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Supplementary Note 1. SUMMARY OF ASSOCIATION RESULTS AT KNOWN AND NOVEL 
LOCI. 
 
The exome-wide single variant association results are displayed in Supplementary Table 2. We first 
partitioned the significant (P <5 × 10-7) and suggestive (P <5 × 10-6) single variant association results 
into two sets: variants in previously reported associated regions (Supplementary Table 2A) and 
variants with potentially novel association signals (Supplementary Table 2B).  
 
Of the 57 loci with common variants associated with FG or FI in multiple ancestries (1-13), twenty-one 
regions contained significant or suggestive association signals in our analysis. Of the seven regions 
harboring significant associations with non-synonymous variants, five (GCKR, G6PC2, SLC30A8, 
PCSK1, and GLP1R) were described previously by our group (13), where, when possible, conditional 
analyses and functional experiments are utilized to illuminate functional transcripts. In the MADD locus, 
a missense variant ACP2 p.Arg29Gln showed significant association with FG levels (P = 1.91 x 10-7, 
MAF = 38%). This variant is in low LD (r2 = 0.138) with the reported variant, rs7944584 (P = 2.62 x 10-

11, MAF = 39%), but after conditioning on rs7944584 the association was not significant (P = 0.003). An 
additional association with a low-frequency variant was observed at the MTNR1B locus. A variant 
upstream of MTNR1B, rs7950811, (effect = 0.057; P = 6.8 x 10-11), has a MAF of 4.5% and in low LD 
with the index SNP, rs10830963 (r2 = 0.002), in 1000 Genomes data (14). After conditioning on the 
index SNP, the association of rs7950811 with FG remained significant (P = 3.07 x 10-7). For FI, five 
regions contained significant or suggestive association signals. All of the insulin-associated variants 
were common with MAF > 25%. Two of these regions, the GCKR and GRB14/COBLL1 loci, harbor 
significant missense variants and were previously described (13). 
 
Association results at previously reported variants from genome-wide association studies are presented 
in Supplementary Table 2C. Of the 68 previously published common variant associations with FG and 
FI, we were able to carry out association tests at 36 FG and 16 FI variants. Thirty of the FG association 
loci showed P < 0.05, with 100 % having a consistent direction of effect. Thirteen FI associated loci had 
P < 0.05, with 100% demonstrating a consistent direction of effect. 
 
Potentially novel association signals 
 
We observed five and seven variants passing suggestive level of significance for FI and FG, respectively 
(Supplementary Table 2B). As this analysis focused on coding variation, we took the three coding 
variants forward to a replication analysis in four independent Finnish studies (N = 5,747) (15-18). The 
AKT2 p.Pro50Thr variant in AKT2 was present and well-imputed in the 1000 Genomes reference panel 
(imputation score: 0.886 to 0.957). The correlation between imputed and directly genotyped genotypes 
was high (r2 > 0.88), and the association of this variant with FI levels replicated, (Preplication = 0.00054, N 
= 5,747) resulting in a combined (discovery and replication) sample P value of 9.98 × 10-10 
(Supplementary Table 2E). MMEL1 p.Glu323Gln, which has a MAF of only 0.2% (seven minor allele 
carriers in the HBCS subset), was poorly imputed and not tested for association (imputation score: 0.718 
to 0.945, r2 = 0.57). TP53BP1 p.Thr1278Ile was not observed in the studies. 
 
Summary of exome-wide significant gene based association results 
 
The suggestive and significant gene based association signals from each ancestry group in the exome 
sequencing data and the exome chip data, as well as combined results, are displayed in Supplementary 
Table 2D. The AKT2 gene based association with FI is described in the main text. 
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In gene-based tests using the PTV+NSbroad mask, NDUFAF1 was significantly associated with FI levels 
(PBurden = 1.10 × 10-6). This association was driven by a single missense variant (p.His309Asp, 
rs199599633, P = 9.3 × 10-5, N = 1,673) that was not associated with FI levels in exome array data (P = 
0.018, N = 19,569). NADH dehydrogenase (ubiquinone) complex I, assembly factor 1, or NDUFAF1, 
encodes for a complex I assembly factor protein, which is part of the first step of the respiratory chain. 
Mutations in both copies of this gene are reported to cause mitochondrial complex I deficiency, which 
manifests as cardioenphalomypathy or fatal hypertrophic cardiomyopathy while heterozygous parents 
were reported as healthy(19; 20).  
 
Additionally, a third gene, GIMAP8, was associated with FG levels in the PTV-only mask (PBurden = 2.30 
× 10-6). This association was driven by singleton and doubleton variants. This gene encodes a GTPase of 
the immunity-associated protein family (21) 
 
Supplementary Note 2. POPULATION GENETICS AND CONSTRAINT  
 

We studied the population genetics properties of AKT2 and AKT2 p.Pro50Thr by cataloguing details of 
all the protein altering variants observed in the T2D-GENES exome sequence data (N=12,940). We 
phased variants in proteins or genes (including non-coding variants) using SHAPEIT (22) and calculated 
population statistics and diversity indices with Arlequin (v 3.5) (23), grouped by country of origin. We 
built the haplotype network using the pegas and igraph libraries in R. dN/dS for Human-Chimpanzee 
alignments were extracted from ENSEMBL database (24). We computed the “within-human” dN/dS 
with codeml (PAML) (25) using hg19 sequence as reference and alternative sequence containing all the 
observed segregating sites. The Mcdonald-Kreitman test (26) for AKT2 was computed in Bioperl 
(Bio::PopGen::Statistics) using AKT3 (hg19) as an outgroup. 
 
There was modest heterogeneity across regions of Finland, with North Karelia (MAF=1.7%) different 
(0.001<pairwise FST<0.003; P<0.01) from all other tested regions, except Central Finland (MAF=1.3%, 
pairwise FST=0.0004, P=0.08). These geographical differences in Pro50Thr allele frequency are 
consistent with long-term drift (27) with no evidence of selection pressure differences at AKT2 across 
Finland (dN/dSFinland=0.1; 0.08<dN/dSEuropean<0.4). 
 
In the complete GoT2D and T2D-GENES exome sequence data of 12,940 individuals (6,504 with type 2 
diabetes), AKT2 displayed some evidence of purifying selection (dN/dS<0.01 comparing human and 
chimpanzee) (Supplementary Figure S3; Supplementary Figure S4). We observed 36 non-
synonymous variants in AKT2 (35 with a MAC≤5 and Pro50Thr with MAC=61) (Supplementary 
Table 3). No other protein-altering variants had frequency greater than 0.3% in the 60,706 individuals 
(including 6,347 from the GoT2D and T2D-GENES studies) in the Exome Aggregation Consortium 
(ExAC) data. 
 
