
	2:27801493	rs1919127	C2orf16	missense	p.V685A	5	т	0.72	0.02	0.0043	2.6E-07	29085
	2:27801759	rs1919128	C2orf16	missense	p.1774V	5	A	0.72	0.02	0.0037	6.0E-10	38339
	2:27851918	rs3749147	GPN1	missense	p.R12K	5	A	0.25	-0.02	0.004	7.7E-09	33763
	2:28344285	rs12104449	BRE	intron	NA	1	A	0.11	-0.03	0.0056	2.2E-06	33231
	2:27972833	rs4401177	NA	NA	NA	1	A	0.88	0.02	0.0054	3.7E-06	33200
G6PC2		rs560887					С	0.70	0.08		8.7E-218	119169
	2:169763148	rs560887	G6PC2	intron	NA	5	т	0.30	-0.07	0.0036	7.9E-87	38339
	2:169763262	rs138726309	G6PC2	missense	p.H177Y	1	т	0.01	-0.10	0.0193	7.4E-08	34574
	2:169764141	rs2232323	G6PC2	missense	p.Y207S	3	A	0.99	0.13	0.0227	1.7E-09	35227
	2:169764176	rs492594	G6PC2	missense	p.V219L	5	C	0.48	0.02	0.0032	1.4E-08	38339
	2:169791438	rs552976	ABCB11	intron	NA	1	A	0.35	-0.06	0.0037	5.1E-66	33231
	2:169774071	rs563694	NA	NA	NA	1	A	0.65	0.06	0.0037	4.3E-68	33231
PCSK1		rs4869272					т	0.69			1.0E-15	13,872
	5:95728898	rs6235	PCSK1	missense	p.S690T	5	C	0.72	0.02	0.0036	2.1E-09	38339
	5:95728974	rs6234	PCSK1	missense	p.Q665E	5	C	0.28	-0.02	0.0036	2.0E-09	38339
	5.95539448	rs4869272	NA	NA	NA	1	Ť	0.68	0.02	0.0038	8.3E-07	33231
CDKAL1	0100000110	rs9368222					A	0.28	0.01		1.0E-09	128453
0010121	6:20679709	rs7756992	CDKAL1	intron	NA	1	A	0.70	-0.02	0.0038	3.9E-06	33219
GLP1R	0.2007.07.00		Servic I	andorr	200	1.00	~	00	0.02	0.0000	0.02 00	002.0
out int	6-30046704	re10305403	CI P+P	misconco	n A246T	2	٨	0.02	.0.07	0.0120	4 55.07	36219
DOKPTHENMO	0.39040794	1810303492	GLPIR	missense	p.A3161	2	A	0.02	-0.07	0.0139	4.5E-07	30218
DGKB:TMEM195	7:15062822	re10244054	NIA	NIA	NIA		T	0.52	0.03	0.0025	3.0E-44	22220
	7:15063833	1510244051	NA	NA	NA	1	+	0.51	-0.03	0.0035	1.5E-14	33230
	7:15064309	rsz191349	NA	NA	NA	1	- 1	0.49	0.03	0.0035	1.3E-14	33231

GWAS Loci GCK Location rs4007517 rs10 Gene Gene Gene Gene Gene Gene Gene Gene	P value 6.5E-92 2.8E-07 4.7E-31 4.9E-21 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.4E-06 6.3E-15 3.8E-07 2.0E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	N 118500 33231 24042 33228 33231 131795 33231 33225 33226 33230 23984 127470 26641 33231 28698 33230
GWAS Loc: Location rst0 Gene Consequence Protein Change E1H Alle Prog Bit a stimate Error GCK rs4807517 - - - 0.16 0.06 7.44183187 rs291881 MYL7 upstream_gene NA 1 A 0.14 0.06 0.0042 7.44223126 rs697502.4 GCK upstream_gene NA 1 T 0.13 0.06 0.0052 7.4423086 rs199884 GCK upstream_gene NA 1 T 0.13 0.06 0.0052 7.4423086 rs697502.4 GCK upstream_gene NA 1 A 0.14 0.06 0.0052 GRB10 rs9943153 rs7104861 GRB10 intron NA 1 A 0.66 0.002 0.0037 7:5075680 rs10248619 GRB10 intron NA 1 A 0.13 0.03 0.0058 8:918358 rs933380	P Value 6.5E-92 2.8E-07 4.7E-31 4.9E-21 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.4E-06 6.3E-15 3.8E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	N 118500 33231 33231 33231 33231 33228 33231 131795 33231 33225 33226 33220 23984 127470 26641 33231 28698 33230
GCA 7.44183187 F32071681 MYL7 upstream_gene NA 1 A 0.16 0.00 7.44123721 fs730497 GCK upstream_gene NA 1 A 0.16 0.005 7.44229068 fs799884 GCK upstream_gene NA 1 T 0.13 0.06 0.0052 7.4423568 rs6975024 GCK upstream_gene NA 1 T 0.36 -0.02 0.0052 GRB10 rs6933183 T 0.34 0.02 0.003 0.02 0.003 7:50730452 rs2115094 GRB10 intron NA 1 A 0.69 -0.02 0.0037 7:5075190 rs10248619 GRB10 intron NA NA NA NA 0.1 0.03 0.002 0.0037 7:50751579 rs6933360 NA NA NA NA NA 1 A 0.13 0.03 0.0058 8.9183558 rs441132	0.5E-92 2.8E-07 4.7E-31 4.9E-21 2.2E-31 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.9E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	1 18500 33231 33231 33231 33231 33231 33231 33235 33236 33230 23984 127470 26841 33231 28698 33230 38338 33230
Article RSP 1081 MPL/ upsteam_gene NA 1 A 0.19 -0.02 0.0044 7.44223068 rs730497 GCK upsteam_gene NA 1 A 0.14 0.06 0.0052 7.44223068 rs8975024 GCK upstream_gene NA 1 T 0.13 0.06 0.0052 7.4423666 rs6975024 GCK upstream_gene NA 1 A 0.04 0.052 GRB10 rs6943153 mitron NA 1 A 0.06 0.0052 7.5075109 rs2175094 GRB10 intron NA 1 A 0.06 0.002 0.0037 7.50751905 rs5043153 GRB10 intron NA 1 A 0.06 0.002 0.0037 7.5075245 rs933360 NA NA NA NA 1 A 0.13 0.03 0.0052 81918356 rs8918358 rs9987289	2.8E-07 4.7E-31 4.9E-21 2.2E-31 1.6E-12 4.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33231 33231 24042 33228 33228 332231 33225 33226 33220 23984 127470 26641 33231 28698 33230 28698 33230
1/4423021 IS/30497 GCA IIIDIN NA I A 0.14 0.005 0.0052 7.4422068 rsf99884 GCK upstream_gene NA 1 T 0.036 0.0052 7.44231886 rs607517 YK7f upstream_gene NA 1 T 0.06 0.0052 GRB10 rs6407517 YK7f upstream_gene NA 1 A 0.04 0.002 0.0033 7:5075045 rs2108349 GRB10 intron NA 1 A 0.66 0.022 0.0037 7:50751679 rs2108349 GRB10 intron NA 1 A 0.66 0.022 0.0037 7:50751579 rs933360 NA NA NA NA 1 A 0.013 0.03 0.0054 8:9183596 rs983350 rs983360 NA NA NA 1 A 0.13 0.03 0.0054 8:9184691 rs6843113 <t< td=""><td>4.7E-31 4.9E-21 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18</td><td>32231 33231 33231 33231 33231 33225 33226 33230 23984 127470 26841 33231 28698 33230</td></t<>	4.7E-31 4.9E-21 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	32231 33231 33231 33231 33231 33225 33226 33230 23984 127470 26841 33231 28698 33230
1/4423186 IS1 9980-4 GCK upstream_gene NA I I 0.13 0.06 0.0064 7/4423186 rs6975024 GCK upstream_gene NA 1 A 0.14 0.06 0.0052 7/4023566 rs6943153 T 0.34 0.02 0.004 7/50730452 rs210849 GRB10 intron NA 1 A 0.69 -0.02 0.0037 7/507509 rs707509 rs210849 GRB10 intron NA 1 A 0.61 -0.02 0.0037 7/50791579 rs6983050 NA NA NA 1 T 0.38 -0.02 0.0046 PPP1738 rs983309 rs983300 NA NA NA 1 A 0.13 0.03 0.0058 8:918356 rs983309 rs983309 NA NA NA 1 A 0.13 0.03 0.0054 8:918356 rs983369 rs982309 <td< td=""><td>4.9E-21 2.2E-31 2.2E-31 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18</td><td>24042 33228 33231 131795 332231 33225 33226 33230 23984 127470 26641 33231 28698 33230</td></td<>	4.9E-21 2.2E-31 2.2E-31 2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	24042 33228 33231 131795 332231 33225 33226 33230 23984 127470 26641 33231 28698 33230
1/4423168b rs4007517 YK76 upstream_gene NA 1 A 0.14 0.06 0.0052 GRB10 rs4035617 YK76 upstream_gene NA 1 A 0.14 0.06 0.0052 GRB10 rs60751090 rs715094 GRB10 intron NA 1 A 0.06 0.002 7:50751090 rs10248619 GRB10 intron NA 1 A 0.66 0.02 0.0037 7:5075825 rs93330 GRB10 intron NA NA NA 1 A 0.66 0.02 0.0037 7:50758245 rs933309 NA NA NA NA NA NA 1 A 0.13 0.03 0.0058 8:9183346 rs983309 NA NA NA NA NA NA 1 A 0.13 0.03 0.0058 8:9183466 rs46501299 NA NA NA NA 1	2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33228 33231 131795 33231 33225 33226 33230 23984 127470 26841 33231 28698 33230
GRB10 rs6943/15.3 TK /b upsiteant gene NA I A 0.14 0.003 0.0032 7:50730452 rs2715094 GRB10 intron NA 1 A 0.69 -0.02 0.0039 7:50751090 rs10246619 GRB10 intron NA 1 A 0.61 -0.02 0.0037 7:5075109 rs694353 GRB10 intron NA 1 A 0.61 -0.02 0.0037 7:50756245 rs93360 NA NA NA NA 1 A 0.61 -0.02 0.0037 7:50758245 rs93360 NA NA NA NA 1 A 0.13 0.03 0.0058 8:918356 rs4841132 NA NA NA NA 1 A 0.13 0.03 0.0055 8:9184501 rs5126259 NA NA NA NA 1 A 0.68 0.03 8:118185025	2.2E-31 1.6E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 3.9E-07 3.9E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	32231 131795 33231 33226 33226 33230 23984 127470 26841 33231 28698 33230 38338 33230
GRB10 TOTAL OLA OLA 7:50730452 rs2715094 GRB10 intron NA 1 A 0.69 -0.02 0.0039 7:50750190 rs10248619 GRB10 intron NA 1 T 0.30 0.02 0.004 7:50756157 rs6943153 GRB10 intron NA 1 T 0.39 0.02 0.0037 7:50758245 rs933360 NA NA NA 1 T 0.68 -0.02 0.0046 PPP1R3B rs983309 T T 0.12 0.03 0.058 8:9183566 rs4841132 NA NA NA 1 A 0.13 0.03 0.0058 8:9185461 rs6601299 NA NA NA NA 1 A 0.04 0.02 0.0052 SLC30A8 rs1155471 SLC30A8 missense p.R276W 5 T 0.36 -0.02 0.0034 8:11818	1.0E-12 6.5E-07 8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 5.6E-18	33231 33225 33226 33230 23984 127470 26841 33231 28698 33230 38338 33230
Instruction	8.6E-09 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33225 33226 33230 23984 127470 26641 33231 28698 33230 38338 33230
A. 50 3 1050 Is 10248015 OR B10 Inition INA I I 0.05 0.02 0.003 7:5078665 rs210849 GRB10 initron NA 1 T 0.39 0.02 0.0037 7:5078255 rs933360 NA NA NA 1 T 0.39 0.02 0.0037 8:918356 rs983300 T 0.12 0.03 0.02 0.0038 8:918356 rs9867289 NA NA NA NA 0.14 0.03 0.0058 8:918356 rs9867289 NA NA NA NA 0.13 0.03 0.0058 8:9181661 rs216259 NA NA NA NA 1 A 0.14 0.02 0.003 8:118184783 rs13266634 SLC30A8 missense p.R276W 5 T 0.36 -0.02 0.0034 8:118185733 rs11558471 SLC30A8 3_prime_UTR NA 1	5.8E-08 5.8E-08 6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33226 33230 23984 127470 26641 33231 28698 33230 38338 33230
A. 507 60063 Inscribe ORA D Intron NA I A 0.01 -0.02 0.0037 7:5075179 rs6943153 GRB 10 intron NA NA NA I T 0.03 0.02 0.0037 7:5075179 rs6933360 NA NA NA NA NA I T 0.02 0.0037 8:9183596 rs983309 T T 0.12 0.03 0.0058 8:9184691 rs6601299 NA NA NA NA NA 1 A 0.13 0.03 0.0054 8:918461 rs6126529 NA NA NA NA 1 T 0.14 0.02 0.0052 8:9185161 rs11558471 SLC30A8 missense p.R276W 5 T 0.68 0.02 0.0036 8:11818573 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 9:21	6.7E-08 1.3E-06 6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33230 33230 23984 127470 26841 33231 28698 33230 38338 33230
17:5078/257 rs0594.3153 GRB10 inition NA 1 1 099 0.002 0.0037 7:50758/257 rs083300 NA NA NA NA 1 T 0.68 -0.02 0.0037 8:9183596 rs983209 NA NA NA NA 1 A 0.12 0.03 8:9183596 rs4841132 NA NA NA NA 1 A 0.13 0.03 0.0058 8:9183596 rs4841132 NA NA NA NA 1 A 0.14 0.02 0.0055 8:9185164 rs5125259 NA NA NA NA 1 A 0.68 0.03 8:118184783 rs1326634 SLC30A8 missense p.R276W 5 T 0.36 -0.02 0.0036 8:118185025 rs3002177 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 0 s118185025 rs1085471 SLC30A8 3_prime_UTR NA 1 A <	6.7E-08 1.3E-06 6.3E-15 3.8E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33230 23984 127470 26841 33231 28698 33230 38338 33230
PPP1R3B rs933300 NA NA NA NA I I 0.08 -0.02 0.0046 8:918356 rs9887289 NA NA NA NA NA 1 A 0.13 0.03 0.0058 8:9183566 rs4841132 NA NA NA NA NA 1 A 0.13 0.03 0.0058 8:9183566 rs418479 ns601299 NA NA NA NA NA 1 T 0.14 0.03 0.0055 8:918164 rs9125259 NA NA NA NA NA NA 0.68 0.03 8:11818573 rs13256634 SLC30A8 gprime_UTR NA 1 A 0.66 0.02 0.0034 8:11818573 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 8:118185733 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 9:2213284 rs1095550 NA NA </td <td>6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18</td> <td>23964 127470 26841 33231 28698 33230 38338 33230</td>	6.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	23964 127470 26841 33231 28698 33230 38338 33230
PPPTR3B Iss83309 I 1 0.12 0.03 8:9183358 rs9827289 NA NA NA 1 A 0.13 0.03 0.0058 8:9184661 rs66017299 NA NA NA NA NA 1 A 0.13 0.03 0.0054 8:9184661 rs610610 rs2126259 NA NA NA NA 1 T 0.14 0.03 0.0052 SLC30A8 rs11558471 A NA NA NA 1 A 0.68 0.03 8:118184783 rs1356634 SLC30A8 missense p.R276W 5 T 0.66 0.02 0.0036 8:118185733 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 8:118185733 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.003 9:92133284 rs	0.3E-15 3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	127470 26841 33231 28698 33230 38338 33230
Composition Composition <thcomposition< th=""> <thcomposition< th=""></thcomposition<></thcomposition<>	3.8E-07 2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	26841 33231 28698 33230 38338 33230
6:3:163390 IS434 1132 NA NA NA NA NA I A 0.13 0.033 0.0054 8:918460 rs610299 NA NA NA NA I T 0.14 0.03 0.0055 8:918461 rs2126259 NA NA NA NA I T 0.14 0.02 0.0052 SLC30A8 rs11558471 SLC30A8 missense p.R276W 5 T 0.36 -0.02 0.0036 8:118185025 rs3802177 SLC30A8 3_prime_UTR NA 1 A 0.36 -0.02 0.0036 8:118185733 rs10585471 SLC30A8 3_prime_UTR NA 1 A 0.36 -0.02 0.0036 CDKN2B rs10811661 T SLC30A8 3_prime_UTR NA 1 A 0.15 -0.03 0.0059 9:22133284 rs10965250 NA NA NA NA 1 A 0.47	2.0E-07 3.9E-07 3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	33231 28698 33230 38338 33230
6.3:164091 risb00/1299 NA NA NA NA NA I I 0.14 0.03 0.0033 8:9185164 rs216259 NA NA NA NA NA I T 0.14 0.02 0.0052 SLC30A8 rs11558471 rs1356634 SLC30A8 missense p.R276W 5 T 0.36 -0.02 0.0036 8:118185025 rs3802177 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 8:118185733 rs1155471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 CDKN2B rs10811661 rs1085520 NA NA NA 1 A 0.61 0.02 0.0036 9:2213284 rs10865250 NA NA NA NA 1 A 0.15 -0.03 0.0059 IKBKAP rs1083612 rs1085517 NA NA NA	3.4E-06 2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	38338 33230
SLC30A8 rs112543 NA I 1 0.14 0.02 0.0032 8:1181873 rs13256634 SLC30A8 3_prime_UTR NA 1 A 0.36 -0.02 0.0036 8:11818733 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.36 -0.02 0.0036 CDKN2B rs10811661 LC20XA8 3_prime_UTR NA NA 1 A 0.15 -0.03 0.0059 9:2132824 rs10965250 NA NA NA NA 1 A 0.15 -0.03 0.0059 1KBKAP rs17853166 IKBKAP missense p.S251G 2 T	2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	38338 33230
SLC3046 FX CA CA CAS COS 8:1181847783 rs11256634 SLC30A8 missense p.R276W 5 T 0.03 0.003 8:118185025 rs3802177 SLC30A8 3_prime_UTR NA 1 A 0.36 -0.02 0.0036 8:118185733 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 0:118185733 rs1105811661 T 0.82 0.02 0.003 9:22133284 rs10965250 NA NA NA NA 0.15 -0.03 0.0059 IKBKAP rs1638693 T 0.97 0.04 0.0097 9:111679940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 10:11302255 rs10885127 G 0.87 0.04 0.0097 0.04 0.0097 10:11302255 rs1088517 N NA NA NA 1	2.6E-11 1.6E-11 2.5E-10 2.1E-10 5.6E-18	38338 33230
6:116184763 rs13206034 SLC30A8 missense p.RZ76VV 5 1 0.05 -0.02 0.0036 8:118185025 rs3081177 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 8:118185033 rs11558471 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 CDKN2B rs10811661 rs1081620 NA NA NA 1 A 0.64 0.02 0.0036 9:2133284 rs10965250 NA NA NA NA 1 A 0.15 -0.03 0.0059 9:11167940 rs17653166 IKBKAP missense p.S251G 2 T 0.97 0.04 0.0097 0:113022555 rs1085127 NA NA NA NA 1 T 0.97 0.04 10:113022555 rs1085127 NA NA NA 1 T 0.97 0.002 10:113022555 rs7903146 TCF7L2 intron NA 1 T 0.23	2.5E-10 2.1E-10 5.6E-18	38338
8:118185025 rs3002177 SLC30A8 3_prime_UTR NA 1 A 0.05 -0.02 0.0036 8:11818573 rs10811661 SLC30A8 3_prime_UTR NA 1 A 0.64 0.02 0.0036 9:2213284 rs10965250 NA NA NA NA 1 A 0.15 -0.03 0.0059 9:2113284 rs10965250 NA NA NA NA 1 A 0.15 -0.03 0.0059 9:211679940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 10:113022555 rs1088512 G 0.87 0.04 0.007 10:113022555 rs10885117 NA NA NA 1 T 0.91 0.03 0.006 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.02 0.0042 CRY2 rs11605924 A 0.49 0.02 0.004 0.001 0.002 0.0035 MADD rs794555 <t< td=""><td>2.1E-10 5.6E-18</td><td>33230</td></t<>	2.1E-10 5.6E-18	33230
8:11815/33 rs110584/1 SLC30/8 3_prime_UIR NA 1 A 0.04 0.02 0.03 CDKN2B rs10811661 T 0.82 0.02 0.04 0.05 0.05 0.05 9:22133284 rs10965250 NA NA NA 1 A 0.04 0.05 IKBKAP rs10805250 NA NA NA 1 A 0.05 0.03 0.0059 IKBKAP rs10805122 T 0.97 0.04 0.04 0.03 0.0097 ADRA2A rs10885127 NA NA NA 1 T 0.97 0.04 10:113022555 rs70835166 IKBKAP missense p.S251G Z T 0.97 0.04 10:11302255 rs7093146 T 0.91 0.03 0.002 0.002 10:114758349 rs7993146 T C 0.72 -0.02 0.002 CRY2 rs7944585 CRY2 intron </td <td>2.1E-10 5.6E-18</td> <td>00004</td>	2.1E-10 5.6E-18	00004
CDKN2B rs10811661 T 0.82 0.02 9:22133284 rs10965250 NA NA NA 1 A 0.05 0.005 IKBKAP rs10811661 T 0.97 0.04 0.0059 9:111679940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 9:111679940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 0.0097 ADRA2A rs1085127 NA NA NA 1 T 0.91 0.03 0.006 10:113022555 rs10885127 NA NA NA 1 T 0.91 0.03 0.006 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.02 0.004 CRY2 rs11605924 A 0.49 0.02 0.0035 MADD rs79444584 A 0.51 0.02	5.6E-18	33231
9:2213284 rs1095250 NA NA NA NA I A 0.15 -0.03 0.0059 IBKAP rs16813693 T 0.97 0.04 0.097 0.04 9:111679940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 ADRA2A rs1088512 G 0.87 0.04 0.0097 CRY2 rs10885117 NA NA NA 1 T 0.97 0.04 10:113022555 rs7003146 CF7L2 o C 0.72 -0.02 10:114758349 rs7903146 CF7L2 intron NA 1 T 0.23 0.02 0.0042 CRY2 rs1065924 CRY2 intron NA 1 A 0.51 0.02 0.003 MADD rs79434584 CRY2 intron NA 1 A 0.51 0.02 0.033 MADD <thrs7944584< th=""> CR2 misse</thrs7944584<>	TR 0.00 0.00	
INBKAP rs18913693 I 0.07 0.04 9:111679940 rs17653166 IKBKAP missense p.S251G 2 T 0.97 0.04 ADRA2A rs10885122 G 0.87 0.04 0.0097 10:113022555 rs10885171 NA NA NA 1 T 0.91 0.03 0.006 10:113022555 rs1903146 TCF7L2 intron NA 1 T 0.93 0.002 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.002 CRY2 rs1165924 - - A 0.49 0.02 11:45878992 rs7944585 CRY2 intron NA 1 A 0.51 0.02 0.035 MADD rs7944584 - A 0.75 0.03 0.034 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.03	7.9E-07	22658
9:1116/9940 rs17853166 IKBKAP missense p.S251G 2 T 0.97 0.04 0.097 ADRA2A rs10885122 G 0.87 0.04 10:113022555 rs10885117 NA NA NA 1 T 0.91 0.03 0.006 7CF7L2 rs7903146 CC7L2 0.02 0.004 0.097 10:114758349 rs7903146 TCF7L2 0.02 0.004 0.009 CRY2 rs11605924 X A 0.49 0.02 11:45878992 rs7945565 CRY2 intron NA 1 A 0.51 0.02 MADD rs79444584 X X A 0.75 0.03 0.0034 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.0034	3.5E-11	
ADKA2A rs10885122 G 0.87 0.04 10:11302255 rs10885127 NA NA NA 1 T 0.91 0.03 0.006 <i>TCF7L2</i> rs7903146 C 0.72 -0.02 0.04 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.93 0.002 CRY2 rs11605924 - A 0.49 0.02 11:45878992 rs7945655 CRY2 intron NA 1 A 0.51 0.02 MADD rs7944584 - A 0.75 0.03 - 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.034	3.7E-06	36218
10:113022555 rs10885117 NA NA NA 1 T 0.91 0.03 0.006 TCF7L2 rs7903146 C 0.72 -0.02 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.002 0.0042 CRY2 rs11605924 A 0.49 0.02 0.0035 11:45878992 rs7945565 CRY2 intron NA 1 A 0.51 0.02 0.0035 MADD rs7944584	2.9E-16	
CRY2 rs7903146 CC 0.72 -0.02 10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.02 0.004 CRY2 rs11605924 A 0.49 0.02 0.005 11:45878992 rs7945565 CRY2 intron NA 1 A 0.51 0.02 0.0035 MADD rs7944584 A 0.75 0.03 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.0034	9.5E-07	33211
10:114758349 rs7903146 TCF7L2 intron NA 1 T 0.23 0.02 0.0042 CRY2 rs11605924 A 0.49 0.02 11:45878992 rs7945565 CRY2 intron NA 1 A 0.49 0.02 11:45878992 rs7945565 CRY2 intron NA 1 A 0.51 0.02 0.0035 MADD rs7944584 A 0.75 0.03 0.034 0.02 0.0034	2.7E-20	127477
CRY2 rs11605924 A 0.49 0.02 11:45878992 rs7945565 CRY2 intron NA 1 A 0.51 0.02 0.003 MADD rs7945565 rs794584 A 0.75 0.03 11:42270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.0034	4.3E-07	33231
11:4587892 rs7945565 CRY2 intron NA 1 A 0.51 0.02 0.035 MADD rs7944584 A 0.75 0.03 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.034	1.0E-14	
MADD rs7944584 A 0.75 0.03 11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.0034	1.8E-10	33230
11:47270255 rs2167079 ACP2 missense p.R29Q 5 T 0.38 0.02 0.0034	2.0E-18	118741
	1.9E-07	38338
11:47286290 rs7120118 NR1H3 intron NA 1 T 0.63 -0.02 0.0037	2.8E-06	33231
11:47290984 rs1449627 MADD 5_prime_UTR NA 1 T 0.62 -0.02 0.0036	4.6E-06	33231
11:47298360 rs326214 MADD synonymous p.E347E 5 A 0.61 -0.02 0.0033	3.8E-07	38339
11:47336320 rs7944584 MADD intron NA 1 A 0.77 0.03 0.0043	2.6E-11	33231
11:47354787 rs1052373 MYBPC3 synonymous p.E1096E 5 T 0.39 0.02 0.0033	1.1E-06	38337
FADS1 rs174550 T 0.64 0.02	1.7E-15	118908
11:61557803 rs102275 C11orf10 intron NA 1 T 0.62 0.02 0.0036	1.5E-07	33231
11:61569830 rs174546 FADS1 3_prime_UTR NA 1 T 0.38 -0.02 0.0037	4.1E-07	33231
11:61570783 rs174547 FADS1 intron NA 5 T 0.62 0.02 0.0034	2.1E-09	38339
11:61571478 rs174550 FADS1 intron NA 1 T 0.62 0.02 0.0037	3.4E-07	33230
11:61597972 rs1535 FADS2 intron NA 1 A 0.62 0.02 0.0036	6.1E-07	33230
11:61609750 rs174583 FADS2 intron NA 1 T 0.38 -0.02 0.0036	3.0E-07	33231
ARAP1 rs11603334 G 0.83 0.02	1.1E-11	
11:72432985 rs11603334 ARAP1 5_prime_UTR NA 1 A 0.21 -0.02 0.0044	1.5E-08	33231
11:72433098 rs1552224 ARAP1 5_prime_UTR NA 1 A 0.79 0.02 0.0044	1.2E-08	33230
MTNR1B rs10830963 G 0.30 0.08	5.8E-175	
11:92708710 rs10830963 MTNR1B intron NA 1 C 0.69 -0.09 0.0038	2.8E-118	33230
11:92651002 rs7950811 NA NA NA 1 A 0.05 0.06 0.0087	6.8E-11	33231
11:92668826 rs3847554 NA NA NA 1 T 0.43 0.06 0.0035	1.6E-62	33231
11:92673828 rs1387153 NA NA NA 1 T 0.30 0.07 0.0038	5.6E-76	33231
11:92691532 rs2166706 NA NA NA 1 T 0.60 -0.06 0.0036	5.5E-57	33231
11:92722761 rs1447352 NA NA NA 1 A 0.53 0.04 0.0035	5.3E-31	33214
C2CD4B rs11071657 A 0.63 0.02	3.6E-08	
15:62383155 rs4502156 NA NA NA 1 T 0.50 0.02 0.0035	1.4E-10	33231
15:62396389 rs7172432 NA NA NA 1 A 0.51 0.02 0.0035	3.8E-11	33231
15:62404382 rs1436955 NA NA NA 1 T 0.28 -0.02 0.0039		33231
FOXA2 rs6113722 G 0.96 0.35	1.0E-06	123665
20:39832628 rs17265513 ZHX3 missense p.N310S 4 T 0.76 -0.02 0.0039	1.0E-06 2.5E-11	07000

Supplementary Table S2B. Significant ($P < 5 \times 10^{-7}$) and suggestive ($P < 5 \times 10^{-6}$) single variant association results that are not in previously published regions. Results are shown for variants with association $P < 5 \times 10^{-6}$ that fall outside the regions of previously published genetic associations.

	Location	rsID	Gene	Consequence	Protein Change	ETH	Allele	Allele Freq	Effect	Standard Error	P value	N
Glucose	7:2854547	rs116515234	GNA12	intron	NA	1	A	0.98	-0.30	0.07	6.7E-07	508
	15:43714320	rs140119148	TP53BP1	missense	p.T1278I	1	A	0.002	0.34	0.07	9.0E-07	13286
	1:2535397	rs150660153	MMEL1	missense	p.E323Q	2	C	1.00	-0.24	0.05	1.1E-06	17659
	6:43806609	rs881858	VEGFA	NA	NA	1	A	0.69	-0.02	0.004	4.1E-06	33231
	19:3754020	rs61731066	APBA3	synonymous	p.S282S	4	C	0.02	-0.16	0.03	4.1E-06	4004
	Location	rsID	Gene	Consequence	Protein Change	ETH	Allele	Allele Freq	Effect	Standard Error	P value	N
Insulin	19:40762860	rs184042322	AKT2	missense	p.P50T	1	т	0.01	0.12	0.02	1.2E-07	28118
	6:43758873	rs6905288	VEGFA	downstream gene	NA	1	A	0.56	0.02	0.00	4.2E-07	17898
	9:116764392	rs143246917	ZNF618	intron	NA	1	A	0.99	-0.77	0.14	9.2E-07	507
	8:23004629	rs3924519	TNFRSF10D	intron	NA	5	т	0.56	-0.06	0.01	9.8E-07	4556
	6:30414848	rs1362115	HLA-E	NA	NA	1	т	0.15	-0.02	0.01	1.9E-06	30825
	10:116331030	rs3824819	ABLIM1	intron	NA	1	т	0.07	-0.28	0.05	2.0E-06	1103
	6:30428351	rs2077573	HLA-E	NA	NA	1	A	0.85	0.02	0.01	2.3E-06	30825

Supplementary Table 2C. Single variant association results at previously published genome-wide association loci. Each row contains a previously reported GWAS association with FG level or FI level. Not all previously published SNPs were available for analysis in the exome array or exome sequencing data (denoted with - for our analyses).