Supplementary Note 3. PATHWAY ANALYSES 
 

We used biological knowledge to test for enrichment of signal in pathways. Pathways and networks 
were selected from MSigDB (28), which includes Gene Ontology, pathways from KEGG, Ingenuity, 
Reactome, and Biocarta; and the manually curated monogenic pathways previously considered. We 
carried out a two-stage enrichment analysis: step one calculates gene aggregation scores using a function 
of single variant statistics; and step two calculates gene set scores using a function of aggregation scores 
from each gene in the set. In step one, we make use of a range of gene aggregation functions, including 
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the minimum p-value (or maximum Bayes’ factor) for single-variant association (within ancestry or 
trans-ethnic) in the gene (with correction for the number of variants in the gene). In step two, we apply a 
pre-ranked GSEA method (28), which consists of a sensitive-improved Kolmogorov-Smirnov (random 
bridge) statistic, and which provides better correction of the null distribution for highly correlated gene 
sets (as we see for our hand curated gene sets). Additionally, we performed a biologically enhanced 
pathway analyses with DEPICT (29), an integrative tool that we used to highlight enriched pathways 
and identify tissues/cell types where genes from associated loci are highly expressed. 
 
Gene set definitions: We assembled pre-defined, hand-curated lists to create four gene sets: 
“Monogenic All” (N = 81), including any gene with reported mutations that result in a disease or 
syndrome leading to either increased prevalence of diabetes or changes in glycemic traits. We further 
prioritized two subsets of genes, “Monogenic Glucose” (N = 41) and “Monogenic Insulin” (N = 37) 
including any gene with mutations leading to changes in respective glycemic traits as a primary feature. 
The list contains genes identified before September 2013. The fourth gene set, “Insulin Receptor 
Signaling,” was created using Ingenuity Pathway Analysis (IPA) tools (30) by merging the insulin 
receptor signaling, IGF-1 signaling, and PI3K/AKT signaling pathways and adding all downstream 
phosphylated substrates of AKT. 
 
Association Analysis: SKAT and burden tests were performed after aggregating functional variants 
(according to the previously described criteria) across all the genes in each gene set. Conditional 
analyses were performed using features implemented in RareMETALS (31; 32). 
 
Enrichment of association signals: Empirical enrichment for the number of gene based tests with P < 
0.001 and the number of single variant tests with P < 0.001 in each gene set was determined by first 
counting the number of tests below the threshold. For a particular gene set, let Nobserved denote the 
number of tests with P < 0.001. A pool of similar genes was assigned to each gene in the gene set, 
according to the quartile of exon length and quintiles of the number of the nonsynonymous and 
synonymous variants in the gene. For each gene set, 1,000 matched gene sets were created. An empirical 
distribution of Ni (the number of tests with P < 0.001 in matched set i) was constructed for each of the 
matched sets. The empirical enrichment P-value was calculated by observing the proportion of matched 
sets with Ni ≥ Nobserved. 
 
Additional traits related to insulin resistance: We examined the single variant association of fasting 
adiponectin level (log-transformed, age, sex and BMI adjusted, and inverse-normalized), 2 hour glucose 
level (age, sex and BMI-adjusted, and inverse-normalized) and 2 hour insulin level (log-transformed, 
age, sex and BMI adjusted, and inverse-normalized) in these pathways using exome array data when 
available from the discovery cohorts (D2D2007, DPS, DRSEXTRA, FINRISK, FUSION, Health2008, 
Inter99, METSIM, ULSAM). 
 
Summary of Results 
 
To further assess the evidence of enriched signals in biologically related genes, we looked for 
enrichment across pathways using both hand curated and publically available pathways. This was 
conducted using GSEA (28; 33). While no gene-set was significant after multiple testing correction, 
there is enrichment for several pathways, including adipocytokine signaling, glucose transport, galactose 
metabolism, glycolysis and gluconeogenesis, and starch and sucrose metabolism pathways, all of which 
include both G6PC2 and G6PC. While the G6PC2 association with FG has previously been described 
(13), we note that G6PC mutations result in glycogen storage disorders (34).  
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Since AKT2 lies in the insulin receptor signaling pathway and AKT2 mutations are a known cause of 
both familial lipodystophy, severe insulin resistance and hypoglycemia (35-38) we next explored 
whether there was an enrichment of rare and low frequency variants in these gene sets (“Monogenic 
Genes,” and “Insulin Receptor Signaling Genes”) [Supplementary Table 6A]. First, we tested for 
global enrichment by aggregating all variants predicted to be deleterious using the annotation masks 
previously described for gene based testing (PTV-only, PTV+NSstrict, PTV+NSbroad, PTV+Missense). 
We found a significant enrichment of deleterious variants (protein truncating, splice site and non-
synonymous) in the monogenic genes (P = 2 × 10-4) in exome array data [Supplementary Table 6B] 
but no such enrichment in an analysis of the exome sequencing data set (P = 0.87) [Supplementary 
Table 6C]. Conditional analyses demonstrated that in addition to AKT2 p.Pro50Thr (P conditional on 
AKT2 p.Pro50Thr = 0.0017), seven additional top ranked variants contribute to this signal (P conditional 
on AKT2 p.Pro50Thr, CFTR p.Asp1270Asn, INSR p.Val1012Met, ZMPSTE24 p.Arg178His, ZFP57 
p.Arg178His, CFTR splice donor variant rs78756941 and PCNT p.Glu1785Lys jointly = 0.0104) 
[Supplementary Table S6D,E]. No other novel associations were detected with the other gene sets and 
variant masks, although when comparing the effects of the burden tests across the four variant 
aggregation categories, we observed a positive trend of effect as we examined the category containing 
the least predicted deleterious (PTV+missense) to the most predicted deleterious (PTV-only), although 
the confidence intervals widen as the number of included variants decrease [Supplementary Fig. 6]. 
 
To find specific genes harboring an enrichment of association with either FG or FI levels, we next 
focused on association results from the monogenic genes, testing each set for empirical enrichment. We 
found that a gene implicated in congenital generalized lipodystrophy, CAV1 (39), showed enrichment of 
association with FG levels when considering the set of glucose-specific monogenic genes from the 
exome sequencing analysis (enrichment P = 0.03; CAV1 P = 1.9 × 10-4 with protein truncating and low-
frequency missense variants and P = 7.0 × 10-4 with protein truncating and predicted deleterious 
variants). Mutations in CAV1 are characterized by extreme insulin resistance and lipodystrophy (39) but 
in our data no association of CAV1 variants with FI levels was observed. We also observed a borderline 
enrichment for fasting insulin level with a gene-based burden test in the insulin receptor signaling 
pathway (enrichment P = 0.06; (PTGS2 burden P = 1.1 × 10-4 with protein truncating and low-frequency 
missense variants; [Supplementary Fig. 7, Supplementary Table S7A,B]. 
 
We further examined the association of three quantitative traits related to insulin resistance: fasting 
adiponectin level, and 2 hour glucose and 2 hour insulin levels after an oral glucose tolerance test. 
Besides a nominally significance Other than the AKT2 p.Pro50Thr allele association with 2 hour insulin 
level (Effect = 26% increase, 95% confidence interval = 16% - 38%, P = 7.86 × 10-8), no other 
associations were observed [Supplementary Fig. 7C]. 
 
Supplementary Note 4. EXPRESSION PROFILE OF AKT2 
 
GTEx 
 
We compared the expression pattern of AKT2 to the two other members of the AKT gene family, AKT1 
and AKT3, using multi-tissue RNA sequencing (RNA-seq) data from the pilot phase of the GTEx 
project. Detailed procedures for sample collection, RNA extraction, RNA-seq, and gene and transcript 
quantifications have been previously described (40). Briefly, in the pilot phase, a total of 9,365 tissue 
samples targeting more than 30 distinct human tissues were collected from 237 post-mortem donors. 
RNA was extracted, and 1,749 unique samples that passed QC (RIN value of 6.0 or higher and at least 
1μg of total RNA), were selected for RNA-seq. Non strand-specific RNA sequencing after poly-A 
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selection was performed using Illumina TruSeq RNA Sample Preparation protocol on the Illumina 
HiSeq 2000, and aligned with Tophat (v 1.4.1) (41) to UCSC hg19. Gencode (v 12) (42) was used as a 
transcriptome model for the alignment, and gene and isoform quantifications. Gene and exon level 
expression was quantified using RNA-SeQC (43) and the Flux Capacitor (v 1.2.3, 
http://flux.sammeth.net) was used in the quantification of the expression of several transcriptional 
elements including gene transcript, splice junctions and introns. In total, 44 tissues had data from more 
than one individual and were used in the analyses. 
 
Genotyping and imputation: Samples were genotyped on the Illumina HumanOmni5-4v1_B SNP 
array and imputed to the 1,000 Genomes Phase 1 reference (an updated data freeze version from 19 
April 2012, release v3) using IMPUTE2 (44; 45) as described (40). 
 
Age and BMI associations: We studied BMI and age associations using a linear mixed model 
as implemented in the lmer function in the lme4 R package (46). Sex, age, BMI, and three PCs 
were included in the model as fixed covariates and the date of sequencing and the date of nucleic acid 
isolation as random covariates. The gene expression RPKM values were inverse variance rank 
normalized for these analyses. 
 
eQTL analysis: The cis-eQTL for AKT2 in subcutaneous adipose tissue was extracted from the eQTL 
data generated during the pilot phase of the GTEx project. The methods have been previously described 
in detail (47). Briefly, the association of common (MAF ≥ 5%) SNPs with gene expression levels was 
studied using a linear model in MatrixEQTL (48) including sex, three genotyping PCs, and 15 
expression PEER factors (49) as covariates. The cis-window was defined as one megabase (Mb) up- and 
down-stream of the transcription start site of each transcript. Prior to the eQTL analysis the RPKM 
values were inverse normalized across genes within each tissue and transformed into a standard normal 
based on rank.  
 
EuroBATs 
 
EuroBATs RNA-seq samples: Samples from photo protected subcutaneous adipose tissue from 766 
twins were extracted (131 monozygotic twin pairs, 187 dizygotic twin pairs and 130 unrelated 
individuals) and processed as previously described (50; 51). In brief, samples were prepared for 
sequencing with the Illumina TruSeq sample preparation kit (Illumina, San Diego, CA) according to 
manufacturer’s instructions and were sequenced on a HiSeq2000 machine. Afterwards, the 49-bp 
sequenced paired-end reads were mapped to the GRCh37reference genome (52) with BWA v0.5.9 (53). 
We use genes defined in the GENCODE 10 annotation (42), removing genes with more than 10% zero 
read count. RPKM values were root mean transformed.  
 
Genotyping and imputation: Samples were genotyped on a combination of the HumanHap300, 
HumanHap610Q, 1M‐Duo, and 1.2MDuo 1M Illumnia arrays, as described in Grundberg et. al (54). 
Samples were imputed into the 1000 Genomes Phase 1 reference panel (data freeze, 10/11/2010) (6) 

using IMPUTE2 (44; 45) and filtered (removing variants with MAF<1%, IMPUTE info value<0.8). 
Samples with both genotypes and expression values (N=720) were used in the subsequent analyses. 
 
Gene-age, gene-BMI, and insulin associations: We used inverse normalized RPKM values to assess 
the effects of age and BMI on gene expression. We fit linear mixed models using R (55) with the lmer 
function in the lme4 package (46). Confounding factors in all models included fixed effects (primer 
insert size, GC content mean) and random effects (primer index, date of sequencing, family relationship 
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and zygosity). In addition to the adjusting for these fixed and random covariates, the analysis of age also 
adjusted for BMI and the analysis of BMI was adjusted for age. The P values to assess significance for 
age and BMI effects were calculated from the Chi-square distribution with 1 degree of freedom using 
likelihood ratio as the test statistic. FI was measured at the same time point as the fat biopsies, following 
a previously described protocol (56). Natural log transformed FI were adjusted for age or for age and 
BMI and the residuals were inverse rank normalized. FI-SNP and FI-AKT2 association was tested with a 
linear model using the lm function in R. 
 
eQTL analysis: We ran the eQTL analysis on residuals from a mixed model including the first 20 PCs 
as fixed effects and family relationship and zygosity as random effects. SNP-expression association was 
performed with a t-test statistic using the NP-GWAS software. We assessed statistical significance 
through 100,000 permutations. 
 