Fasting Gluco	50			Published							WES +	ExomeArray	(
rsID	Gene	BMI	PHENO	Eff /Neff	Effective Freq	Effect	P	N	Ancestry	CITATION	Freq	Effect	Std	Р	N
s340874	PROX1	No	FGlu	C/T	0.52	0.021	6.6E-12	116882	European	Dupuis et al. (Nat Genet 2010) Dupuis et al. (Nat Genet 2010); Prokopenko et al. (Nat Genet 2008);	0.49	0.01	0.00	2.23E-02	33231
\$560887	G6PC2	No	EGh	сл	07	0.075	8.7E-218	119169	European	Sabatti et al. (Nat Genet 2008); Kristiansson et al. (Circ Cardiovasc Genet 2012); Bouatia et al. (Science 2008)	0.70	0.07	0.00	7 88E-87	38339
\$1371614	DPYSL5	Yes	FGluBMladi	T/C	0.25	0.020/ 0.022	2.3E-12	96496	European	Manning et al. (Nat Genet 2012)	0.70	0.07	0.00	1.000-01	00000
s780094	GCKR	No	FGlu	C/T	0.62	0.026	5.6E-38	118032	European	Dupuis et al. (Nat Genet 2010): Prokopenko et al. (Nat Genet, 2008)	0.63	0.03	0.00	1.37E-18	33231
s3736594	MRPL33	Yes	FGluBMladi	A/C	0.27		1.1E-15	96487	European	Manning et al. (Nat Genet 2012)			12	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-
s895636	SIX3 - SIX2	No	FGlu	C/T	0.38	0.039	1.0E-12	17617	East Asian	Kim et al. (Nat Genet 2011)	4	÷.		+ 1	-
\$11715915	AMT	No	FGlu	C/T	0.68	0.012	4.9E-08	131523	European	Scott et al. (Nat Genet 2012)	0.63	0.01	0.00	5.34E-02	38337
\$11708067	ADCY5	No	FGlu	A/G	0.78	0.027	7.1E-22	118475	European	Dupuis et al. (Nat Genet 2010)	0.79	0.02	0.00	1.33E-04	33228
s11920090	SLC2A2	No	FGlu	T/A	0.87	0.025	8.1E-13	119024	European	Dupuis et al. (Nat Genet 2010)	0.87	0.02	0.01	4.87E-05	33231
s7651090	IGF2BP2	No	FGlu	G/A	0.3	0.013	1.8E-08	104019	European	Scott et al. (Nat Genet 2012)	0.31	0.00	0.00	7.51E-01	33231
\$7708285	ZBED3	Yes	FGluBMladi	G/A	0.27	0.015	1 2E-08	117931	European	Scott et al. (Nat Genet 2012)					1. and
\$4869272	PCSK1	No	FGlu	T/C	0.69	0.018	1.0E-15	131872	European	Scott et al. (Nat Genet 2012)	0.68	0.02	0.00	8.32E-07	33231
\$13179048	PCSK1		FGluBMladi	C/A	0.69	0.022/0.018	1.6E-10	96496	European	Manning et al. (Nat Genet 2012)	0.70	0.01	0.01	2.41E-01	4532
\$9368222	CDKAL1	No	FGh	A/C	0.28	0.014	1.0E-09	128453	European	Scott et al. (Nat Genet 2012)			0.01	2.412.01	-
\$17762454	RRFR1	Yes	FGluBMladi	T/C	0.26	0.014	9.6E-09	123247	European	Scott et al. (Nat Genet 2012)			1124		
\$1127065	CAMK2B	No	FGlu	G/A	0.49	0.08	8 9E-11	11616	European	Kristiansson et al. (Circ Cardiovasc Genet. 2012)	0.59	0.03	0.01	5 20E-04	5108
=2101340	DGKR/TMEM105	No	EGh	T/G	0.52	0.03	3.0E-44	122743	European	Dupuis et al. (Nat Genet 2010)	0.49	0.03	0.00	1 256-14	33231
×6947830	DGKB/TMEM105	No	EGh	A/G	0.46	0.1	1.4E-13	11616	European	Kristiansson et al. (Circ Cardiovace Genet. 2012)	0.40	0.00	0.00	1.6.01.	55251
=1706884	GCK	No	FGh	A/G	0.85	0.063	4 55-18	14211	East Asian	Go et al. (1 Hum Genet 2013)	0.13	0.06	0.01	4 94E-21	24042
\$3757840	GCK	No	FGh	A/C	0.46	0.1	4 9E-13	11616	European	Kristiansson et al. (Circ Cardiovasc Genet. 2012)	0.10	0.00	0.01	1.016.21	L'IUIL
-6076034	COK	Nie	ECh	C.T.	0.16	0.061	2.05.00	102517	European	South at al. (Not Count 2012)	0.14	0.06	0.01	3 365 31	22220
=4607517	GCK	No	EGh	AIG	0.15	0.062	6 5E-02	118500	European	Dupuis et al. (Nat Genet 2010)	0.14	0.06	0.01	2 25E-31	33231
s4007317	CRRIA	No	FOIL	TIC	0.16	0.002	0.5E-52	121705	European	South et al. (Nat Generi 2012)	0.14	0.00	0.01	2.200-01	33231
-11660471	SLC20AR	Nic	FON	AIG	0.68	0.027	2.6E 11	45006	European	Dupuis et al. (Nat Const 2010)	0.00	0.02	0.00	2.005.10	22221
+093200	DDD4D2D	No	EGh	TIC	0.00	0.027	2.0E-11	40390	European	South et al. (Nat Genet 2012)	0.64	0.02	0.00	2.096+10	33231
*4841122	PPP IN3D	NU	EChaBMindi	NG	0.12	0.020	7.6E.00	06406	European	Mannies et al. (Nat Genet 2012)	0.12	0.02	0.01	1 065 07	22224
-0106050	PPP INSP	No	FOldBanady	TIC	0.1	0.02770.030	0.0E-05	10430	European	South of all (Mot Const 2012)	0.15	0.03	0.01	2.205.00	33231
-120239	INDEAD	NU	FGIU	TIC	0.07	0.017	0.3E-15	124/40	European	Scott et al. (Nat Genet 2012)	0.04	0.02	0.01	3.366-00	33230
-10913093	INDIAP DNI 7	NO	FOIL	0/0	0.97	0.043	3.5E-11	125115	European	Scott et al. (Nat Genet 2012)	0.90	0.04	0.01	7.40E-00	20007
53029109	ODKNOR	No	FGIU	GIA	0.07	0.017	1.1E-10	110310	European	Scott et al. (Nat Genet 2012)	0.00	0.01	0.00	1.24E+02	33229
-7024200	CURA	NO	FGIU	AIC AIC	0.62	0.024	5.6E-18	120400	European	Scott et al. (Nat Genet 2012)	0.40	0.01	0.00	4 905 04	22472
57034200	GLISS ADDADA	No	FGIU	AC	0.49	0.014	1.0E-12	100250	European	Dupuis et al. (Nat Genet 2010)	0.40	0.07	0.00	4.892-04	33173
510005122	TOETLO	No	FOIL	3/1	0.07	0.038	2.9E-10	110410	European	Dupuis et al. (Nat Genet 2010)	0.07	0.02	0.01	7.09E-05	33230
-7003446	TOFTLE	NO	FGIU	1/A	0.31	0.025	1.2E-00	40101	European	Dupuis et al. (Nat Genet 2010)	0.20	0.02	0.00	9.656-06	33230
11005024	COVA	NO	FOID	AIC.	0.72	0.022	2.72-20	12/4//	European	Scott et al. (Nat Genet 2012)	0.52	-0.02	0.00	4.31E-07	9770
=7044E94	MADD	NO	FOIL	AUT	0.49	0.022	1.0E-14	1104/3	European	Dupuis et al. (Nat Genet 2010)	0.52	0.02	0.01	3.402-04	8//2
5/ 944084	MADD	NO	FGIU	Art	0.75	0.025	2.0E-18	118741	European	Dupuis et al. (Nat Genet 2010)	0.77	0.03	0.00	2.02E-11	33231
51483121	CA004	res	FGlubMladj	GIA	0.66	0.021/0.015	1.0E-08	90496	European	Manning et al. (Nat Genet 2012)	0.67	0.01	0.01	1.75E-02	28692
51/4000	PADST	NO	FGlu	1/0	0.64	0.022	1./E-15	118908	European	Dupuis et al. (Nat Genet 2010)	0.62	0.02	0.00	3.37E-07	33230
\$11603334	ARAPT	NO	FGluBMiadj	GIA	0.83	0.022/0.030	2.4E-14	96496	European	Manning et al. (Nat Genet 2012)	0.79	0.02	0.00	1.552-08	33231
\$11603334	ARAPI	No	FGlu	G/A	0.83	0.019	1.1E-11	128139	European	Scott et al. (Nat Genet 2012)	0.79	0.02	0.00	1.55E-08	33231
s2166706	FAT3 - MTNR1B	No	FGlu	G/A	0.462	0.05	2.1E-09	6776	South Asian	Chambers et al. (Diabetes 2009)	0.40	0.06	0.00	5.48E-57	33231
rs10830962	MTNR1B	No	FGlu	G/C	0.4	0.12	5.0E-16	11616	European	Kristiansson et al. (Circ Cardiovasc Genet, 2012)	15	1.5	0.50	÷.	

Fasting Gluco	se			Published							WES +	ExomeArray			
rsID	Gene	BMI	PHENO	Eff /Neff	Effective Freq	Effect	Р	N	Ancestry	CITATION	Freq	Effect	Std Error	Р	N
rs10830962	MTNR1B	No	FGlu	C/G	0.531	0.041	4.8E-13	14081	EastAsian	Go et al. (J Hum Genet 2013)					
rs10830963	MTNR1B	No	FGlu	G/C	0.205	0.048	3.7E-08	815	Hispanic	Comuzzie et al. (PLoS One 2012)	0.31	0.09	0.00	2.79E-118	33230
rs10830963	MTNR1B	No	FGlu	G/C	0.3	0.079	5.8E-175	112844	European	Dupuis et al. (Nat Genet 2010); Prokopenko et al. (Nat Genet, 2008)	0.31	0.09	0.00	2.79E-118	33230
rs2657879	GLS2	Yes	FGluBMladj	G/A	0.18	0.016	3.9E-08	123247	European	Scott et al. (Nat Genet 2012)	0.18	0.00	0.00	1.87E-01	38339
rs2074356	C12orf51	No	FGlu	T/C	0.199	-0.061	6.0E-14	14193	East Asian	Go et al. (J Hum Genet 2013)			-		
rs10747083	P2RX2	No	FGlu	A/G	0.66	0.013	7.6E-09	127111	European	Scott et al. (Nat Genet 2012)	0.64	0.01	0.01	1.89E-02	16158
rs11619319	PDX1	No	FGlu	G/A	0.23	0.02	1.3E-15	132996	European	Scott et al. (Nat Genet 2012)	0.24	0.02	0.00	7.73E-06	33226
rs2293941	PDX1	No	FGluBMladj	A/G	0.22	0.019/0.016	5.3E-10	96496	European	Manning et al. (Nat Genet 2012)	-	-			-
rs576674	KL	No	FGlu	G/A	0.15	0.017	2.3E-08	131856	European	Scott et al. (Nat Genet 2012)	0.14	0.02	0.01	1.48E-03	28601
rs3783347	WARS	No	FGlu	G/T	0.79	0.017	1.3E-10	132544	European	Scott et al. (Nat Genet 2012)	0.78	0.01	0.00	1.01E-03	33231
rs11071657	C2CD4B	No	FGlu	A/G	0.63	0.021	3.6E-08	114454	European	Dupuis et al. (Nat Genet 2010)	0.64	0.01	0.00	1.01E-03	33230
rs2302593	GIPR	No	FGlu	C/G	0.5	0.014	9.3E-10	116141	European	Scott et al. (Nat Genet 2012)	0.53	-0.01	0.01	4.74E-01	5108
rs6113722	FOXA2	No	FGlu	G/A	0.96	0.353	2.5E-11	123665	European	Scott et al. (Nat Genet 2012)	0.96	0.02	0.01	1.12E-02	33231
rs6048205	FOXA2	No	FGluBMladj	A/G	0.95	0.040/0.029	1.6E-12	96496	European African	Manning et al. (Nat Genet 2012)		3	51	প	2
					0.037-				American +						
rs1209523	FOXA2	No	FGlu	T/C	0.391	Same	2.2E-11	14853	European	Xing et al. (Am J Hum Genet 2013)	in the second	Sec.	1000	(instants)	(Barren)
rs6072275	TOP1	No	FGlu	A/G	0.16	0.016	1.7E-08	128616	European	Scott et al. (Nat Genet 2012)	0.20	0.02	0.00	6.06E-05	33231

Fasting Insuli	n			Published							WES +	ExomeArray			
rsID	Gene	BMI	PHENO	Eff /Neff	Effective Freq	Effect	Р	N	Ancestry	CITATION	Freq	Effect	Std Error	Р	N
rs2820436	LYPLAL1		Fins	C/A	0.67	0.015	4.4E-09	104044	European	Scott et al. (Nat Genet 2012)	240		ive.	+	
rs2785980	LYPLAL1	Yes	FinsBMladj	T/C	0.67	0.016/0.017	2.0E-08	83116	European	Manning et al. (Nat Genet 2012)	0.66	0.01	0.00	3.4E-02	17731
rs4846565	LYPLAL1		FinsBMladj	G/A	0.67	0.013	1.8E-09	99014	European	Scott et al. (Nat Genet 2012)		2		1	1.2
rs7607980	GRB14	Yes	FinsBMladj	T/C	0.88	0.023/0.039	4.3E-20	83116	European	Manning et al. (Nat Genet 2012)	0.88	0.03	0.01	3.1E-09	34278
rs1530559	YSK4	No	Fins	T/C	0.52	0.015	3.4E-08	107281	European	Scott et al. (Nat Genet 2012)			(m)		0.00
rs10195252	GRB14		Fins	T/C	0.59	0.016	4.9E-10	99126	European	Scott et al. (Nat Genet 2012)	0.60	0.02	0.00	3.0E-05	21680
rs10195252	GRB14	Yes	FinsBMladj	T/C	0.6	0.017	1.3E-16	98997	European	Scott et al. (Nat Genet 2012)	0.60	0.02	0.00	3.0E-05	21680
rs2943634	IRS1	Yes	FInsBMladj	C/A	0.66	0.018/0.025	2.5E-14	83116	European	Manning et al. (Nat Genet 2012)	0.66	0.03	0.00	7.7E-13	30816
rs2943645	IRS1		FInsBMladj	T/C	0.63	0.019	2.3E-19	99023	European	Scott et al. (Nat Genet 2012)	0.00				1.00
rs2972143	IRS1		Fins	G/A	0.62	0.014	3.2E-08	99566	European	Scott et al. (Nat Genet 2012)		+			
rs780094	GCKR	No	Fins	C/T	0.62	0.015	3.6E-20	96126	European	Dupuis et al. (Nat Genet 2010)	0.63	0.02	0.00	6.3E-11	30825
rs17036328	PPARG	Yes	FInsBMIadj	T/C	0.86	0.021	3.6E-12	98497	European	Scott et al. (Nat Genet 2012)	Carlo and	-		-	
rs974801	TET2		FInsBMladj	G/A	0.38	0.014	3.3E-11	103489	European	Scott et al. (Nat Genet 2012)		-	. e.		1.60
rs9884482	TET2	No	Fins	C/T	0.39	0.017	1.4E-11	108420	European	Scott et al. (Nat Genet 2012)	0.39	0.01	0.00	8.7E-03	26330
rs4691380	PDGFC		FinsBMladj	C/T	0.67	0.016/0.021	5.3E-09	83116	European	Manning et al. (Nat Genet 2012)	0.71	0.01	0.00	2.3E-03	30825
rs6822892	PDGFC	Yes	FInsBMladj	A/G	0.69	0.014	2.6E-10	103432	European African	Scott et al. (Nat Genet 2012)	0.70	0.01	0.01	3.3E-02	17280
rs17046216	SC4MOL	No	Fins	A/T	0.48	0.18	1.7E-08	1497	American	Chen et. al (Hum Mol Genet 2012)	1.00				
rs3822072	FAM13A	Yes	FinsBMladj	A/G	0.48	0.012	1.8E-08	99977	European	Scott et al. (Nat Genet 2012)	1.52				0.52
rs4865796	ARL15	No	Fins	A/G	0.67	0.015	2.1E-08	100001	European	Scott et al. (Nat Genet 2012)	100	-			1.51
rs4865796	ARL15 ANKRD55/MAP3		FInsBMladj	A/G	0.67	0.015	2.2E-12	98314	European	Scott et al. (Nat Genet 2012)	3.85 2.1102	-	(*) 1	*	7.e.:
rs459193	K1	Yes	FInsBMIadj	G/A	0.73	0.015	1.1E-12	103378	European	Scott et al. (Nat Genet 2012)	0.71	0.02	0.00	1.5E-06	30825
rs2745353	RSP03	No	Fins	T/C	0.51	0.014	5.5E-09	104075	European	Scott et al. (Nat Genet 2012)	0.52	0.01	0.00	3.7E-03	30825
rs6912327	UHRF1BP1		FInsBMIadj	T/C	0.8	0.017	2.3E-08	80010	European	Scott et al. (Nat Genet 2012)		-	14		
rs4646949	UHRF1BP1	Yes	FInsBMladj	T/G	0.75	0.014/0.020	3.7E-08	83116	European	Manning et al. (Nat Genet 2012)	0.77	0.01	0.00	7.5E-02	30824
rs1167800	HIP1	No	Fins	A/G	0.54	0.016	2.6E-09	90927	European	Scott et al. (Nat Genet 2012)	0.55	0.01	0,00	7.1E-02	30825
rs983309	PPP1R3B		FinsBMladj	T/G	0.12	0.022	1.2E-12	99024	European	Scott et al. (Nat Genet 2012)					
rs983309	PPP1R3B		Fins	T/G	0.12	0.029	3.8E-14	103030	European	Scott et al. (Nat Genet 2012)	· · ·	S		·	
rs4841132	PPP1R3B		FinsBMladj	A/G	0.1	0.021/0.031	1.7E-10	83116	European	Manning et al. (Nat Genet 2012)	0.13	0.02	0.01	1.4E-04	30825
rs2126259	PPP1R3B	Yes	FinsBMladj	T/C	0.11	0.024	3.3E-13	99021	European	Scott et al. (Nat Genet 2012)	0.14	0.02	0.01	2.2E-04	30824
rs7903146	TCF7L2	No	Fins	C/T	0.72	0.018	6.1E-11	103037	European African	Scott et al. (Nat Genet 2012)	0.77	0.01	0.00	2.8E-03	30825
rs7077836	TCERG1L	No	Fins	T/C	0.12	0.28	7.5E-09	1497	American	Chen et. al (Hum Mol Genet 2012)		-		÷	
rs35767	IGF1	No	Fins	G/A	0.85	0.028	3.3E-08	94590	European	Dupuis et al. (Nat Genet 2010)	0.81	0.01	0.00	6.1E-04	30825
rs1421085	FTO	No	Fins	C/T	0.42	0.02	1.9E-15	104062	European	Scott et al. (Nat Genet 2012)	0,41	0.00	0.00	5.7E-01	30825
rs731839	PEPD	Yes	FInsBMladj	G/A	0.34	0.015	5.1E-12	103252	European	Scott et al. (Nat Genet 2012)	0.34	0.02	0.00	6.7E-05	30825

Supplementary Table S2D. Significant and suggestive gene based association signals. Results for all data and mask combinations are shown for any gene that attains exome-wide significant (** $P < 2.5 \times 10^{-6}$) or exome-wide suggestive levels (* $P < 2.5 \times 10^{-5}$).