METSIM 
 
METSIM RNA samples: Subcutaneous fat biopsy samples were obtained from a sample of the 
participants of the baseline METSIM study. Total RNA was isolated from these samples using Qiagen 
miRNeasy Kit according to the manufacturer’s instructions. RNA integrity number values were assessed 
with the Agilent Bioanalyzer 2100. High-quality samples (RNA integrity number>7.0) were used for 
transcriptional profiling with the Affymetrix Human Genome U219 Array. Genome Studio software 
(2010.v3) was used to obtain fluorescent intensities. 
 
eQTL analysis and gene-age, gene-BMI and insulin associations: The SNP-gene associations were 
studied for all SNP within 1 Mb of a given gene. The RNA normalized expression data were adjusted 
for 35 PEER factors and inverse normal transformed PEER processed residuals were for used eQTL 
mapping (57). Linear mixed model EMMAX (58) accounts for sample relatedness and was implemented 
in EPACTS (http://genome.sph.umich.edu/wiki/EPACTS). The sample size for eQTL-mapping was 
N=770. BMI and age associations, as well as FI associations (with and without adjustment for BMI) 
were studied using the mixed linear model implemented in lme4 (46) in R. The fixed covariates 
including age and BMI were used as random covariates. Association between the SNPs associated with 
AKT2 expression (eSNPs) and FI was tested with a linear model using the lm() function in R. The 
natural log transformed FI levels were adjusted for age and BMI and the residuals were inverse rank 
normalized. All analyses using expression data were conducted in 770 METSIM individuals, while for 
the tests of eSNP and FI association the sample size for analysis was 10,081. 
Expression Profile of AKT2 
 
To gain further insights into the tissues relevant for AKT2 function we explored gene and transcript 
expression patterns of AKT2 (ENSG00000105221) from multiple (N = 44) human tissues using RNA 
sequencing (RNA-seq) data from the Genotype Tissue Expression (GTEx) Project (47). 
 
In the GTEx data AKT2 is ubiquitously expressed [Supplementary Fig. 13A,B]; the gene is present in 
all the available tissues (median expression across individuals RPKM(59) (reads per kb per million 
reads) > 7 in all tissues, [Supplementary Table 8] and in all individuals, in agreement with previous 
studies examining AKT2 expression via RT-PCR, Western blot, and Northern Blot analysis (60-63), and 
documented essential role of AKT isoforms in biological processes throughout the body (64). No 
enrichment of AKT2 expression is present in insulin sensitive tissues (i.e. pancreas, skeletal muscle, 
adipose tissue (both subcutaneous and visceral), liver and kidney cortex) via RNA sequencing as 
proposed in mouse and rat models, however, this is consistent with previous examination of AKT2 
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mRNA in human tissues (61-63; 65). This GTEx RNA sequencing data does not address insulin-
sensitive tissue enrichment seen at the level of AKT2 protein, yet in general mRNA levels correlate with 
protein abundance (66-68).  
 
AKT2 has multiple alternatively spliced transcripts, yet little is known of their specific roles, and 
therefore we investigated which of the transcripts are the most abundant and which tissues these are 
active in Gencode version 12 used in the gene and transcript annotations lists 28 AKT2 transcripts and 
17 of these transcripts are expressed (mean RPKM > 1) in at least one of the studied tissues 
[Supplementary Fig. 13C,D]. However, majority of the expression appears to be due to three AKT2 
transcripts: AKT2-004 (processed transcript) and AKT2-001 (protein-coding) that span the full length of 
the gene, and AKT2-008 (protein-coding), which does not include the downstream exons. Together these 
three transcripts constitute on average 44% (range 18-65%) of AKT2 expression in the GTEx tissues. 
The two longer AKT2 transcripts, AKT2-004 and AKT2-001, follow similar expression pattern to the 
gene, while the shorter one, AKT2-008, shows more specific pattern of expression being most expressed 
in uterus, kidney cortex and esophagus mucosa. 
 
The exon containing the p.Pro50Thr variant is included in 14 out of 28 expressed transcripts (all the 28 
AKT2 transcripts are expressed at a detectable level in at least one individual in at least one tissue), 
including in all the three most highly expressed transcripts [Supplementary Fig. 13D]. The expression 
profile of the exon containing p.Pro50Thr is similar to the whole AKT2 gene with the tissues showing 
highest AKT2 expression generally having the higher levels of expression of the exon containing 
p.Pro50Thr [Supplementary Fig. 13B]. Notably, the exon is expressed in all tissues and all individuals, 
further suggesting that the exon likely encodes part of the protein integral for its function. 
 
Similarly to AKT2, the two other members of the AKT gene family, AKT1 and AKT3, are expressed in all 
the tissues available in the GTEx data with the exception of rather low expression of AKT3 in liver and 
whole blood. Of the three genes, AKT1 is generally the most and AKT3 the least abundant in all tissues. 
AKT2 is the most highly expressed of the three homologs (P < 0.05 for all comparisons using one-sided 
paired Student’s t-test and log2 transformed expression values) only in skeletal muscle, pituitary and 
cerebellum/cerebellar hemisphere, with the higher AKT2 expression being most pronounced in skeletal 
muscle [Supplementary Fig. 14]. 
 
AKT2 expression in adipose tissue and association with FI 
 
To assess whether Pro50Thr was associated with AKT2 expression, we tested for gene expression 
quantitative trait loci (eQTL) in available adipose tissue data. We found an eQTL in the 5’UTR of AKT2 
(rs11880261; MAF=35%) with the common allele associated with lower AKT2 expression levels 
(Supplementary Figure 15; Supplementary Table 9). For Pro50Thr, we found the rare allele was 
associated with lower AKT2 expression in adipose tissue (METSIM effect=-1.0 SD; P=8.9×10-4, 
EAF=0.8%). The rare Pro50Thr coding allele (T) sits on the same haplotype as the common allele of 
rs11880261 (C, r2=0.002, D’=0.5 in the 1000 Genomes Finnish sample) that is associated with lower 
AKT2 expression. A reciprocal conditional analysis showed that these are independent signals 
(Pro50Thr: Pconditional=8.4×10-3; eQTL: Pconditional=1.9×10-13). No association was detected between 
rs11880261 and FI levels (METSIM P=0.30, N=10,081; EuroBATS P=0.80, N=710), suggesting that 
the common variant eQTL does not drive the initial FI association. 
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Mendelian randomization analysis 
 
To elaborate the potential causality behind the association between AKT2 expression and fasting insulin 
association, we applied a Mendelian randomization based approach using the discovered eQTL SNPs as 
instrumental variables (IV) following a similar procedure as described recently (69). The association 
data for the SNP-gene, gene-FI, and SNP-FI analyses from EuroBATS and METSIM were first 
combined in a fixed-effects inverse-variance-weighted meta-analysis. We derived the IV estimator by 
taking the ratio of the regression coefficients from the SNP-FI and SNP-AKT2 analyses, estimating 
standard error using the delta method. We used a Z test to determine the significance of the IV estimator 
and the difference between the IV estimator and the observational estimator. Power for this analysis was 
calculated using an online MR calculator (http://cnsgenomics.com/shiny/mRnd/) with the following 
values as input: sample size = 2091, alpha = 0.05, beta_xy =[0.01-0.1], beta_OLS = 0.05, R2_xz = 
0.025, sigma_x = sigma_y = 1 (70). 
 
Mendelian randomization with rs11880261 as an instrumental variable for AKT2 expression failed to 
show a causal relationship between AKT2 expression and FI (P=0.41) (Supplementary Table 10). 
However, power for the Mendelian randomization analysis is not sufficient to conclude there is no 
effect. Our instrument (rs11880261) explains about 2.5% of the variance in AKT2, but the observational 
association between AKT2 expression and FI is also weak. Depending on the estimate of the causal 
effect of AKT2 expression to FI, the power with the sample size of 2,091 can be as low as 5%. 
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Supplementary Figure S1. 
 

 
 

Manhattan and QQ plots for exome-wide association analysis with FG (A) and FI levels (B). On 
the Manhattan plots, variants within regions of known association are colored in dark blue, and variants 
outside those regions are colored in gray. The red horizontal line represents the exome-wide significance 
threshold for single variant associations (P<2.5×10-7). * For readability, the FG Manhattan plot is 
truncated at –log10(P) = 20, although variants in the G6PC2 region on chromosome 2 have –log10(P 
values) > 20. 
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Supplementary Figure S2. 
 

 
 

QQ plots from the gene based association tests for FI and FG. Two tests were applied, SKAT (left 
column) and Burden (right column) to four annotation masks (PTV, PTV+NSBroad, PTV+NSStrict, 
PTV+Missense). A. FI with variants in exome sequencing data set. B. FG with variants in exome 
sequencing data set. C. FI with variants in exome chip data set. The point deviating from the diagonal is 
the association test for AKT2; see Supplementary Table 2A for association details. D. FG with variants 
in exome chip data set. 
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Supplementary Figure S3. 
 

 
 

Population structure and diversity indices of AKT2 protein in the exome sequencing data set. Each 
pie represents the frequency of different haplotypes, estimated from phased exome sequencing data in 
the five continental ancestries (grouped by study or country 
of origin). Significance of Tajima’s D and F-statistics (global FST, FIS, FIT, and pairwise FST (gray line), 
and within population FIS) are indicated with asterisk: * P-value < 0.05; ** P-value < 0.01; *** P-value 
< 0.001. 
 
S: Number of segregating sites; Na: expected number of alleles; Pi (π): Mean number of pairwise 
differences; Theta (θ): Watterson’s θ estimate; dN/ds: ratio of non-synonymous nucleotide substitutions 
per non-synonymous site (dN) and number of synonymous 
nucleotide substitutions per synonymous site (dS); MK: McDonald-Kreitman test. 
 
African-American: AJ – Jackson Heart Study, AW – Wake Forest School of Medicine Study; East-
Asian: EK – Korea Association Research Project, ES – Singapore Diabetes Cohort Study and Singapore 
Prospective Study Program; European: UA – Ashkenazi (US, Israel), UB – UKT2D Consortium (UK), 
UF (Finland) – Metabolic Syndrome in Men Study (METSIM), Finland-United States 
Investigation of NIDDM Genetics (FUSION) Study, Malmo-Botnia Study, UG (Germany) – KORA-gen 
(Germany), US (Sweden) – Malmo-Botnia Study; Hispanic: HA – San Antonio Family Heart Study, 
San Antonio Family Diabetes/ Gallbladder Study, Veterans Administration Genetic Epidemiology 
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Study, and the Investigation of Nephropathy and Diabetes Study family component, HS – Starr County, 
Texas; South-Asian: SL – London Life Sciences Population Study, SS – Singapore Indian Eye Study. 
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Supplementary Figure S4. 
 
AKT family conservation compared to other genes. The dN/dS ratio is calculated by comparing 
homologous coding sequences between human and chimpanzee. It shows the degree to which selection 
is acting on a gene: ratio<1 points to negative selection/purifying selection, i.e. evolutionary pressure to 
conserve the sequence in ancestral state, ratio>1 to positive selection, and ratio=1 to neutral evolution. 
Three AKT homologs are highly conserved when compared to the set of “Insulin monogenic” genes (37 
genes), to which AKT2 belongs, and two other gene sets: 1,002 anatomical structure development genes 
(“conserved”), and 132 sexual reproduction genes (“fast evolving”). 
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Supplementary Figure S5A. 
 

 
 

Trait values among AKT2 variant carriers. Profile of the inverse normalized, adjusted metabolic trait 
values (top plot) and scaled (normalized by overall mean and standard deviation) raw trait values 
(bottom plot) of carriers of three AKT2 variants: AKT2 p.Pro50Thr, AKT2 p.Arg208Lys and AKT2 
p.Arg467Trp from the T2D-GENES whole exome sequencing data set. Points on the graph are observed 
trait values for heterozygous (black) and homozygous (red) carriers of the variants, split by type 2 
diabetes status. Trait abbreviations: HBA1C- glycated hemoglobin, FAST_INS- fasting insulin, 
FAST_GLU- fasting plasma glucose, TG- triglycerides, CHOL- total cholesterol, LDL-C, low-density 
lipoprotein cholesterol, HDL-C- high-density lipoprotein cholesterol, BMI- body mass index, WHR- 
waist to hip ratio, WASITC- waist circumference, HIPC- hip circumference, DBP- diastolic blood 
pressure, SBP- systolic blood pressure. adjBMI- trait adjusted for BMI 
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Supplementary Figure S5B. 
 

 
 

HbA1c, Fasting Glucose and Fasting Insulin distributions in T2D-GENES exome sequence data 
subset of Finnish cohorts (Botnia, FUSION, and METSIM). Scaled (normalized by overall mean and 
standard deviation) trait distributions are displayed by genotype group and type 2 diabetes status. 
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Supplementary Figure S5C. 
 

 
 

Phenotype clustering of AKT2 missense variant carriers in the T2D-GENES whole exome 
sequencing dataset on seven metabolic traits: all missense carriers (A), carriers of AKT2 p.Pro50Ala 
variant (B), and carriers of the other variants (C), (see Supplementary Table 3). The row labels 
indicate the variant carried by an individual. P50Talleles: the number of Ala alleles carried; T2D: 0 for 
controls and 1 for individuals with type 2 diabetes. 
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Supplementary Figure S6. 
 

 
 

The trend in the estimate of the effect size of the global gene burden test for the four variant 
aggregation categories. The effect estimates (and 95% confidence interval) were provided as output of 
the burden test result in the RareMETALS package in R. 
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Supplementary Figure S7A. 
 