Fasting Insulin			PTV+missense			PTV+NSbroad			PTV+NS _{stric}			PTV-only	
-		MAC			MAC		P value	MAC (No.			MAC (No.	P value	P value
Gene	Ancestry	(No. vars)	P value SKAT	P value Burden	(No. vars)	P value SKAT	Burden	vars)	P value SKAT	P value Burden	vars)	SKAT	Burden
AKT2	AfrAm	1	0.67	0.67	1	0.67	0.67			102 Tan			
19q13.1-q13.2	E.Asian	5	0.33	0.15	5	0.33	0.15	0	0.65	0.65			
	Europ	31	0.53	0.31	31	0.53	0.31	-			-	-	-
	Hisp	7	0.42	0.13	7	0.42	0.13			•			
	S.Asian	2	0.86	0.83	1	0.6	0.6			*	100		
	WES (all)	46(36)	0.6	0.051	45(33)	0.57	0.052	0(5)	0.65	0.65			-
	ExArray	398(4)	6.10E-07	3.60E-06	398(4)	6.10E-07	3.60E-06	•			-		
	WES (all) + ExArray	444	0.00056	7.30E-06	443	0.00048	7.50E-06	0	0.65	0.65		5.5	
NDUFAF1	AfrAm	15	0.25	0.92	7	0.29	0.24	2	0.35	0.29			
15q11.2-q21.3	E.Asian	12	0.4	0.96	6	0.62	0.51	4	0.54	0.4	-	+	-
	Europ	36	9.60E-05	4.10E-05	35	9.90E-05	0.0001	31	9.30E-05	9.30E-05	22		
	Hisp	18	0.056	0.011	14	0.045	0.0058	5	0.033	0.011	-		-
	S.Asian	10	0.44	0.32	1	0.2	0.2	-	-	- Contraction of the Contract			2
	WES (all)	91(58)	6.10E-05	0.0001	63(38)	6.20E-05	9.20E-07	42(14)	7.60E-05	2.20E-06	0(2)	0	0
	ExArray	555(9)	0.02	0.094	535(6)	0.021	0.044	418(2)	0.017	0.018	-	-	
	WES (all) + ExArray	646	1.50E-05	0.00019	598	1.60E-05	2.30E-06	460	1.50E-05	1.10E-06	÷		
ALPK1	AfrAm	42	0.83	0.7	30	0.89	0.26	5	0.3	0.059	3	0.26	0.11
4g25	E.Asian	82	0.85	0.26	55	0.63	0.4	32	0.85	0.84	23	0.68	0.69
	Europ	59	0.25	0.77	93	0.46	0.97	51	0.73	0.7	5	0.36	0.2
	Hisp	43	0.73	0.44	41	0.49	0.65	14	0.16	0.13	3	0.39	0.39
	S.Asian	26	0.036	6.50E-06	22	0.033	1.70E-05	14	0.24	0.011	4	0.16	0.017
	WES (all)	252(158)	0.65	0.062	241(105)	0.55	0.014	116(36)	0.7	0.071	38(16)	0.6	0.17
	ExArray	5514(26)	0.87	0.75	3237(17)	0.74	0.76	291(4)	0.91	0.83	-		-
	WES (all) + ExArray	5766	0.86	0.27	3478	0.71	0.15	407	0.91	0.36	38	0.6	0.17
ZBTB10	AfrAm	2	0.56	0.37	2	0.56	0.37			-		222	
8a13-a21.1	E Asian	5	0.18	0.26	5	0.18	0.26					240	
	Europ	7	0.97	0.95	7	0.97	0.95	-			-		
	Hisp	20	0.82	0.64	18	0.74	0.53	2	0.92	0.92		1.1	
	S.Asian	5	0.45	0.41	3	0.21	0.46	0	0.73	0.73			
	WES (all)	39(44)	0.86	0.41	35(34)	0.76	0.39	2(4)	0.92	0.91			
	ExArray	646(5)	7.40E-06	1.90E-05	646(5)	7.40E-06	1.90E-05						
	WES (all) + ExArray	685	0.011	0.0011	681	0.0051	0.00094	2	0.92	0.91	<u>_</u>		<u></u>
PLCB3	AfrAm	15	0.0061	0.00012	11	0.0078	2.10E-05	5	0.0072	0.00056	1	0.0056	0.0056
11013	E Asian	24	0.13	0.2	10	0.12	0.6	7	0.16	0.00000		0.0000	0.0000
i iqib	Europ	77	0.59	0.86	65	0.57	0.84	3	0.074	0.003	1	0.9	0.9
	Hien	36	0.03	0.62	32	0.19	0.54	2	0.86	0.59		0.5	0.0
	S Asian	10	0.65	0.48	15	0.45	0.29	4	0.97	0.62		51753	
	WES (all)	172/121)	0.03	0.40	144(87)	0.23	0.16	21/27)	0.02	0.02	2(2)	0.024	0.043
	ExArray	730(121)	0.64	0.84	668(6)	0.23	0.82	8(1)	0.52	0.58	2(2)	0.024	0.043
	WER (all) + ExArrow	002	0.42	0.64	000(0)	0.42	0.02	20	0.002	0.00	2	0.024	0.042
	WED (an) + EXAIIdy	503	0.42	0.07	012	0.42	0.40	29	0.093	0.23	2	0.024	0.043

Fasting g	lucose			PTV+missense			PTV+NSbroad			PTV+NS _{stric}	t		PTV-only	
Gene		Ancestry	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden
G6PC2		AfrAm	17	0.11	0.42	13	0.043	0.29	5	0.17	0.78	2	0.21	0.083
	2q24.3	E.Asian	26	0.26	0.1	21	0.2	0.022	4	0.11	0.034	3	0.18	0.18
		Europ	93	0.23	0.11	90	0.22	0.14	69	0.2	0.16	7	0.63	0.63
		Hisp	23	0.2	0.24	22	0.19	0.17	21	0.19	0.22	5	0.049	0.53
		S.Asian	11	0.059	0.053	9	0.046	0.02	8	0.049	0.047	-		
		WES (all)	170(69)	0.12	0.0028	155(53)	0.1	0.00078	107(19)	0.11	0.01	17(8)	0.22	0.07
		ExArray	1174(15)	1.80E-13	4.10E-16	1129(12)	2.00E-13	1.20E-17	913(4)	3.60E-12	5.10E-13	71(1)	0.67	0.67
		WES (all) + ExArray	1344	1.30E-09	9.90E-15	1284	8.30E-10	9.60E-17	1020	5.40E-09	1.30E-11	88	0.41	0.23
GIMAP8		AfrAm	24	0.49	0.28	19	0.35	0.38	3	0.04	0.055	1	0.0019	0.0019
	7q36.1	E.Asian	75	0.58	0.92	38	0.71	0.15	3	0.37	0.15	3	0.37	0.15
		Europ	18	0.95	0.54	12	0.75	0.53	4	0.54	0.56	1	0.13	0.13
		Hisp	24	0.35	0.88	22	0.3	0.85	6	0.077	0.068	4	0.048	0.048
		S.Asian	10	0.031	0.61	6	0.0096	0.28	3	0.011	0.0022	3	0.011	0.0022
		WES (all)	151(87)	0.6	0.43	97(52)	0.47	0.088	19(15)	0.012	0.00013	12(11)	0.0029	2.30E-06
		ExArray	240(14)	0.25	0.84	219(7)	0.25	0.77	17(2)	0.29	0.19			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
		WES (all) + ExArray	391	0.38	0.72	316	0.3	0.34	36	0.023	0.00065	12	0.0029	2.30E-06
OR4S1		AfrAm	43	0.69	0.095	18	0.8	0.2	-					-

Fasting glucose			PTV+missense			PTV+NS _{broad}			PTV+NS _{strict}			PTV-only	
120	121	MAC		2 2 2 2 2	MAC		P value	MAC (No.			MAC (No.	P value	P value
Gene	Ancestry	(No. vars)	P value SKAT	P value Burden	(No. vars)	P value SKAT	Burden	vars)	P value SKAT	P value Burden	vars)	SKAT	Burden
11p11.2	E.Asian	11	0.032	0.16	4	0.033	0.027		1	5	-	1	
	Europ	19	0.15	0.34	15	0.36	0.67	-	0.56	0.56		0.56	0.56
	S Asian	22	0.21	0.67	15	0.16	0.53		0.56	0.56	1	0.56	0.56
	WES (all)	115(75)	0.15	0.0074	56(52)	0.16	0.023	1(3)	0.56	0.56	1(3)	0.56	0.56
	FxArray	201(8)	0.00051	3 70E-05	33(5)	0.075	0.036	1(3)	0.50	0.50	1(5)	0.50	0.50
	WES (all) + ExArray	316	0.0011	3.10E-06	89	0.041	0.0036	1	0.56	0.56	1	0.56	0.56
G6PC	AfrAm	1	0.62	0.62	1	0.62	0.62	2	-	-	2	-	
17021	E.Asian	10	0.73	0.41	9	0.7	0.53	6	0.49	0.27	1	0.74	0.74
	Europ	47	0.48	0.62	46	0.47	0.52	6	0.048	0.98	1	0.33	0.33
	Hisp	16	0.075	0.052	16	0.075	0.052	14	0.088	0.2	12	0.084	0.057
	S.Asian	5	0.76	0.71	4	0.63	0.84	-		-	-	-	-
	WES (all)	79(54)	0.38	0.51	76(48)	0.36	0.6	26(21)	0.063	0.14	14(5)	0.092	0.034
	ExArray	643(7)	1.90E-05	9.30E-06	643(7)	1.90E-05	9.30E-06	17(3)	0.072	0.077	3(1)	0.0056	0.0056
	WES (all) + ExArray	722	0.00086	0.0013	719	0.00076	0.0022	43	0.017	0.039	17	0.0031	0.001
PIK3AP1	AfrAm	15	0.39	0.87	9	0.47	0.74	0	0.34	0.34	-		
10q24.1	E.Asian	22	0.42	0.19	10	0.074	0.12	3	0.18	0.36	-	-	
	Europ	28	0.78	0.84	7	0.25	0.23	0	0.37	0.37	2		-
	Hisp	18	0.00018	0.0011	13	0.00049	1.70E-05	11	0.00045	1.40E-05	÷.		
	S.Asian	11	0.92	0.8	4	0.85	0.3	3	0.8	0.41	53 C	-	
	WES (all)	94(68)	0.019	0.054	43(42)	0.00059	0.017	17(15)	0.00048	0.005			
	ExArray	204(9)	0.85	0.35	96(6)	0.57	0.27	35(2)	0.9	0.68	5 C	1	
	WES (all) + ExArray	298	0.23	0.078	139	0.015	0.027	52	0.075	0.068		-	
ZNF44	AfrAm	9	0.0093	0.5	7	0.071	0.084	12					
19p13.2	E.Asian	11	0.72	0.79	7	0.63	0.41	2	0.16	0.054	2	0.16	0.054
	Europ	68	0.002	0.0058	50	0.0024	0.02	3	0.41	0.41	3	0.41	0.41
	Hisp	14	7.50E-05	0.32	14	7.50E-05	0.32	4	1.40E-05	1.40E-05	4	1.40E-05	1.40E-05
	S.Asian	21	0.51	0.004	16	0.54	0.015	1	0.26	0.26	1	0.26	0.26
	VVES (all)	123(80)	0.00044	0.6	94(56)	0.0002	0.94	10(9)	2.10E-05	0.0086	10(9)	2.10E-05	0.0086
	Exarray	5/0(7)	0.84	0.88	307(5)	0.77	0.52	-	2 405 05	0.0000	10	2 405 05	0.0000
001241	Afrom	093	0.05	0.84	401	0.023	0.08	10	2.10E-05	0.0086	10	2.10E-05	0.0086
10a11 21	E Asian	20	0.073	0.046	20	0.069	0.072	07	0.00	0.000	02	0.25	0.5
10411.21	Europ	184	0.16	0.024	180	0.15	0.020	152	0.82	0.82	151	0.77	0.77
	Hisp	03	0.31	0.89	87	0.15	0.025	81	0.02	0.52	80	0.14	0.14
	S Asian	24	0.17	0.03	22	0.16	0.13	16	0.15	0.52	15	0.18	0.14
	WES (all)	412(58)	0.16	0.89	390(40)	0.12	0.10	317(6)	0.3	0.57	309(2)	0.45	0.96
	ExArray	290(9)	4 30E-05	4 20E-05	257(5)	3 70E-05	1.50E-05	517(0)	-	0.07	505(2)	0.40	0.50
	WES (all) + ExArray	702	0.00024	0.029	647	0.00013	0.021	317	0.3	0.57	309	0.45	0.96
ANKH	AfrAm	10	0.65	0.37	10	0.65	0.37	-	-	-	-	-	-
5p15.1	E.Asian	4	0.82	0.37	4	0.82	0.37	1	0.95	0.95	-		-
Sept. Sec. 7	Europ	22	0.16	0.95	16	0.24	0.4	-	-			-	-
	Hisp	9	0.55	0.37	9	0.55	0.37		-	2	-	2	
	S.Asian	6	0.74	0.69	6	0.74	0.69	1	0.53	0.53	*		-
	WES (all)	51(46)	0.41	0.27	45(45)	0.61	0.082	2(11)	0.83	0.7	0(4)	0	0
	ExArray	371(5)	2.60E-05	0.016	202(4)	1.70E-05	5.70E-06	-	-		-	-	
	WES (all) + ExArray	422	0.0013	0.025	247	0.0031	2.20E-05	2	0.83	0.7	*	-	-
MAP3K7CL	AfrAm	13	0.065	0.052	3	0.2	0.8		52	2	75	5	
21q22.3	E.Asian	0	0.91	0.91	0	0.91	0.91		-		-	-	-
	Europ	3	0.38	0.23	2	0.55	0.62	-	section .	gs. Ros	•	and the second	· · ·
	Hisp	4	0.34	0.59	4	0.34	0.59	1	0.07	0.07	1	0.07	0.07
	S.Asian	3	0.92	0.94	1	0.83	0.83	1	0.83	0.83	1	0.83	0.83
	WES (all)	23(24)	0.11	0.1	10(19)	0.42	0.97	2(4)	0.18	0.15	2(3)	0.18	0.15
	ExArray	9(2)	1.90E-05	1.90E-05	8(1)	2.00E-05	2.00E-05	2			-		
000.0005	WES (all) + ExArray	32	7.60E-05	7.10E-05	18	0.0012	0.053	2	0.18	0.15	2	0.18	0.15
CDC42BPA	AfrAm	16	0.16	0.32	9	0.26	0.36	3	0.09	0.057	1	0.27	0.27
1q42.11	E.Asian	48	0.041	0.17	38	0.043	0.08	6	0.0007	2.30E-05	*		-
	Europ	22	0.79	0.88	18	0.64	0.97	9	0.44	0.93		17.1	70
	Hisp	20	0.21	0.49	12	0.24	0.36	6	0.23	0.22	-	1 a 1	-
	S.Asian	23	0.61	0.75	22	0.61	0.92	3	0.12	0.36			
	WES (all)	130(154)	0.078	0.57	100(124)	0.086	0.29	27(38)	0.0025	0.11	1(2)	0.27	0.27
	ExArray	111(13)	0.76	0.086	93(9)	0.77	0.24	17(4)	0.11	0.3			
	WES (all) + ExArray	241	0.31	0.2	193	0.33	0.19	44	0.0022	0.11	1	0.27	0.27

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1

AfrAm: African American ancestry E.Asian: East asian ancestry Europ: European ancestry Hisp: Hispanic ancestry S.Asian: South Asican ancestry WES (all): Whole exome sequencing meta-analysis ExArray: Exome array meta-analysis WES (all) + ExArray: Whole exome sequencing and exome array meta-analysis Variant masks: **PTV**: containing only variants predicted to introduce a premature stop codon **PTV+NS**: containing variants in the PTV group and protein-altering variants with MAF<1% **PTV+NSstrict**: composed of variants in "PTV" and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 HDIV, and polyphen2 HVAR **PTV+NSbroad**: composed of "**PTV+NSstrict**" and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm.

Supplementary Table S2E. Replication of *AKT2* p.Pro50Thr in independent Finnish cohorts and association results in the discovery and replication studies combined.

				R	Replication Analys	is	Combined Dis Replication	covery and Analysis
Trait	Location	Gene	Protein change	MAC	Р	N	P	N
Fasting Insulin	19:40762860	AKT2	p.P50T	114	0.00054	5747	9.98E-10	25,316
MAC: Minor Allele Count								
P: P-value								
N: Sample size								

Supplementary Table S3.

Protein altering variation in AKT2. Displayed are all variants predicted to cause a nonsynonymous substitution or alter a splice site in 12,940 samples with whole exome sequencing data. Annotations were obtained using dbNSFP.

rsID	pos on chr19	Protein change	1000 Genomes Observations	MAF ExAC	MAC	MAC cases/ MAC controls	SIFT	LRT	Mutation Taster	Polyphen 2 HDIV	Polyphen2 HVAR	Cancer Tissue	Monogenic	Functional domain
-	40771156	p.17V	1 Eur	5.69E-05	6	3/3	tolerated	D	D	B,B,B	B,B,B	NA		PH domain
rs387906659	40762959	E17K	•	0	0	0/0	deleterious	D	D	D,D,D	D,D,D	Thyroid; Breast	hypoketotic hypoglycemia with hemihypertrophy (Arya 2014, Hussain 2011)	PH domain
÷.	40762875	p.P45S		8.23E-06	1	0/1	tolerated	N	N	B,B,B	B,B,B	NA	1000 COL 2 CONTRACTOR 10 COL 2 COL	PH domain
rs184042322	40762860	p.P50T	4 Eur	1.01E-03	61	39/22	tolerated	D	D	B,B,B	B,B,B	NA		PH domain
	40761140	p.N71S	1 Amr	1.98E-04	4	1/3	tolerated	D	D	P.D.P.B	P.P.B.B	NA		PH domain
2	40761132	p.V74F		8.24E-06	1	0/1	tolerated	D	D	B,B,B,B	P,B,B,B	NA		PH domain
*2	40761069	p.E95K		4.94E-05	1	1/0	deleterious	D	D	D.P.D.D	D,B,P,P	NA		PH domain
	40761059	splice		8.24E-06	1	1/0	NA	NA	NA	NA	NA	NA		PH domain
	40748581	p.R101W		4.16E-05	1	0/1	deleterious	N	D	B,B,B,B	B,B,B,B	NA		PH domain
	40748568	p.M105T		8.29E-06	1	1/0	tolerated	D	D	B,B,B,B	B,B,B,B	NA		PH domain
rs141209878	40748535	p.G116A	1 Eur	2.64E-04	3	1/2	tolerated	D	N	B,B,B,B	B,B,B,B	NA		
	40748529	p.D118G		8.26E-06	1	0/1	tolerated	D	D	B,B,B,B	B,B,B,B	NA		
-	40748526	p.P119L		8.26E-06	1	0/1	tolerated	N	D	B,B,B,B	B,B,B,B	NA		
	40748518	p.Y122H	· · · · · · · · · · · · · · · · · · ·	4.95E-05	4	2/2	tolerated	N	N	B,B,B,B	B,B,B,B	NA		
8	40748517	p.Y122C	1 Eur	1.49E-04	4	2/2	tolerated	N	D	B,B,B,B	B,B,B,B	NA		
e:	40748480	p.E134D		0	1	0/1	tolerated	D	D	B,B,B,B	B,B,B,B	NA		
	40748470	p.V138L		8.25E-06	1	1/0	tolerated	D	D	B,B,B,B	B,B,B,B	NA		
	40747984	splice		4.87E-04	5	3/2	NA	NA	NA	NA	NA	NA.		
t:	40747892	p.R176C	200	2.48E-05	1	0/1	deleterious	D	D	D,P,D,D	D.P.P.P	NA		Protein kinase
	40747891	p.R176L		1.65E-05	2	1/1	tolerated	D	D	B,B,B,B	B,B,B,B	NA		Protein kinase
	40747846	p.K191R		3.33E-05	1	1/0	tolerated	NA	NA	NA	NA	NA		Protein kinase
	40747837	splice		2.52E-05	3	1/2	NA	NA	NA	NA	NA	NA		Protein kinase
	40746015	p.D192E		8.24E-06	1	1/0	tolerated	D	D	D,B,P,B	D,B,P,B	NA		Protein kinase
rs35817154	40745968	p.R208K		2.88E-04	4	2/2	tolerated	D	D	B,B,B,B	B,B,B,B	NA	Severe IR and acanthosis nigricans* (Tan 2007)	Protein kinase
¥2	40744879	p.A214V	(*)	2.49E-05	1	1/0	tolerated	D	D	B,B,B	B,B,B	Prostate		Protein kinase
e:	40744805	splice		1.65E-05	1	1/0	NA	NA	NA	NA	NA	NA		Protein kinase
	40744001	splice		2.50E-04	2	1/1	NA	NA	NA	NA	NA	NA		Protein kinase
22	40743973	p.R245H		2.85E-05	2	1/1	deleterious	D	D	P.D.D	B.P.D	NA		Protein kinase
-	40743956	p.R251W		0	2	2/0	deleterious	D	D	D,D,D	D,D,D	CCLE		Protein kinase
10	40743953	p.A252T		1.22E-05	2	1/1	tolerated	D	D	B,B,B	B,B,B	NA		Protein kinase
	40743887	p.R274C		1.75E-05	2	1/1	deleterious	D	D	D,D,D	D,D,D	NA		Protein kinase

rsID	pos on chr19	Protein change	1000 Genomes Observations	MAF ExAC	MAC	MAC cases/ MAC controls	SIFT	LRT	Mutation Taster	Polyphen 2 HDIV	Polyphen2 HVAR	Cancer Tissue	Monogenic	Functional domain
rs121434593	40743886	p.R274H		0	0	0/0	deleterious	D	A	D.D.D	D,P,D	NA	severe insulin resistance and diabetes (George 2004)	Protein kinase
	40743872	splice	-	1.11E-04	6	4/2	NA	NA	NA	NA	NA	NA		Protein kinase
5	40742207	p.T306S		1.40E-04	5	1/4	tolerated	D	D	B,B	B,B	NA		Protein kinase glycosylation site
•	40741992	p.Y327C	•	0	1	1/0	deleterious	D	D	D.D.D	D.D.D	NA		Protein kinase
	40741915	p.Q353E		8.26E-06	1	0/1	tolerated	D	D	B.B.B	B.B.B	NA		Protein kinase
2	40741876	p.E366K	-	2.49E-05	3	1/2	tolerated	D	D	B.B.B	B.B.B	NA		Protein kinase
•	40741270	splice		6.70E-05	2	1/1	NA	NA	NA	NA	NA	NA		Protein kinase
	40741222	p.M404T	-	8.26E-06	1	0/1	tolerated	D	D	P.P.B	P.B.B	NA		Protein kinase
2 ·	40741212	p.R407S		0	1	0/1	tolerated	D	D	B.B.B	B.B.B	NA		Protein kinase
#3	40741181	p.V418F		8.25E-06	1	1/0	tolerated	N	D	B.B.B	B.B.B	NA		AGC-kinase C-terminal
-	40741176	p.Q419H		8.25E-06	1	0/1	tolerated	N	D	B.B.B	B.B.B	NA		AGC-kinase C-terminal
20 C	40741058	splice		9.90E-05	2	0/2	NA	NA	NA	NA	NA	NA		AGC-kinase C-terminal
•3	40741026	p.T431M		2.48E-05	1	1/0	deleterious	D	D	B.P.B	B.B.B	NA		AGC-kinase C-terminal
rs191069336	40739865	splice		9.55E-05	2	1/1	NA	NA	NA	NA	NA	NA		AGC-kinase C-terminal
100 A 100 A 100 A 10	40739862	spice		8.65E-06	1	1/0	NA	NA	NA	NA	NA	NA		AGC-kinase C-terminal
 	40739853	p.S458C	3400	1.71E-05	2	0/2	tolerated	N	D	B,B	B.B	NA		AGC-kinase C-terminal
rs142926499	40739826	p.R467W		1.01E-04	1	0/1	deleterious	D	D	D,D	P,P	NA	T2D and partial lipodystrophy* (Tan 2007)	AGC-kinase C-terminal

Supplementary Table S4. Association of *AKT2* p.Pro50Thr with diabetes-related metabolic traits in Finnish Cohorts.

Trait Group	Trait	N	MAE	Effect (Std Err) on inverse-	Р	Padjusted
That Group	Truck		Inci	normalized trait residuals	<u>\$</u> 2	Tugusteu
Anthropometric Traits	Waist-hip ratio	31966	0.012	0.045 (0.0383)	0.24	1
	Waist-hip ratio - females	12445	0.011	0.0822 (0.065)	0.21	1
	Waist-hip ratio - males	19521	0.013	0.0299 (0.0473)	0.53	1
	Waist circumference	31970	0.012	0.0354 (0.0384)	0.36	1
	Waist circumference - females	12448	0.011	0.0741 (0.065)	0.25	1
	Waist circumference - males	19522	0.013	0.0227 (0.0475)	0.63	1
	Hip circumference	31972	0.012	-0.00851 (0.0384)	0.83	1
	Hip circumference - females	12448	0.011	-0.0254 (0.0648)	0.70	1
	Hip circumference - males	19524	0.013	-0.00317 (0.0476)	0.95	1
	Body mass index	34597	0.012	-0.0978 (0.0371)	0.01	0.19
	Height	34601	0.012	-0.105 (0.0373)	4.7E-03	0.11
Lipid Traits	HDL-C	36923	0.012	0.027 (0.0348)	0.44	1
	LDL-C	31045	0.012	0.0604 (0.0372)	0.11	1
	Total cholesterol	36939	0.012	0.0926 (0.0348)	0.01	0.18
	Triglycerides	31303	0.012	-0.0418 (0.0371)	0.26	1
	Adiponectin	10036	0.013	-0.0320 (0.0290)	0.27	1
Glycemic Traits	Fasting Glucose	22015	0.011	0.0163 (0.0468)	0.73	1
Filmer - Alexandra and a second second	Fasting Insulin	21792	0.011	0.286 (0.0473)	1.5E-09	3.5E-08
	2 hour Glucose	16715	0.0119	0.0717 (0.0952)	0.40	1
	2 Hour Insulin	14150	0.0121	0.2337 (0.0435)	7.86E-08	1.8E-06
	Matsuda index *	8566	0.012	-0.3448 (0.0709)	1.2E-06	2.8E-05
Blood Pressure Traits	Systolic blood pressure	31840	0.012	0.0115 (0.0384)	0.77	1
	Diastolic blood pressure	31840	0.012	0.0705 (0.0384)	0.07	1

Supplementary Table S4A. Association with quantitative metabolic traits.

N: sample size contributing to association

MAF: minor allele frequency

Effect (Std. Err): regression estimate of the additive genetic effect and standard error of the estimate

P: P-value testing the significance of the association

Padjusted: A Bonferroni P value correction for 23 tests was applied

Supplementary Table S4B. T2D and hypertension association analysis with AKT2 p.Pro50Thr. These analyses was performed in a staged meta-analysis modeling the approach taken in the discovery and replication of the FI association with AKT2 p.Pro50Thr, with the European exome sequence data, the Finnish exome chip cohorts and the Finnish replication cohorts.

	23	Genotypes in Cases /			Odds Ratio		
Outcome	Adjustment	Controls	MAF	N	(95% CI)	P	Padjusted
Type 2 Diabetes	BMI	9554/224/5 22223/437/2	0.01	32421	1.05 (1.01, 1.09)	8.10E-05	0.0019
	Unadjusted	14180/306/5 17691/357/2	0.01	32578	1.05 (1.01, 1.09)	9.80E-04	0.022
Hypertension	BMI	34963/846/12 17765/371/3	0.011	53960	1.03 (0.98, 1.08)	0.31	1

Outcome: dichotomous outcome tested

Adjustment: indicates if BMI was used as a covariate in addition to sex and age.

MAF: minor allele frequency

Odds Ratio (95% CI): odds ratio estimate for increased risk of outcome and 95% confidence interval of the estimate Padjusted: A Bonferroni P value correction for 23 tests was applied.

Supplementary Table S4C. Statistics for differences in HbA1c, fasting glucose, and fasting insulin distributions in the sample sub-cohorts with the *AKT2* P50T allele from the T2D-GENES whole exome sequencing data. Here, we provide genotype counts, median values of the scaled trait value, and tests difference in distributions using the non-parametric Kruskal-Wallis rank sum test and Monte Carlo permutation test.

			Control Gro	oup		Type 2 Diabetes Group						
Trait	Cohort	AKT2 P50T Genotype counts: 0/0; 0/1; 1/1	Median scaled trait value: 0/0: 0/1: 1/1	Kruskal-Wallis Test P	Monte Carlo Permutation Test P	AKT2 P50T Genotype counts: 0/0; 0/1; 1/1	Median scaled trait value: 0/0; 0/1; 1/1	Kruskal- Wallis Test P	Monte Carlo Permutation Test P	Percentile value for homozygous carrier (1/1)		
HbA1c	METSIM	363; 10; 0	-0.15; -0.15; NA	0.78	0.88	465; 18; 1	-0.055; -0.06; 0.18	0.28	0.098	95%		
Fasting Glucose Fasting Insulin	Botnia FUSION METSIM Botnia FUSION METSIM	220; 1; 0 467; 9; 0 486; 12; 0 205; 1; 0 464; 9; 0 485; 12; 0	-0.41; -0.33; NA -0.32; -0.43; NA -0.28; -0.22; NA -0.35; -0.30; NA 1.1; 0.96; NA -0.49; -0.44; NA	0.38 0.12 0.016 0.82 0.86 0.32	0.52 0.12 0.071 0.91 0.46 0.56	0; 0; 0 0; 0; 0 465; 18; 1 0; 0; 0 0; 0; 0 465; 18; 1	0.41; 0.60; 4.6	0.06	0.002	99.8% 98.8%		

Genotype categories: 0/0 indicates the group of individuals who are homozygote for the reference allele at rs184042322 (C/C); 0/1 indicates the group of individuals who are heterozygote at rs184042322 (C/T); 1/1 indicates the group of individuals who are homozygote for the AKT2 p.Pro50Thr allele at rs184042322 (T/T).

Supplementary Table S5.

Phenotype exploration of AKT2 p.Pro50Thr carriers electronic medical records.

Phenotype exploration of *AKT2* p.Pro50Thr carriers electronic medical records were queried in two cohorts for diseases plausibly related to AKT2. The genotype counts for the *AKT2* p.Pro50Thr variant are displayed for individuals not coded for an outcome (Controls) and individuals coded for an outcome (Cases). * Other related phenotype outcome included Lipodystrophy (E88.1), Acanthosis nigricans (L83), and Malignant neoplasm of male breast (C50.*2). No cases were reported for these outcomes in both METSIM and FINRISK. ** ICD 10 codes are used to obtain diagnoses of the phenotype outcome from hospital discharge records or electronic health records.

s (GG/TG/TT)
Cases
42/1/0
146/1/0
130/3/0
192/3/0
70/1/0
1/0/0
4/0/0

95% CI = 95% Confidence interval

METSIM = Metabolic Syndrome in Men Study

FINRISK = The National FINRISK Study

Supplementary Table S6.

Aggregate test of variants in monogenic gene sets and in the Insulin Receptor Signaling Pathway.

Supplementary Table S6A. List of the genes in the monogenic gene sets and the Insulin Receptor Signaling Pathway.

		_	Monogenic diabetes	Monogenic	Monogenic	Monogenic	Insulin Receptor			_	Monogenic diabetes Monogenic	Monogenic	Monogenic	Insulin Receptor
Chr	Location	Gene	classification	All	Glucose	insulin	Signaling Pathway	Chr	Location	Gene	classification All	Glucose	insulin	Signaling Pathway
1	1p12	SLC16A1/MCT1	hyperinsulinsim		1 1	1	0	4	4q27	BBS7		1 0	0	0
1	1p21	S1PR1		(0 0	0	1	4	4q31.21	GAB1		0 0	0	1
1	1p22	BCL10		(0 0	0	1	4	4q34	CASP3		0 0	0	1
1	1p31	LEPR			1 0	0	0	4	4q35.1	SORBS2		0 0	0	1
1	1p32	TAL1			0 0	0	1	5	5p12	PRKAA1		0 0	0	1
1	1p32-p31	JUN			0 0	Ō	1	5	5p15.33	TERT		0 0	õ	1
1	1p34	PTPRE			ñ ñ	ő	1	5	5g11 1	151 1		1 0	õ	ò
1	1p34	VBY1			ő	ŏ	1	5	5013.1	DIK3D1		1 1	1	1
4	1034	7MDSTE24			1 1	1		5	5q13.3	PINSKI PASA1				1
	1034	ZMFOIE24					0	5	5415.5	RAGAT		0 0	0	1
1	1p34.1	PIK3R3			0 0	0	1	5	5q15-q21	PUSKI		1 0	0	0
1	1p36.11	SEN			0 0	0	1	5	5q31	SMAD5		0 0	0	1
1	1p36.2	MTOR			0 0	0	1	5	5q32	SPINK1/PST1		1 0	0	0
1	1p36.2	PIK3CD			0 0	0	1	5	5q33	HAND1		0 0	0	1
1	1p36.21	CASP9		(0 0	0	1	5	5q35.1	NPM1		0 0	0	1
1	1p36.33	SKI		(0 0	0	1	6	6p21	RUNX2		0 0	0	1
1	1q21	CLK2		(0 0	0	1	6	6p21.1	SRF		0 0	0	1
1	1g21	MCL1		(0 0	0	1	6	6p21.2	CDKN1A		0 0	0	1
1	1g21	SHC1			0 0	0	1	6	6p21.31	POU5F1		0 0	0	1
1	1021	THEM4			ñ ñ	õ	1	6	6p22.1	ZEP57	NDM	1 0	õ	0
1	1022	DAP3			0 0	0	1	6	6p25	EOXC1		0 0	0	1
-	1022	LMNA			i i	ň	ò	ě	6021	FOYOR		ŏŏŏ	ŏ	1
4	1022.2	SI C10A2	NDM		1 0		ő	6	6021	EVN		0 0	0	1
1	1923.3	SLUTPAZ	NDM		1 0	0	0	0	6q21	F TIN	NDM	0 0	0	1
1	1925	NCF2			0 0	0	1	0	6q22.1	REXO	NDM	1 1	1	0
1	1q25.2-q25.3	PIGS2			0 0	0	1	6	6q22.31	GJA1		0 0	0	1
1	1q32	PIK3C2B			0 0	0	1	6	6q22.33	MAP3K5		0 0	0	1
2	2p12	EIF2AK3	NDM		1 1	0	0	6	6q23	SGK1		0 0	0	1
2	2p13	ALMS1	syndromic		1 1	1	0	6	6q24-q25	PLAGL1	NDM	1 0	0	0
2	2p13	HK2	-		0 0	0	1	6	6q24.2	HYMAI	NDM	1 0	0	0
2	2n16 1	CCDC88A			0 0	Ő	1	6	6a25.1	ESR1		0 0	0	1
2	2p21	RHOO			n n	ő	1	6	6g26	IGF2R		0 0	0	1
2	2023.3	ROMC			1 0	ŏ	ė	6	6027	MIIT4		0 0	õ	1
2	2p25.5	FOMC KLEAA	MODYZ			0	0	7	7012	EGER		0 0	õ	1
4	2p25	KLF11	MODT		1 0	0	0	7	7012 2	CPR10		0 0	ő	1
2	2q12.3	LIMST			0 0	0	1	/	7012.2	BRED		1 0	0	
2	2031.1	BBS5			1 0	0	0	4	7014	BBS9	NORVANDU		0	0
2	2031.1	C20RE37/DC4E17			1 0	ő	0	<u> </u>	7p15.3-p15.1	GCK	MODY2 NDM	1 1	1	0
2	2032	NEUROD1	MODY6 NDM		1 1	ĭ	õ	7	7p21.2	TWIST1		0 0	0	1
2	2402	STAT4	MODITORDM				4	7	7p22	RAC1		0 0	0	1
2	2932.2	STATT			0 0	0	1	7	7q11.23	NCF1		0 0	0	1
2	2q34	PIKFYVE			0 0	0	1	7	7q22	DLX5		0 0	0	1
2	2q36	IRS1			0 0	0	1	7	7q22	SH2B2		0 0	0	1
3	3p21	CTNNB1			0 0	0	1	7	7q22-q31.1	SRPK2		0 0	0	1
3	3p21.3	USP4			0 0	0	1	7	7g22.1	COPS6		0 0	0	1
3	3p25	PPARG			1 1	1	0	7	7022.3	PIK3CG		0 0	0	1
3	3p25	RAF1		(0 0	0	1	7	7031.1	CAV1		1 1	1	0
3	3p25.3	CIDEC			1 0	0	0	7	7031.1	DDD1D3		1 1	1	ő
3	3a11.2	ARL6			1 0	0	0	7	7021.2	CETR				ő
3	3a13.3	GSK3B		(0 0	0	1	4	7431.2				0	0
ő	2021	NOKA			0 0	ő		-	7q31.3	LEP		1 0	0	0
3	3q21	TODDD4			0 0	0		7	7q32	PAX4	MODY9	1 0	0	0
3	3q22.1	TOPBP1			0 0	0	1	7	7q34	BRAF		0 0	0	1
3	3q22.3	PIKJCB		(0 0	0	1	7	7q34	PRSS1		10	0	0
3	3q26.1-q26.2	SLC2A2/GLUT2	NDM		1 1	1	0	7	7q36	MNX1	NDM	1 1	1	0
3	3q26.3	PIK3CA/PI3K			1 1	1	1	7	7q36	NOS3		0 0	0	1
4	4p15.1	PPARGC1A		(0 0	0	1	7	7g36	RHEB		0 0	0	1
4	4p16.1	WFS1	NDM		1 1	1	0	8	8p11	KAT6A		o o	õ	1
4	4p16.3	HTT			0 0	0	1	8	8n12	FIF4FRP1		0 0	ő	1
4	4022-026	HADH	hyperinsulinsim		1 1	1	Ó	0	8012	W/PN/RECOL?		1 1	ő	0
4	4023	FIF4F			0	0	ĩ	0	0012	DTKOD			0	4
7	4024	CISD2 (WES2)			1 1	1		8	op21.1	PIKZB		0 0	0	1
7	4025	SECO40					1	8	8p22-p21	DPYSL2		0 0	U	1
7	4027	DDC12			1 0	0		8	8p23-p22	BLK	MODY11	1 0	0	0
4	4427	BB312			0	U	U	8	8p23.1-p22	GATA4	NDM	1 1	1	0