 
 

Monogenic enrichment in single variant association tests. Single variant association results from the 
FG and FI association analysis for variants in the four masks in the monogenic gene sets (top) and the 
insulin receptor signaling genes (bottom). 
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Supplementary Figure S7B. 
 

 
 

Pathway enrichment in gene-based tests. Gene burden association results from the fasting glucose and 
fasting insulin analysis for variants in the PTV+Missense mask in the monogenic gene sets (top) and the 
insulin receptor signaling genes (bottom). 
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Supplementary Figure S7C. 
 

 
 

Pathway associations in traits related to insulin resistance. Single variant association results for three 
traits related to insulin resistance: fasting adiponectin levels, 2 hour glucose level and 2 hour insulin 
level after an oral glucose tolerance test. The variants in these plots are in the PTV+Missense annotation 
category, with results from variants in the monogenic gene sets (top) and the insulin receptor signaling 
genes (bottom). 
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Supplementary Figure S8. 
 

 
 
Predicted structure change in AKT2 due to AKT2 p.Pro50Thr. The left plot shows the predicted 
structure of wild-type AKT2. The right plot shows the predicted structure of AKT2.Thr50. 
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Supplementary Figure S9. 
 

 
In vitro kinase (IVK) assay. A. Results of a generalized linear model (GLM) applied on rescaled raw 
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data. The relative substrate phosphorylation values were generated by dividing each value in each round 
of analysis with the value for nonstimulated, serum-starved AKT2. A first GLM (“Round” model) was 
analyzed including the Round as variable; the three independent rounds were not significant: we used 
them as replicate in the Full model. The plots represent the GLM estimates (and 95% CI) in the Full 
model for the two significant interactions: B. Assay:Insulin. C. Assay:Variants. For the Glycogen 
Synthase Kinase 3  (GSK3), the different AKT2 variants show significant relative phosphorylation 
(pairwise comparison p-values from contrast analysis reported in inset table). For GST-GSK3 peptide, 
none of the AKT2 variants showed different relative phosphorylation values. * P < 0.05, ** P < 0.01, 
*** P < 0.001. DF: degrees of freedom, F: statistic testing the importance of the grouping term, Pr(>F): 
P value of the F statistic. 
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Supplementary Figure S10. 
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Phosphorylation of AKT2 activation sites in HuH7 liver cells (A) HuH7 cells cells were infected 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

with lentiviral control, V5-AKT2, V5-AKT2-Lys17, V5-AKT2-Thr50, V5-AKT2-Lys208, V5-AKT2-
His274, V5-AKT2-Trp467, blasticidin selected and starved for 18 hr (white bar), and stimulated for 20 
min with 100nm insulin (grey bar). V5-tagged AKT2 was isolated from cell lysates with anti-V5 agarose 
beads and immunoblots (IB) were probed with indicated antibodies. (B) Phosphorylated AKT2 Thr308 
and Ser473 were quantified and normalized to total by V5-AKT2. (C) Linear model for the statistical 
analysis of quantified pAKT2. The “Round” model tests for significant differences between the three 
rounds of analysis. The Full model examines significance of assay (V5, pAKT2 T308 and pAKT2 S473) 
and variants (AKT2, AKT2.Lys17, AKT2.Thr50, AKT2.Lys208, AKT2.His274 and AKT2.Trp467) and 
their interactions. * P < 0.05, ** P < 0.01, *** P < 0.001. DF: degrees of freedom, F: statistic testing the 
importance of the grouping term, Pr(>F): P value of the F statistic. 
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Supplementary Figure S11. 
 

 
 

Time-course analysis of AKT2 phosphorylation (A) HeLa cells were infected with lentiviral V5-
AKT2, V5-AKT2-Thr50, or control pLX304, blasticidin selected and starved for 18 hours and then 
stimulated for 0, 2, 60, and 240 minutes with 100nm insulin. V5-tagged AKT2 was isolated from cell 
lysates with anti-V5 agarose beads. Immunoprecipitated (IP) V5-AKT2 and whole cell lysates (WCL) 
were immunoblotted (IB) with the indicated antibodies. Immunoblots are representative of three 
independent replicates. (B) Quantification of the three replicates of indicated immunoblots relative to 
total V5-AKT2. (C) Linear Model (LM) statistical analysis across all three independent replicates. Error 
bars represent the standard deviation (SD). * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Supplementary Figure S12. 
 

 
 

Proliferation assay. A. Results of a generalized linear model (GLM) applied on rescaled raw data 
(absorbance value) to test for significant difference in proliferation between the three rounds of analysis, 
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the three variants and an interaction between round and variants. The rescaling was performed by 
dividing all the values in each round by the average absorbance in controls. The plots represent the GLM 
estimates (and 95% CI) for the B. Round:Variant interaction and individual variables: C. Round and D. 
Variants. * P < 0.05, ** P < 0.01, *** P < 0.001. DF: degrees of freedom, F: statistic testing the 
importance of the grouping term, Pr(>F): P value of the F statistic. 
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Supplementary Figure S13. 
 

 
 

AKT2 expression in human tissues. A. Boxplot displaying the level and distribution of AKT2 gene 
expression (in reads per kilobase per million mapped reads, RPKM) in 44 human tissues available in the 
GTEx RNA-seq data. B. Box plot of the expression (in RNA-seq reads) of the AKT2 exon of affected by 
the p.Pro50Thr variant. Read counts are not normalized by the total number of reads per sample, 
resulting in larger variance in the expression within each tissue. C. Heat map of expression patterns of 
the 28 AKT2 transcripts in the GTEx tissues, as annotated in Gencode version 12. Intensity of color in 
each cell represents the expression of the transcript in that tissue; white indicating no expression, and red 
indicating higher expression. D. Visualization of the transcript structure of AKT2 (Gencode v12). The 
affected exon, highlighted with the red dashed line, is included in the majority of the AKT2 transcripts 
and in all the three most highly expressed transcripts. The tissues are presented in the same order across 
panels A-C, and colored similarly in panels A and B. Tissue abbreviations are listed in Supplementary 
Table 8. 
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Supplementary Figure S14. 
 

 
 
Expression of the AKT gene family across human tissues. Each cluster of three boxplots represents 
the expression of AKT1 (left), AKT2 (middle) and AKT3 (right) in each tissue. AKT2 is the isoform with 
the highest expression (P-value < 0.05) in BRNCHA (Brain – Cerebellum), BRNCHB (Brain - 
Cerebellar Hemisphere), MSCLSK (Muscle – Skeletal) and PTTARY (Pituitary). Tissue abbreviations 
are listed in Supplementary Table 8. 
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Supplementary Figure S15. 
 