			Monogenic diabetes Monogenic	Monogenic	Monogenic	Insulin Receptor				Monogenic diabetes Monogenic	Monogenia	Monogenic	Insulin Receptor
Chr	Location	Gene	classification All	Glucose	insulin	Signaling Pathway	Chr	Location	Gene	classification All	Glucose	insulin	Signaling Pathw
8	8g22.2	STK3		0 0	0	1	15	15021	MYO5A		0 0	0	1
8	8023.1	YWHAZ		0 0	0	1	15	15021.2	USP8		0 0	0	1
8	8024.3	NDRG1		0 0	0	1	15	15022 3-023	BBS4		1 0	0	ò
8	8024 3	PTK2		0 0	õ	i	15	15022 33	SMADR		0 0	Ő	1
0	0024.5	DDCC		0 0	0		15	15922.55	EDC2		0 0	0	
0	9p21	CLIPS	NDM	1 1	0	1	15	15424.1	PUN		1 1		
9	9p24.2	GLIS3	NDM	1 1	1	0	15	15026	PLIN		1 1	1	0
9	9033.1	TRIM32/BBS11		1 0	0	0	15	15026.3	IGFIR		0 0	0	1
9	9q33.3	MAPKAP1		0 0	0	1	16	16p11.2	SH2B1		1 0	0	0
9	9q34	TSC1		0 0	0	1	16	16p11.2	STX4		0 0	0	1
9	9q34.3	AGPAT2		1 0	0	0	16	16p13.3	TSC2		0 0	0	1
9	9q34.3	CEL	MODY8	1 1	0	0	16	16q21	BBS2		1 0	0	0
9	9q34.3	RAPGEF1		0 0	0	1	17	17p11.2	SREBF1		0 0	0	1
10	10p11.23	BMI1		0 0	0	1	17	17p12	MAP2K4		0 0	0	1
10	10p11.23	MAP3K8		0 0	0	1	17	17p13	SLC2A4		0 0	0	1
10	10p12.2	PTF1A	NDM	1 1	1	0	17	17p13.1	PIK3R5		0 0	0	1
10	10011.22	MAPK8		0 0	0	1	17	17013.1	PIK3R6		0 0	0	1
10	10021.3	NEUROG3	NDM	1 1	1	0	17	17013.1	TP53		0 0	õ	1
10	10021.3	SIRT1		1 0	0	õ	47	47-40.4	1/41/DO		0 0		
10	10022.3	GLUD1	hyporingulinging	1 1	1	õ	17	17p13.1	VAMP2		0 0	0	1
10	10022.3	DTEN	пуренначинани	4 4		1	17	17p13.3	YWHAE		0 0	0	1
10	10923.3	PIEN					17	17q12	HNF1B	MODY5 NDM	1 1	1	0
10	10q24-q25	CHUK		0 0	0	1	17	17q21	BRCA1		0 0	0	1
11	11p11.2	ΜΑΡΚδΙΡΊ		0 0	0	1	17	17q21.1	MAPT		0 0	0	1
11	11p13	PAX6	NDM	1 0	0	0	17	17q21.2	ACLY		0 0	0	1
11	11p15	ARFIP2		0 0	0	1	17	17021.2	PTRF		1 1	1	0
11	11p15.1	ABCC8	MODY NDM	1 1	1	0	17	17g21.31	STAT3		0 0	0	1
11	11p15.1	KCNJ11	MODY NDM	1 1	1	0	17	17022	MKS1		1 0	0	0
11	11p15.1	PDE3B		0 0	0	1	17	17022	SBSE1		o õ	õ	1
11	11p15.4	ILK		0 0	0	1	17	17022	STYRP4		õ õ	õ	1
11	11p15.5	CDKN1C		0 0	0	1	17	17022 1	DDS6KD1		0 0	õ	-
11	11015.5	INS	MODY10 NDM	1 1	ĩ	ó	17	17923.1	CDD2		0 0		
11	11p15.5-p14	PIK3C2A	inde i to tte in	i i	ò	ĩ	17	17q24-q25	GRB2		0 0	0	
11	11013	BBS1		1 0	ő		17	17q25.3	RPTOR		0 0	0	1
	11013	BECLO			1	0	17	17q25.3	SOCS3		0 0	0	1
	11013	BSUL2				0	18	18q11.1-q11.	.2 GATA6	NDM	1 1	1	0
	11013	CONDI		0 0	0	1	18	18q12	IER3IP1	NDM	1 0	0	0
11	11q13	RELA	have a second	0 0	0	1	18	18q21.3	BCL2		0 0	0	1
11	11q13	UCP2	hyperinsulinsim	1 1	1	0	18	18q22	MC4R		1 0	0	0
11	11q13	YAP1		0 0	0	1	19	19p13.11	GDF15		0 0	0	1
11	11q13.1	BAD		0 0	0	1	19	19p13.2	CDC37		0 0	0	1
11	11q13.1-q13.3	3 MAP3K11		0 0	0	1	19	19013.3	STK11		0 0	0	1
11	11q23.3	CBL		0 0	0	1	19	19013.3	TRIP10		0 0	0	1
11	11g24.2	CHEK1		0 0	0	1	19	19n13 3-n13	2 INSR		1 1	1	1
12	12p12	PIK3C2G		0 0	0	1	10	10013 1-013	2 4672			-	
12	12p13.1-p12	CDKN1B		0 0	0	1	10	10-12.12	NEKRID				1
12	12p13 31	NANOG		0 0	0	1	19	19413.12	NFKBID CCK24		0 0	0	
12	12012-014	PRKAGI		0 0	õ		19	19q13.2	GSR3A		0 0	0	1
12	12012	NRAAI		0 0	0		19	19q13.2	LIPE		0 0	0	1
12	12013	NR4A1		0 0	0		19	19q13.2-q13.	.4 PIK3R2		0 0	0	1
12	12013.1	501		0 0	ě.		19	19q13.3	DMPK		1 0	0	0
12	12q14.3-q15	MDM2		0 0	0	1	19	19q13.3	POLD1		1 1	1	0
12	12q21.2	BBS10		1 0	0	0	19	19q13.3-q13.	.4 BAX		0 0	0	1
12	12q21.32	CEP290		1 0	0	0	19	19q13.3-q13.	.4 IRF3		0 0	0	1
12	12q23.2	IGF1		0 0	0	1	19	19a13.33	AKT1S1		0 0	0	1
12	12q24	PTPN11		0 0	0	1	20	20p12	MKKS		1 0	0	0
12	12q24.1-q24.3	3 PRKAB1		0 0	0	1	20	20g11.2-g13	2 STK4		0 0	õ	ĩ
12	12q24.2	HNF1A	MODY3	1 1	0	0	20	20011.21	BCL2L1		0 0	õ	1
12	12024.31	PXN		0 0	0	1	20	20012-012	SRC		õ õ	ŏ	1
12	12024.33	CHFR		0 0	0	1	20	20012 1-012	2 PTPNH		0 0	0	4
13	13012.1	PDX1/IPE1	MODY4 NDM	1 1	ĭ	ó	20	20013.14013.		MODY1	4 4	1	
13	13013.1	STARD13		0 0		1	20	20013.12	SCK2	MODIT	1 1		0
12	13014.1	EOYO1		0 0	ő	1	20	20q13.2	3GK2		0 0	U	1
13	12014.1	PD1		0 0	0		20	20q13.31	RBM38		0 0	0	1
13	13414.2	TROADA		0 0	0		20	20q13.33	DNAJC5		0 0	0	1
13	13q22.2	TBC1D4		0 0	0	1	21	21q22.3	AIRE		1 0	0	0
13	13q34	IRS2		0 0	0	1	21	21q22.3	PCNT		1 0	0	0
14	14q11.2	NDRG2		0 0	0	1	23	Xp11.23	FOXP3	NDM	1 0	0	0
14	14q12	LTB4R2		0 0	0	1	NA	NA	C8orf44-SGK3/SGK3	0 0	Ó	1	-
14	14q13	NFKBIA		0 0	0	1	×	Xp11.2	FLK1	• •	0 Õ	ò	1
14	14023.2	HIF1A		0 0	0	1	Ŷ	Xo13.1	EOYO4		õ õ	ŏ	1
14	14024	SRSE5		0 0	ō	1	÷	Xa22.3	10004		0 0	0	1
14	14024.3	FOS		0 0	õ	1	~	A422.0	1034		0 0	U	1
14	14031.3	TTC8/BBS8		1 0	ŏ	ò							
1.4	14032.32	AKT1		0 0	õ	1							
14	14432.32	NEDD4		0 0	0	1							
15	pol	NEDD4		0 0	0	1							

Supplementary Table 6B. Global test of monogenic genes from exome chip analysis. Aggregate tests of rare variants based on functional annotation were performed using exome array variants in all the genes in each gene set. We performed conditional analyses to understand the variants contributing to the significant association signals.

Trait	Gene set	Test	PTV	PTV+NS _{strict}	PTV+NS _{broad}	PTV+Missense
Fasting Insulin	All Monogenic	SKAT	0.275	0.494	0.014*	0.028
		BURDEN	0.972	0.012	0.00024***	0.019
	Monogenic Insulin	SKAT	0.173	0.618	0.002*	0.011
		BURDEN	0.136	0.147	0.001*	0.01
	Insulin Receptor Signaling	SKAT	0.361901	0.826451	0.011	0.00066****
	Pathway	BURDEN	0.595991	0.800962	0.278479	0.072434
Fasting Glucose	All Monogenic	SKAT	0.073	0.078	0.635	0.712
		BURDEN	0.00697**	0.131	0.041	0.375
	Monogenic Glucose	SKAT	0.073	0.026	0.224	0.189
	-	BURDEN	0.0098**	0.431	0.051	0.346

* After conditioning on ATK2 p.Pro50Thr, the global test P values for the Monogenic gene set was P=0.38 (SKAT). For the Monogenic Insulin gene set, the conditional P values were

P = 0.02 (SKAT) and P = 0.017 (BURDEN).

** After conditioning on *BSCL2* p.Q271*, the global test was P = 0.019 (BURDEN) for the Monogenic gene set and P = 0.039 (BURDEN) for the Monogenic Glucose gene set.

*** Conditional analysis of this test is presented in Supplementary Table 6C.

**** After conditioning on AKT2 p.Pro50Thr, the global test P values for the Insulin Receptor Signaling Pathway was P=0.01.

Trait	Gene set	Test	PTV	PTV+NS _{strict}	PTV+NS _{broad}	PTV+NS
	Monogenic	SKAT	0.25	0.15	0.15	0.48
Feeting Inculin		BURDEN	0.91	0.2	0.87	0.55
Fasting Insulin	Monogenic Insulin	SKAT	0.44	0.39	0.49	0.71
	and a matrix diam	BURDEN	0.95	0.31	0.05	0.62
Fasting Glucose	Insulin Receptor Signaling Pathway	SKAT	0.52	0.04	0.26	0.69
		BURDEN	0.61	0.04	0.79	0.12
	Monogenic	SKAT	0.49	0.93	0.82	0.6
J		BURDEN	0.86	0.1	0.92	0.83
	Monogenic Glucose	SKAT	0.22	0.74	0.52	0.49
	and Merrine and	BURDEN	0.97	0.5	0.96	0.33

Supplementary Table 6C. Global test of monogenic genes from exome sequencing analysis.

Variant masks:

PTV: containing only variants predicted to introduce a premature stop codon

PTV+NS: containing variants in the PTV group and protein-altering variants with MAF<1%

PTV+NSstrict: composed of variants in "PTV" and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 HDIV, and polyphen2 HVAR

PTV+NSbroad: composed of "PTV+NSstrict" and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm.

Supplementary Table 6D. Sequential conditional analysis of the exome chip global BURDEN test with the monogenic all gene set for FI with PTV + NSstrict + Nsbroad variants. Variants that contributed the most to the association, as reported by RAREMETALS v.4.7, were added to the model sequentially. Single variant association results of these variants are provided in **Supplementary Table 7B**.

						Global Test	
Location	rsID	REF	ALT	Gene	Protein change	P value after conditioning	
No conditioning				Al an waard an		0.	.00024
19:40762860	rs184042322	G	т	AKT2	p.P50T	(0.0017
7:117282582	rs11971167	G	A	CFTR	p.D1270N	(0.0029
19:7125518	rs1799816	С	Т	INSR	p.V1012M	(0.0087
1:40756572	rs41268053	G	A	ZMPSTE24	p.R369Q	(0.0089
6:29641139	rs199589695	G	A	ZFP57	p.R178H	(0.0098
7:117171169	rs78756941	G	Т	CFTR	Splice donor	(0.0089
21:47831307	rs201709021	G	A	PCNT	p.E1785K	(0.0104
Supplementary Table 6E.Association results of the variants contributing to the exome chip global burden test association of the "Monogenic" genes for FI level.

Location	rsID	REF	ALT	Gene	Protein change	Effect Allele; Effect allele frequency	Effect (Standard error)	BF	Ρ	N
19:40762860	rs184042322	G	Т	AKT2	p.P50T	T; 0.011	0.112 (0.023)	5.4	2.1×10 ⁻⁷	28118
7:117282582	rs11971167	G	A	CFTR	p.D1270N	A; 0.008	0.143 (0.048)	1.7	1.5×10 ⁻³	9898
19:7125518	rs1799816	С	т	INSR	p.V1012M	T; 0.01	0.065 (0.02)	1.1	5.4×10 ⁻³	32685
1:40756572 *	rs41268053	G	A	ZMPSTE24	p.R369Q	-	-		7.1×10 ⁻³ **	
6:29641139 *	rs199589695	G	A	ZFP57	p.R178H		· · ·		7.2×10 ⁻³ **	
7:117171169 *	rs78756941	G	т	CFTR	Splice donor	T; 0.001	-0.426 (0.161)	1	9.7×10 ⁻³	4136
21:47831307 *	rs201709021	G	A	PCNT	p.E1785K			-	7.9×10 ⁻³ **	

* Single variant association tests were not performed because variant did not meet the inclusion criteria (MAC > 5 within each cohort).

** P values from the RAREMETALS v.4.7 software.

BF: log10(Bayes factor) for association

P: P value for association test

N: Total Sample size contributing to analysis

Suppelmentary.Table.S7.

Gene-based and single-variant association results from genes highlighted in the enrichment analyses.

Supplementary Table 7A. Gene based results of the monogenic genes or insulin receptor signaling genes exhibiting enrichment of association signals.

Fasting insulin	-		PTV+missense			PTV+NS _{broad}			PTV+NS _{stric}	*		PTV-only	
Gene	Ancestry	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden
AKT2	AfrAm	1	0.67	0.67	1	0.67	0.67	-	-	-	3	0.043	0.52
19q13.1-q13.2	E.Asian	5	0.33	0.15	5	0.33	0.15	<1	0.65	0.65	1	0.95	0.95
	Europ	31	0.53	0.31	31	0.53	0.31	-	-		3	0.12	0.12
	Hisp	7	0.42	0.13	7	0.42	0.13	-	-		2	0.55	0.88
	S.Asian	2	0.86	0.83	1	0.6	0.6	-	-		-	-	-
	WES (all)	46(36)	0.6	0.051	45(33)	0.57	0.052	<1(5)	0.65	0.65	9(14)	0.083	0.52
	ExArray	398(4)	6.10E-07	3.60E-06	398(4)	6.10E-07	3.60E-06	-	-		5(2)	0.63	0.99
	WES (all) + ExArray	444	0.00056	7.30E-06	443	0.00048	7.50E-06	<1	0.65	0.65	14	0.23	0.96
INSR	AfrAm	29	0.43	0.98	20	0.29	0.79	1	0.75	0.75	1	0.75	0.75
19p13.3-p13.2	E.Asian	29	0.015	0.29	24	0.02	0.095	-	-		-	-	-
	Europ	42	0.46	0.76	35	0.42	0.89	1	0.73	0.73	-	-	-
	Hisp	7	0.48	0.68	6	0.66	0.26	-	-	-	-	-	-
	S.Asian	16	0.39	0.029	5	0.14	0.021	-	-	-	-	-	-
	WES (all)	123(127)	0.17	0.62	90(96)	0.12	0.99	2(9)	0.9	0.64	1(4)	0.75	0.75
	ExArray	767(10)	0.0066	0.035	667(6)	0.0074	0.033	-	-	-	-	-	-
	WES (all) + ExArray	890	0.0074	0.14	757	0.0055	0.61	2	0.9	0.64	1	0.75	0.75
ZMPSTE24	AfrAm	1	0.28	0.28	1	0.28	0.28	1	0.28	0.28	1	0.28	0.28
1p34	E.Asian	6	0.62	0.86	6	0.62	0.86	4	0.83	0.79	-	-	-
	Europ	10	0.35	0.65	9	0.54	0.84	6	0.54	0.53	5	0.42	0.52
	Hisp	8	0.75	0.49	8	0.75	0.49	5	0.53	0.87	4	0.49	0.74
	S.Asian	8	0.072	0.94	8	0.072	0.94	1	0.18	0.18	-	-	-
	WES (all)	33(51)	0.23	0.82	32(46)	0.3	0.56	17(22)	0.73	0.62	10(9)	0.54	0.74
	ExArray	8(2)	0.011	0.078	8(2)	0.011	0.078	-	-	-		-	-
	WES (all) + ExArray	41	0.016	0.36	40	0.024	0.18	17	0.73	0.62	10	0.54	0.74
CFTR	AfrAm	37	0.39	0.5	43	0.34	0.4	30	0.2	0.19	2	0.16	0.16
7q31.2	E.Asian	99	0.45	0.76	67	0.25	0.43	20	0.32	0.045	1	0.55	0.55
	Europ	179	0.27	0.26	109	0.17	0.7	52	0.35	0.41	7	0.98	0.57
	Hisp	107	0.015	0.66	74	0.0096	0.043	42	0.0073	0.074	-	-	-
	S.Asian	50	0.0021	0.92	41	0.0016	0.36	23	0.0039	0.13	2	0.23	0.8
	WES (all)	474(248)	0.031	0.36	335(216)	0.012	0.11	168(100)	0.011	0.027	12(27)	0.76	0.48
	ExArray	3410(54)	0.58	0.82	3851(50)	0.53	0.31	2140(25)	0.27	0.049	28(7)	0.076	0.34
	WES (all) + ExArray	3884	0.12	0.65	4186	0.063	0.11	2308	0.021	0.0057	40	0.3	0.38
ZFP57	AfrAm	30	0.45	0.74	5	1	0.93	-	-		-	-	-
6p22.1	E.Asian	74	0.58	0.42	1	0.21	0.21	-	-	-	-	-	-
	Europ	11	0.49	0.4	-	-	-	-	-		-	-	-
	Hisp	20	1	1	-				-		-		-
	S.Asian	6	0.15	0.24	4	0.093	0.093	-	-		-	-	-
	WES (all)	141(55)	0.77	0.76	10(17)	0.27	0.59		-		-	-	-
	ExArray	243(10)	0.65	0.41	4(1)	0.0077	0.0077		-		-	-	-
	WES (all) + ExArray	384	0.78	0.63	14	0.016	0.061	-	-	-	-	-	-

Fasting insulin			PTV+missense			PTV+NS _{broad}			PTV+NS _{str}	ct		PTV-only	
Gene	Ancestry	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden
PCNT	AfrAm	129	0.31	0.34	36	0.28	0.057	3	0.043	0.52		- C	-
21q22.3	E.Asian	252	0.51	0.85	92	0.64	0.61	1	0.95	0.95	-	-	-
	Europ	174	0.043	0.61	75	0.16	0.11	3	0.12	0.12		1.2	
	Hisp	110	0.32	0.87	32	0.53	0.36	2	0.55	0.88	-	10	
	S.Asian	40	0.99	0.54	18	0.88	0.52				2	-	-
	WES (all)	706(531)	0.14	0.94	254(230)	0.4	0.16	9(14)	0.083	0.52	<u></u>	-	-
	ExArray	3805(86)	0.58	0.65	2205(39)	0.88	0.98	5(2)	0.63	0.99		3 4	
	WES (all) + ExArray	4511	0.26	0.91	2459	0.75	0.75	14	0.23	0.96	-	· •	
PTGS2	Afr. Amer.	2	0.74	0.74		-	-	-		1.50		-	
1q25.2-q25.3	E.Asian	23	0.042	0.0062	4	0.27	0.29	-	-	-	2	-	12
	European	13	0.0024	0.0043	7	0.72	0.49	1	0.41	0.41			
	Hispanic	6	0.29	0.39								10	
	S.Asian	2	0.43	0.43	2	0.43	0.43	2	0.43	0.43		1.0	
	all sequencing	46(31)	0.0041	0.00011	13(21)	0.64	0.16	3(5)	0.51	0.26	-	-	-
	ExArray	200(5)	0.71	0.28	110(2)	0.61	0.57		-		-		-
	WES (all) + ExArray	246	0.069	0.0013	123	0.68	0.28	3	0.51	0.26	8		

Fasting g	glucose			PTV+missense			PTV+NSproad	1		PTV+NS _{str}	ict		PTV-only	
Gene		Ancestry	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden	MAC (No. vars)	P value SKAT	P value Burden
BSCL2		AfrAm	10	0.77	0.46	4	0.66	0.48		-		· • ·	-	
	11q13	E.Asian	26	0.15	0.16	23	0.17	0.18	2	0.026	0.026	2	0.026	0.026
		Europ	38	0.00072	0.00034	4	0.88	0.63					0.50	
		Hisp	29	0.49	0.58	14	0.77	0.88	<1	0.41	0.41	<1	0.41	0.41
		S.Asian	12	0.6	0.16	8	0.36	0.058	1	0.9	0.9	1	0.9	0.9
		WES (all)	116(60)	0.0013	0.048	53(36)	0.4	0.74	3(5)	0.049	0.24	3(5)	0.049	0.24
		ExArray	574(13)	0.08	0.022	288(9)	0.021	0.0043	102(2)	0.033	0.0067	102(2)	0.033	0.0067
		WES (all) + ExArray	690	0.00088	0.0046	341	0.051	0.081	105	0.0068	0.012	105	0.0068	0.012
CAV1		AfrAm	2	0.14	0.05	2	0.14	0.05	1	0.095	0.095	-		
	7q31.1	E.Asian	5	0.027	0.23	5	0.027	0.23	4	0.022	0.1	-		-
	104031401	Europ	9	0.17	0.0065	6	0.13	0.018	3	0.17	0.064	2	0.36	0.36
		Hisp	11	0.098	0.1	11	0.098	0.1	-	-		-	-	-
		S.Asian	5	0.69	0.36	2	0.92	0.68	1	0.79	0.79	-	-	(*)
		WES (all)	32(18)	0.032	0.00017	26(16)	0.025	0.00065	9(8)	0.019	0.0051	2(1)	0.36	0.36
		ExArray	77(4)	0.31	0.35	77(4)	0.31	0.35		-	-		-	-
		WES (all) + ExArray	109	0.049	0.0025	103	0.041	0.0055	9	0.019	0.0051	2	0.36	0.36

MAC (No. vars): Minor allele count (number of variants in the test)

Variant masks:

PTV: containing only variants predicted to introduce a premature stop codon

PTV+NS: containing variants in the PTV group and protein-altering variants with MAF<1%

PTV+NSstrict: composed of variants in "PTV" and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 HDIV, and polyphen2 HVAR

PTV+NSbroad: composed of "PTV+NSstrict" and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm.

Supplementary Table 7B. Single variant association results with FG levels from the monogenic genes exhibiting enrichment of association signals.

Gene set and Variant Group	Location	SNP	RE F	L	Gene	Protein change	Inverse Normalized Effect (Standard error, Effect Allele, Effect allele frequency)	Untransformed Effect (Standard Error)	BF	Ρ	N
Monogenic - PTV	11:62458267	rs149907021	G	A	BSCL2	p.Q271*	1.621 (0.39; A; 0.001)	0.844 (0.185)	3.3	3.3E-05	4513
Managenia DTV + Nestrict	11:62458267	rs149907021	G	A	BSCL2	p.Q271*	1.621 (0.39; A; 0.001)	0.844 (0.185)	3.3	3.3E-05	4513
Monogenic - PTV + Nsstrict	7:33545217	rs61764068	A	т	BBS9	p.E753V	-0.576 (0.19; A; 0.998)	-0.27 (0.086)	1.6	2.4E-03	8754
	11:62458267	rs149907021	G	A	BSCL2	p.Q271*	1.621 (0.39; A; 0.001)	0.844 (0.185)	3.3	3.3E-05	4513
Manageria DTM + Neghtint -	2:73786157	rs34398445	G	C	ALMS1	p.K3423N	0.673 (0.188; C; 0.018)	0.221 (0.065)	2.3	3.4E-04	5935
Monogenic - PTV + Nsstrict +	3:170715865	rs140138702	G	C	SLC2A2	p.L468V	0.641 (0.197; C; 0.012)	0.267 (0.081)	1.7	1.2E-03	1104
Nsbroad	7:33545217	rs61764068	A	т	BBS9	p.E753V	-0.576 (0.19; A; 0.998)	-0.27 (0.086)	1.6	2.4E-03	8754
	11:66287196	rs35520756	G	A	BBS1	p.E234K	0.275 (0.095; A; 0.102)	0.086 (0.032)	1.4	3.8E-03	1352
7275 V. W	11:62458267	rs149907021	G	A	BSCL2	p.Q271*	1.621 (0.39; A; 0.001)	0.844 (0.185)	3.3	3.3E-05	4513
Monogenic glucose -	2:73786157	rs34398445	G	C	ALMS1	p.K3423N	0.673 (0.188; C; 0.018)	0.221 (0.065)	2.3	3.4E-04	5935
PTV+Nsstrict+Nsbroad	3:170715865	rs140138702	G	С	SLC2A2	p.L468V	0.641 (0.197; C; 0.012)	0.267 (0.081)	1.7	1.2E-03	1104
	11:62458267	rs149907021	G	A	BSCL2	p.Q271*	1.621 (0.39; A; 0.001)	0.844 (0.185)	3.3	3.3E-05	4513
	2:73786157	rs34398445	G	C	ALMS1	p.K3423N	0.673 (0.188; C; 0.018)	0.221 (0.065)	2.3	3.4E-04	5935
Monogenic glucose -	3:170715865	rs140138702	G	C	SLC2A2	p.L468V	0.641 (0.197; C; 0.012)	0.267 (0.081)	1.7	1.2E-03	1104
PTV+Missense	9:4286344	rs113754532	Т	C	GLIS3	p.128V	0.418 (0.144; T; 0.998)	0.213 (0.071)	1.2	3.6E-03	19883
	2:73677876	var 2 73677876	G	A	ALMS1	p.V1407I	-0.949 (0.357; A; 0.001)	-0.44 (0.169)	1.2	7.8E-03	4513

BF: log10(Bayes factor) for association

P: P value for association test

N: Total Sample size contributing to analysis

Supplementary Table S8.

GTEx tissue differential expression of AKT2 compared to AKT1 and AKT3. Listed are the tissues from the GTEx project pilot phase release where AKT2 expression was assessed.

Tissue abbreviation *	Tissue description **	N	P (AKT2 > AKT1)	P (AKT2 > AKT3)
ADPSBQ	Adipose - Subcutaneous	94	1	5.08×10 ⁻¹⁵
ADPVSC	Adipose - Visceral (Omentum)	19	1	2.74×10 ⁻³
ADRNLG	Adrenal Gland	12	1	5.37E-10
ARTAORT	Artery - Aorta	24	1	0.03
ARTCRN	Artery - Coronary	9	1	0.8
ARTTBL	Artery - Tibial	112	1	1
BREAST	Breast - Mammary Tissue	27	1	2.12×10⁻ ⁶
BRNACC	Brain - Anterior cingulate cortex (BA24)	17	1	1
BRNAMY	Brain - Amygdala	23	1	1
BRNCDT	Brain - Caudate (basal ganglia)	36	1	0.12
BRNCHA #	Brain - Cerebellum	30	3.04×10 ⁻⁷	8.94×10 ⁻¹⁷
BRNCHB #	Brain - Cerebellar Hemisphere	24	6.60×10 ⁻⁴	2.41×10 ⁻⁹
BRNCTXA	Brain - Cortex	23	1	1
BRNCTXB	Brain - Frontal Cortex (BA9)	24	1	1
BRNHPP	Brain - Hippocampus	24	1	0.99
BRNHPT	Brain - Hypothalamus	23	1	0.99
BRNNCC	Brain - Nucleus accumbens (basal ganglia)	28	1	2.15×10⁻³
BRNPTM	Brain - Putamen (basal ganglia)	20	1	0.02
BRNSNG	Brain - Substantia nigra	25	1	0.67
BRNSPC	Brain - Spinal cord (cervical c-1)	16	1	0.16
CLNTRN	Colon - Transverse	12	1	2.24×10⁻⁵
ESPMCS	Esophagus - Mucosa	18	1	3.13×10 ⁻¹²
ESPMSL	Esophagus - Muscularis	20	1	3.39×10 ⁻³
FIBRBLS	Cells - Transformed fibroblasts	14	1	1.78×10 ⁻⁴
HRTAA	Heart - Atrial Appendage	25	1	1.45×10 ⁻⁹
HRTLV	Heart - Left Ventricle	83	1	9.20×10 ⁻⁵³

Tissue abbreviation *	Tissue description **	N	P (AKT2 > AKT1)	P (AKT2 > AKT3)
KDNCTX	Kidney - Cortex	3	0.71	0.1
LCL	Cells - EBV-transformed lymphocytes	39	1	1.74×10 ⁻
LIVER	Liver	5	0.97	6.56×10
LUNG	Lung	119	1	5.24×10 ⁻
MSCLSK #	Muscle - Skeletal	138	1.47×10 ⁻¹⁹	7.76×10 ⁻
NERVET	Nerve - Tibial	88	1	3.19×10 ⁻
OVARY	Ovary	6	0.53	4.03×10
PNCREAS	Pancreas	19	1	1.19×10 ⁻
PRSTTE	Prostate	9	1	2.38×10
PTTARY #	Pituitary	13	0.03	8.55×10 ⁻
SKINNS	Skin - Not Sun Exposed (Suprapubic)	23	1	1.05×10 ⁻
SKINS	Skin - Sun Exposed (Lower leg)	96	1	1.99×10 ⁻
STMACH	Stomach	12	1	3.64×10
TESTIS	Testis	14	0.84	2.87×10
THYROID	Thyroid	105	0.13	7.22×10 ⁻
UTERUS	Uterus	7	0.99	0.0
VAGINA	Vagina	6	0.99	1.09×10
WHLBLD	Whole Blood	156	1	1.43×10 ⁻¹

N = sample size per tissue; P(AKT2 > AKT1) = P value for the test of expression in *AKT2* compared to *AKT1*; P(AKT2 > AKT3) = P value for the test of expression in *AKT2* compared to *AKT3*. * The tissue abbreviation used in Fig. S13 and Fig. S14. ** The corresponding tissue description. *** The one-sided paired t-test P-values for the comparison of *AKT2* expression with *AKT1* and *AKT3*. # The tissues where *AKT2* expression is significantly (P < 0.05) higher than both *AKT1* and *AKT3* expression. BRNCHA/BRNCHB and BRNCTXA/BRNCTXB are sampled from the same regions, cerebellum and cortex, respectively, but in separate collections.

Supplementary Table S9.

Expression analyses in adipose tissue in the METSIM, EuroBATS and GTEx studies.

Supplementary Table 9A. The associations of the two eSNPs discovered in METSIM (rs8104727) and EuroBATS (rs11880261) with *AKT2* transcript levels. Results are presented for all the three cohorts queried (METSIM, EuroBATS and GTEx). The eSNPs are in linkage disequilibrium: R2 = 0.847 and D' = 0.92 in 1000 Genomes European population samples and R2 = 1 and D' = 1 in 1000 Genomes Finnish population samples.

GenelD	Cohort	Tissue	N	SNP	SNP origin	Effect allele	Other allele	EAF	Beta effect	SE	P-value (SNP- AKT2)
AKT2	GTEx	Adipose Subcutaneous	94	rs11880261	EuroBATS eSNP	т	С	0.25	0.186	0.103	7.56E-02
AKT2	EuroBATS	Adipose	720	rs11880261	EuroBATS eSNP	т	C	NA	0.206	0.037	2.27E-08
AKT2	METSIM	Adipose	770	rs8104727	METSIM eSNP	Т	C	0.35312	0.4026	0.05214	3.595E-14
AKT2	METSIM	Adipose	770	rs11880261	EuroBATS eSNP	т	С	0.35239	0.3983	0.05219	6.882E-14

Supplementary Table 9B. Associations of the AKT2 eSNPs with FI are displayed for the METSIM and EuroBATS studies.

GenelD	Cohort	N	SNP	SNP origin	Effect allele	Other allele	Adjustment	Effect	SE	P-value (eSNP-FI)
AKT2	METSIM	10081	rs8104727	METSIM eSNP	т	С	Age, BMI	-0.016	0.01523	0.2857
AKT2	METSIM	10081	rs11880261	EuroBATS eSNP	т	С	Age, BMI	-0.017	0.01527	0.2661
AKT2	EuroBATS	710	rs11880261	EuroBATS eSNP	т	С	Age, BMI	-0.015	0.0555131	0.7842
AKT2	METSIM	10081	rs8104727	METSIM eSNP	т	С	Age	-0.00088	0.01523	0.9541
AKT2	METSIM	10081	rs11880261	EuroBATS eSNP	т	С	Age	-0.0011	0.01527	0.9436
AKT2	EuroBATS	710	rs11880261	EuroBATS eSNP	т	С	Age	-0.0094	0.05497855	0.8649

Supplementary Table 9C. Associations of AKT2 expression with FI are shown for the METSIM and EuroBATS studies.