 

 
 

Expression analysis with common eQTL SNP and AKT2 p.Pro50Thr. Top left plot: The regional 
association plot of variants in theAKT2 region testing association with AKT2 expression. The SNP 
showing the most significant signal in this plot, rs8104727, is a proxy for rs11880261 (r2 = 1, D’ = 1 in 
the 1000 Genomes phase 3 Finnish sample). Top right plot: observed AKT2 expression levels for the 
two AKT2 p.Pro50Thr genotypes observed in the METSIM cohort. Bottom table: eQTL statistics and 
reciprocal conditional analysis with the two SNPs: rs8104727and AKT2 p.Pro50Thr. The “Beta 
conditional” and “P conditional” columns highlight the associations with AKT2 expression after 
conditioning on the other SNP. 
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Supplementary Table S1. 
 
Details and characteristics of studies included in the analysis.  
 
Supplementary Table S1A. Study details including references, ascertainment, sample QC, variant QC and association covariates. 
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Supplementary Table S1B. Sample characteristics of the studies contributing to the analysis. 
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Supplementary Table S2. 
 
Association results from the discovery phase. 
 
Supplementary Table S2A. Significant (P < 5 × 10-7) and suggestive (P < 5 × 10-6) single variant association results in previously published 
regions associated with FI levels or FG levels. The published association statistics are shaded in gray. The association results for each region 
in our analyses are presented in the non-shaded rows. 
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Supplementary Table S2B. Significant (P< 5×10-7) and suggestive (P<5×10-6) single variant association results that are not in previously 
published regions. Results are shown for variants with association P< 5×10-6 that fall outside the regions of previously published genetic 
associations. 
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Supplementary Table 2C. Single variant association results at previously published genome-wide association loci. Each row contains a 
previously reported GWAS association with FG level or FI level. Not all previously published SNPs were available for analysis in the exome 
array or exome sequencing data (denoted with - for our analyses). 
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Supplementary Table S2D. Significant and suggestive gene based association signals. Results for all data and mask combinations are shown 
for any gene that attains exome-wide significant (** P<2.5×10-6) or exome-wide suggestive levels (* P<2.5×10-5). 
 

 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

 

 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

 
AfrAm: African American ancestry 
E.Asian: East asian ancestry 
Europ: European ancestry 
Hisp: Hispanic ancestry 
S.Asian: South Asican ancestry 
WES (all): Whole exome sequencing meta-analysis 
ExArray: Exome array meta-analysis 
WES (all) + ExArray: Whole exome sequencing and exome array meta-analysis 
Variant masks: 
PTV: containing only variants predicted to introduce a premature stop codon 
PTV+NS: containing variants in the PTV group and protein-altering variants with MAF<1% 
PTV+NSstrict: composed of variants in “PTV” and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 
HDIV, and polyphen2 HVAR 
PTV+NSbroad: composed of “PTV+NSstrict” and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm. 
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Supplementary Table S2E. Replication of AKT2 p.Pro50Thr in independent Finnish cohorts and association results in the discovery and 
replication studies combined. 
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Supplementary Table S3. 
 
Protein altering variation in AKT2. Displayed are all variants predicted to cause a nonsynonymous substitution or alter a splice site in 
12,940 samples with whole exome sequencing data. Annotations were obtained using dbNSFP. 
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Supplementary Table S4. 
Association of AKT2 p.Pro50Thr with diabetes-related metabolic traits in Finnish Cohorts. 
 
Supplementary Table S4A. Association with quantitative metabolic traits. 
 

 
 
N: sample size contributing to association 
MAF: minor allele frequency 
Effect (Std. Err): regression estimate of the additive genetic effect and standard error of the estimate 
P: P-value testing the significance of the association 
Padjusted: A Bonferroni P value correction for 23 tests was applied 
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Supplementary Table S4B. T2D and hypertension association analysis with AKT2 p.Pro50Thr. These analyses was performed in a staged 
meta-analysis modeling the approach taken in the discovery and replication of the FI association with AKT2 p.Pro50Thr, with the European 
exome sequence data, the Finnish exome chip cohorts and the Finnish replication cohorts. 
 

 
 
Outcome: dichotomous outcome tested 
Adjustment: indicates if BMI was used as a covariate in addition to sex and age. 
MAF: minor allele frequency 
Odds Ratio (95% CI): odds ratio estimate for increased risk of outcome and 95% confidence interval of the estimate 
Padjusted: A Bonferroni P value correction for 23 tests was applied. 
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Supplementary Table S4C. Statistics for differences in HbA1c, fasting glucose, and fasting insulin distributions in the sample sub-cohorts 
with the AKT2 P50T allele from the T2D-GENES whole exome sequencing data. Here, we provide genotype counts, median values of the 
scaled trait value, and tests difference in distributions using the non-parametric Kruskal-Wallis rank sum test and Monte Carlo permutation 
test. 
 

 
 
Genotype categories: 0/0 indicates the group of individuals who are homozygote for the reference allele at rs184042322 (C/C); 0/1 indicates 
the group of individuals who are heterozygote at rs184042322 (C/T); 1/1 indicates the group of individuals who are homozygote for the 
AKT2 p.Pro50Thr allele at rs184042322 (T/T). 
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Supplementary Table S5. 
 
Phenotype exploration of AKT2 p.Pro50Thr carriers electronic medical records. 
Phenotype exploration of AKT2 p.Pro50Thr carriers electronic medical records were queried in two cohorts for diseases plausibly related to 
AKT2. The genotype counts for the AKT2 p.Pro50Thr variant are displayed for individuals not coded for an outcome (Controls) and 
individuals coded for an outcome (Cases). * Other related phenotype outcome included Lipodystrophy (E88.1), Acanthosis nigricans (L83), 
and Malignant neoplasm of male breast (C50.*2). No cases were reported for these outcomes in both METSIM and FINRISK. ** ICD 10 
codes are used to obtain diagnoses of the phenotype outcome from hospital discharge records or electronic health records. 
 

 
 
ICD = International Classification of Diseases 
OR = Odds ratio 
95% CI = 95% Confidence interval 
METSIM = Metabolic Syndrome in Men Study 
FINRISK = The National FINRISK Study 
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Supplementary Table S6. 
 
Aggregate test of variants in monogenic gene sets and in the Insulin Receptor Signaling Pathway. 
 