GenelD	Cohort	Ν	Adjustment	Effect	SE	P-value (AKT2-FI)
AKT2	METSIM	770	Age, BMI	-0.33	0.07	0.0000949
AKT2	METSIM	770	Age	-0.42	0.06	3.293E-11
AKT2	EuroBATS	710	Age, BMI	-0.05	0.11	6.28E-04
AKT2	EuroBATS	710	Age	-0.04	0.01	1.14E-03

Supplementary Table 9D: The association between *AKT2* expression and age was queried in adipose tissue in the METSIM, EuroBATS and GTEx cohorts.

GeneID	Study	Tissue	N	ChiSq (age)	P-value (age)	Effect (age)
AKT2	METSIM	Adipose	770	8.46	0.00362	0.02
AKT2	EuroBATS	Adipose	720	0.143	0.71	0.001
AKT2	GTEx	Adipose Subcutaneous	89	3.49	0.06	-0.02

Supplementary Table 9E. The association between *AKT2* expression and BMI was queried in adipose tissue in the METSIM, EuroBATS and GTEx cohorts.

GenelD	Study	Tissue	N	ChiSq (BMI)	P-value (BMI)	Effect (BMI)
AKT2	METSIM	Adipose	770	28.772	8.143E-08	-0.06
AKT2	EuroBATS	Adipose	720	120.07	6.10E-28	-0.07
AKT2	GTEx	Adipose Subcutaneous	89	0.30	0.58	-0.01

NA: The data was not available GeneID: The name of the gene investigated Cohort: The cohort the association was studied in Tissue: The tissue the expression data is from N: The sample size in analysis SNP: The rsID of the SNP for which the association is shown SNP origin: The cohort where the SNP was most associated with AKT2 expression Effect allele and Other allele: The effect and non-effect alleles of the SNP EAF: The frequency of the effect allele

Beta effect: The effect estimate for the effect allele SE: Standard error for the effect estimate P-value (SNP-AKT2): The P-value for the SNP-expression association Study: Study in which the association was studied Adjustment: The covariate adjustment for fasting insulin P-value (eSNP-FI): The P-value for the SNP-fasting insulin association P-value (AKT2-FI): The P-value for the gene-fasting insulin association ChiSq (age): Chi squared test statistic for the expression-age association P-value (age): P-value for the SNP-expression association

Effect (age): Effect estimate for the age in the model ChiSq (BMI): Chi squared test statistic for the expression-BMI association P-value (BMI): P-value for the SNP-expression association Effect (BMI): Effect estimate for the BMI in the model

Supplementary.Table S10.

Mendelian randomization analysis to assess the causality of AKT2 expression for fasting insulin (FI) levels.

The results from the meta-analysis of the EuroBATS and METSIM data and for the instrumental variable (IV) estimator are shown for the EuroBATs eSNPs (rs11880261) additionally separated by whether BMI adjustment was used for SNP-FI and *AKT2*-FI analyses.

			No BM	Al adjustment				BMI adjusted	
Association	N	Effect	SE	P-value	P-value for difference	Effect	SE	P-value	P-value for difference
SNP-AKT2	1490	0.270	0.030	1.89E-19		0.270	0.030	1.89E-19	
SNP-FI	10791	-0.002	0.014	9.13E-01		-0.017	0.014	2.44E-01	
AKT2-FI	1480	-0.050	0.011	4.39E-06		-0.064	0.013	5.95E-07	
IV		-0.006	0.054	9.13E-01	0.41	-0.063	0.054	2.48E-01	0.99

Association: The pair of traits tested or the instrumental variable (IV)

N: The sample size in meta-analysis

Effect: The effect estimate in the association

SE: Standard error

P-value: The P-value for the association

P-value for difference: The P-value for the difference between the IV estimator and the *AKT2*-FI estimate

Ethics Statements

All human research was approved by the relevant institutional review boards, and conducted according to the Declaration of Helsinki and all patients provided written informed consent. FIN-D2D 2007, DPS, DR's EXTRA, FINRISK 2007, FUSION, and METSIM were approved by the University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board (ID: H03-00001613-R2). The Danish studies (Health 2006, Inter99, and Vejle Biobank) were approved by the local Ethical Committees of Capital Region (approval # H-3-2012-155, KA 98155 and KA-20060011) and Region of Southern Denmark (approval # S-20080097). The GoDARTS study was approved by EoS REC 09/S1402/44. The Twins UK study was approved by EC04/015. The OBB study was approved by South Central, Oxford C, 08/H0606/107+5, IRAS project 136602. The PIVUS study is approved by 00–419 and ULSAM study by 251/90 and 2007/338. The PPP study was approved by the Committee On the Use of Humans as Experimental Subjects at MIT (IRB 0912003615). T2D-GENES and GoT2D exome sequencing was approved by local institutional review boards. The study protocol of the Health 2000 survey was approved by the Epidemiology Ethics Committee of the Hospital District of Helsinki and Uusimaa. All participants gave signed informed consent. The YFS study was approved by local ethics committees. The HBCS study was approved by the Ethics Committee of Hospital District of Helsinki and Conducted according to the guidelines in the Declaration of Helsinki. The EuroBATS study was approved by St Thomas' Hospital Research Ethics Committee (ref. EC04/015).

Additional Acknowledgements

Individuals (in author order):

Alisa K. Manning was supported by American Diabetes Association grant #7-12-MN-02. Taru Tukiainen was supported by Orion-Farmos Research Foundation and the Finnish Cultural Foundation. Manuel A Rivas received the NDM Prize Studentship, Clarendon Award. Tune H Pers is supported by the Benzon Foundation and the Lundbeck Foundation.

Ana Viñuela has been funded by the EU FP7 grant EuroBATS (Grant No. 259749).

Andrew Anand Brown has been funded by the EU FP7 grant EuroBATS (Grant No. 259749) and by the South East Norway Health Authority (Grant No. 2011060). Eric. R. Gazamon was supported by NIH Grants for GTEx: R01 MH101820 and MH090937. Hae Kyung Im was in part funded by R01MH107666 and K12CA139160, and travel was funded by P30DK020595. John R B Perry was supported by the Sir Henry Wellcome Postdoctoral Fellowship. Martijn van de Bunt is supported by the NDM Prize Studentship. Martin Hrabe de Angelis was supported by the German Center for Diabetes Research (DZD). Reedik Magi was supported by the Estonian Research Council (grant IUT20-60), the Development Fund of the University of Tartu (grant SP1GVARENG), EU structural support through Archimedes Foundation, grant no: 3.2.1001.11-0033, EU 7FP grant 278913, and H2020 grants 633589, 676550, 654248. Panos Deloukas's work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research. Katharine R Owen is a NIHR Clinician Scientist. Andrew Farmer is a NIHR Senior Investigator. Gilean McVean is a Wellcome Trust Senior Investigator. Eleftheria Zeggini was supported by The Wellcome Trust (098051). Heikki A. Koistinen has received funding from Academy of Finland (support for clinical research careers, grant no 258753). Veikko Salomaa is funded by the Finnish Foundation for Cardiovascular Research and the Academy of Finland (grant # 139635). Andrew P Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science (under award WT098017). Fredrik Karpe is supported by NIHR Oxford Biomedical Research Centre and NIHR National Bioresource. Graeme I. Bell was supported by NIH P30DK020595 (for genotyping, and analysis). James B. Meigs was supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R01 DK078616, NIDDK K24 DK080140. Mark I McCarthy is a Wellcome Trust Senior Investigator and a NIHR Senior Investigator. Anna L Gloyn is a Wellcome Trust Senior Fellow in Basic Biomedical Science and is supported by Wellcome Trust (200837/Z/16/Z). Cecilia Lindgren is supported in part by Wellcome Trust (WT086596/Z/08/A and 086596/Z/08/Z) and the Li Ka Shing Foundation.

Study and Cohort Acknowledgements

Funding for the GoT2D and T2D-GENES studies was provided by grants: NIH U01s DK085526, DK085501, DK085524, DK085545, and DK085584 (Multiethnic Study of Type 2 Diabetes Genes) and DK088389 (Low-Pass Sequencing and High-Density SNP Genotyping for Type 2 Diabetes). The work at the University of Oxford, UK

was supported by the European Commission (ENGAGE: HEALTH-F4-2007-201413; Marie-Curie Fellowship PIEF-GA-2012-329156), MRC (G0601261, G0900747-91070), National Institutes of Health (RC2-DK088389, DK085545, DK098032), and Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101, 095552, 098017, 098381). The work at the Wellcome Trust Sanger Institute, UK was supported by the National Institute for Health Research and the Wellcome Trust (098051).

The Jackson Heart Study is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health Disparities.

The work at Wake Forest School of Medicine (WFSM) was supported by NIH grant R01 DK066358 (DWB).

The Korea Association Research Project was supported at Center for Genome Science, National Institute of Health, Republic of Korea by the Korea National Institute of Health (2012-N73002-00) and the Korea National Institute of Health and Korea Centers for Disease Control and Prevention (4845–301); and at Hallym University Chuncheon, Republic of Korea by theNational Research Foundation of Korea (NRF-2012R1A2A1A03006155). This study was provided with biospecimens and data from the Korean Genome Analysis Project (4845-301), the Korean Genome and Epidemiology Study (4851-302), and the Korea Biobank Project (4851-307, KBP-2013-11 and KBP-2014-68) that were supported by the Korea Centers for Disease Control and Prevention, Republic of Korea.

The work at the University of Texas Health Science Center at Houston, USA was supported by the National Institutes of Health (U01DK085501, R01HL102830, R01DK073541).

The work at Imperial College London, UK was supported by Action on Hearing Loss (G51), the British Heart Foundation (SP/04/002), European Union FP7 (EpiMigrant, 279143), Medical Research Council (G0601966, G0700931), MRC-PHE Centre for Environment and Health, The National Institute for Health Research (NIHR) (RP-PG-0407-10371), NIHR Biomedical Research Centre at Imperial College Health Care NHS Trust, NIHR Health Protection Research Unit on Health Impact of Environmental Hazards, and the Wellcome Trust (084723). Personal support includes Paul Elliot: NIHR Senior Investigator.

The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust. The work was carried out in part at the NIHR/Wellcome Trust Imperial Clinical Research Facility. We thank the participants and research staff who made the study possible.

The work at the National University of Singapore was supported by Biomedical Research Council (BMRC) Individual Research Gran, National Medical Research Council (NMRC) Individual Research Grant, NMRC Centre Grant. Personal support includes: Ching-Yu Cheng: NMRC Clinician Scientist award; E Shyong Tai: NMRC Clinician Scientist award; YY Teo: National Research Foundation Fellowship; TY Wong: NMRC Singapore Translational Research Investigator award.

The work at Helmholtz Zentrum München – German Research Center for Environmental Health, Germany was supported by The German Center for Diabetes Research (DZD), Helmholtz Zentrum München (German Research Center for Environmental Health), which is supported by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria, and the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ.

The KORA research platform (KORA, Cooperative Research in the Region of Augsburg) was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ.

The work at Lund University, Sweden was supported by the Academy of Finland, a European Research Council Advanced Research Grant, the Folkhälsan Research Foundation, Novo Nordisk, the Påhlssons Foundation, the Sigrid Juselius Foundation, the Skåne Regional Health Authority, the Swedish Heart-Lung Foundation, and the Swedish Research Council (Linné and Strategic Research Grant).

TwinsUK was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR.

Some computations were performed at the Vital-IT (http://www.vital-it.ch) Center for high-performance computing of the SIB Swiss Institute of Bioinformatics; and at the ACEnet, the regional high performance computing consortium for universities in Atlantic Canada. ACEnet is funded by the Canada Foundation for Innovation (CFI), the Atlantic Canada Opportunities Agency (ACOA), and the provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick.

FIN-D2D was supported by financing from the hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; the Finnish National Public Health Institute; the Finnish Diabetes Association; the Ministry of Social Affairs and Health in Finland; Finland's Slottery Machine Association; the Academy of Finland (grant No. 129293) and Commission of the European Communities, Directorate C-Public Health (grant agreement No. 2004310) in cooperation with the FIN-D2D Study Group.

The Finnish DPS study was supported by the Academy of Finland (grants 128315, 129330, 131593).

The METSIM study was supported by the Academy of Finland (contract 124243), the Finnish Heart Foundation, the Finnish Diabetes Foundation, Tekes (contract 1510/31/06), and the Commission of the EuropeanCommunity(HEALTH-F2-2007-201681), and the US National Institutes of Health grants DK093757, DK072193, DK062370, and 1Z01 HG000024. Genotyping of the METSIM and DPS studies was conducted at the Genetic Resources Core Facility (GRCF) at the Johns Hopkins Institute of Genetic Medicine.

The DR's EXTRA Study was supported by grants to RR by the Ministry of Education and Culture of Finland (627;2004-2011), Academy of Finland (102318; 123885), Kuopio University Hospital, Finnish Diabetes Association, Finnish Heart Association, Pa⁻⁻ivikki and Sakari Sohlberg Foundation and by grants from European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of Kuopio and Social Insurance Institution of Finland (4/26/ 2010).

The National FINRISK 2007 study was supported by Finnish Foundation for Cardiovascular Research, the Academy of Finland (grant # 139635).

The FUSION study was supported by DK093757, DK072193, DK062370, and 1Z01 HG000024.

The Inter99 study Data collection in the Inter99 study was supported economically by The Danish Medical Research Council, The Danish Centre for Evaluation and Health Technology Assessment, Novo Nordisk, Copenhagen County, The Danish Heart Foundation, The Danish Pharmaceutical Association, Augustinus foundation, Ib Henriksen foundation and Becket foundation. The Danish studies (Inter99, Health2006, and Vejle Biobank) were supported by the Lundbeck Foundation (Lundbeck Foundation Centre for Applied Medical Genomics in Personalised Disease Prediction, Prevention and Care (LuCamp); http://www. lucamp.org/) and the Danish Council for Independent Research. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen, partially funded by an unrestricted donation from the Novo Nordisk Foundation (http://www.metabol.ku.dk/).

GoDARTS study was funded by The Wellcome Trust Study Cohort Wellcome Trust Functional Genomics Grant (2004-2008) (Grant No: 072960/2/ 03/2) and The Wellcome Trust Scottish Health Informatics Programme (SHIP) (2009-2012) (Grant No: 086113/Z/08/Z). Analysis and genotyping of the British UK cohorts was supported by Wellcome Trust funding 090367, 098381, 090532, 083948, 085475, MRC (G0601261), EU (Framework 7) HEALTH-F4-2007-201413, and NIDDK DK098032.

TwinsUK study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007–2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London.

The Oxford Biobank is supported by the Oxford Biomedical Research Centre and part of the National NIHR Bioresource.

The PIVUS/ULSAM cohort was supported by Wellcome Trust Grants WT098017, WT064890, WT090532, Uppsala University, Uppsala University Hospital, the Swedish Research Council and the Swedish Heart-Lung Foundation.

The Botnia study has been financially supported by grants from the Sigrid Juselius Foundation, Folkhälsan Research Foundation, Nordic Center of Excellence in Disease Genetics, an EU grant (EXGENESIS), Signe and Ane Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Helsinki University Central Hospital Research Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation and Ahokas Foundation. The study has also been supported by the Ministry of Education in Finland, Municipal Heath Care Center and Hospital in Jakobstad and Health Care Centers in Vasa, Närpes and Korsholm.

The Cardiovascular Risk in Young Finns Study was financially supported by the Academy of Finland (grants 121584, 126925, 124282, and 129378), the Social Insurance Institution of Finland, the Turku University Foundation, special federal grants for University Hospitals, the Juho Vainio Foundation, Paavo Nurmi Foundation, the Finnish Foundation of Cardiovascular Research, Orion-Farmos Research Foundation, and the Finnish Cultural Foundation.

The Hesinki Birth Cohort Study was supported by Emil Aaltonen Foundation, Finnish Foundation for Diabetes Research, Novo Nordisk Foundation, Signe and Ane Gyllenberg Foundation, Samfundet Folkhälsan, Finska Läkaresällskapet, Liv och Hälsa, Finnish Foundation for Cardiovascular Research.

Additional Acknowledgements

We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics for the generation of array and sequencing data. The High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics is funded by a Wellcome Trust grant (reference 090532/Z/09/Z)

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health. Additional funds were provided by the NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Donors were enrolled at Biospecimen Source Sites funded by NCI\SAIC-Frederick, Inc. (SAIC-F) subcontracts to the National Disease Research Interchange (10XS170), Roswell Park Cancer Institute (10XS171), and Science Care, Inc. (X10S172). The Laboratory, Data Analysis, and Coordinating Center (LDACC) was funded through a contract (HHSN268201000029C) to The Broad Institute, Inc. Biorepository operations were funded through an SAIC-F subcontract to Van Andel Institute (10ST1035). Additional data repository and project management were provided by SAIC-F (HHSN26120080001E). The Brain Bank was supported by a supplements to University of Miami grants DA006227 & DA033684 and to contract N01MH000028. Statistical Methods development grants were made to the University of Geneva (MH090941 & MH101814), the University of Chicago (MH090951, MH090937, MH101820, MH101825), the University of North Carolina – Chapel Hill (MH090936 & MH101819), Harvard University of Pennsylvania (MH101822). The data used for the analyses described in this manuscript were obtained from dbGaP (accession number phs000424.v3.p1).

Funding support for "Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium" was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). Sequence data for "Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium" was provided by Eric Boerwinkle on behalf of the Atherosclerosis Risk in Communities (ARIC) Study, L. Adrienne Cupples, principal investigator for the Framingham Heart Study, and Bruce Psaty, principal investigator for the Cardiovascular Health Study. Sequencing was carried out at the Baylor Genome Center (U54 HG003273). Further support came from HL120393, "Rare variants and NHLBI traits in deeply phenotyped cohorts" (Bruce Psaty, principal investigator). Supporting funding was also provided by NHLBI with the CHARGE infrastructure grant HL105756.