Supplementary Table S6A. List of the genes in the monogenic gene sets and the Insulin Receptor Signaling Pathway. 
 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

 
 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

 



SUPPLEMENTARY DATA 
 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1329/-/DC1 

Supplementary Table 6B. Global test of monogenic genes from exome chip analysis. Aggregate tests of rare variants based on functional 
annotation were performed using exome array variants in all the genes in each gene set. We performed conditional analyses to understand the 
variants contributing to the significant association signals. 
 

 
 
* After conditioning on ATK2 p.Pro50Thr, the global test P values for the Monogenic gene set was P=0.38 (SKAT). For the Monogenic 
Insulin gene set, the conditional P values were 
P = 0.02 (SKAT) and P = 0.017 (BURDEN). 
** After conditioning on BSCL2 p.Q271*, the global test was P = 0.019 (BURDEN) for the Monogenic gene set and P = 0.039 (BURDEN) 
for the Monogenic Glucose gene set. 
*** Conditional analysis of this test is presented in Supplementary Table 6C. 
**** After conditioning on AKT2 p.Pro50Thr, the global test P values for the Insulin Receptor Signaling Pathway was P=0.01. 
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Supplementary Table 6C. Global test of monogenic genes from exome sequencing analysis. 
 

 
Variant masks: 
PTV: containing only variants predicted to introduce a premature stop codon 
PTV+NS: containing variants in the PTV group and protein-altering variants with MAF<1% 
PTV+NSstrict: composed of variants in “PTV” and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 
HDIV, and polyphen2 HVAR 
PTV+NSbroad: composed of “PTV+NSstrict” and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm. 
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Supplementary Table 6D. Sequential conditional analysis of the exome chip global BURDEN test with the monogenic all gene set for FI 
with PTV + NSstrict + Nsbroad variants. Variants that contributed the most to the association, as reported by RAREMETALS v.4.7, were 
added to the model sequentially. Single variant association results of these variants are provided in Supplementary Table 7B. 
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Supplementary Table 6E.Association results of the variants contributing to the exome chip global burden test association of the 
“Monogenic” genes for FI level. 
 
 

 
 
* Single variant association tests were not performed because variant did not meet the inclusion criteria (MAC > 5 within each cohort). 
** P values from the RAREMETALS v.4.7 software. 
BF: log10( Bayes factor) for association 
P: P value for association test 
N: Total Sample size contributing to analysis 
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Suppelmentary.Table.S7. 
 
Gene-based and single-variant association results from genes highlighted in the enrichment analyses. 
 
Supplementary Table 7A. Gene based results of the monogenic genes or insulin receptor signaling genes exhibiting enrichment of 
association signals. 
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MAC (No. vars): Minor allele count (number of variants in the test) 
Variant masks: 
PTV: containing only variants predicted to introduce a premature stop codon 
PTV+NS: containing variants in the PTV group and protein-altering variants with MAF<1% 
PTV+NSstrict: composed of variants in “PTV” and protein-altering variants predicted damaging by SIFT, LRT, MutationTaster, polyphen2 
HDIV, and polyphen2 HVAR 
PTV+NSbroad: composed of “PTV+NSstrict” and NS variants with MAF<1% and predicted damaging by at least one prediction algorithm. 
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Supplementary Table 7B. Single variant association results with FG levels from the monogenic genes exhibiting enrichment of association 
signals. 
 

 
 
BF: log10( Bayes factor) for association 
P: P value for association test 
N: Total Sample size contributing to analysis 
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Supplementary Table S8. 
 
GTEx tissue differential expression of AKT2 compared to AKT1 and AKT3. Listed are the tissues from the GTEx project pilot phase 
release where AKT2 expression was assessed. 
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N = sample size per tissue; P(AKT2 > AKT1) = P value for the test of expression in 
AKT2 compared to AKT1; P(AKT2 > AKT3) = P value for the test of expression in 
AKT2 compared to AKT3. * The tissue abbreviation used in Fig. S13 and Fig. S14. ** 
The corresponding tissue description. *** The one-sided paired t-test P-values for the 
comparison of AKT2 expression with AKT1 and AKT3. # The tissues where AKT2 
expression is significantly (P < 0.05) higher than both AKT1 and AKT3 expression. 
BRNCHA/BRNCHB and BRNCTXA/BRNCTXB are sampled from the same regions, 
cerebellum and cortex, respectively, but in separate collections. 
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Supplementary Table S9. 
 
Expression analyses in adipose tissue in the METSIM, EuroBATS and GTEx studies. 
 
Supplementary Table 9A. The associations of the two eSNPs discovered in METSIM (rs8104727) and EuroBATS (rs11880261) with AKT2 
transcript levels. Results are presented for all the three cohorts queried (METSIM, EuroBATS and GTEx). The eSNPs are in linkage 
disequilibrium: R2 = 0.847 and D' = 0.92 in 1000 Genomes European population samples and R2 = 1 and D' = 1 in 1000 Genomes Finnish 
population samples. 
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Supplementary Table 9B. Associations of the AKT2 eSNPs with FI are displayed for the METSIM and EuroBATS studies. 
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Supplementary Table 9C. Associations of AKT2 expression with FI are shown for the METSIM and EuroBATS studies. 
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Supplementary Table 9D: The association between AKT2 expression and age was queried in adipose tissue in the METSIM, EuroBATS and 
GTEx cohorts. 
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Supplementary Table 9E. The association between AKT2 expression and BMI was queried in adipose tissue in the METSIM, EuroBATS 
and GTEx cohorts. 
 

 
 

NA: The data was not available 
GeneID: The name of the gene investigated 
Cohort: The cohort the association was studied in 
Tissue: The tissue the expression data is from 
N: The sample size in analysis 
SNP: The rsID of the SNP for which the association is shown 
SNP origin: The cohort where the SNP was most associated with AKT2 expression 
Effect allele and Other allele: The effect and non-effect alleles of the SNP 
EAF: The frequency of the effect allele 
 
Beta effect: The effect estimate for the effect allele 
SE: Standard error for the effect estimate 
P-value (SNP-AKT2): The P-value for the SNP-expression association 
Study: Study in which the association was studied 
Adjustment: The covariate adjustment for fasting insulin 
P-value (eSNP-FI): The P-value for the SNP-fasting insulin association 
P-value (AKT2-FI): The P-value for the gene-fasting insulin association 
ChiSq (age): Chi squared test statistic for the expression-age association 
P-value (age): P-value for the SNP-expression association 
 
Effect (age): Effect estimate for the age in the model 
ChiSq (BMI): Chi squared test statistic for the expression-BMI association 
P-value (BMI): P-value for the SNP-expression association 
Effect (BMI): Effect estimate for the BMI in the model 
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Supplementary.Table S10. 
 
Mendelian randomization analysis to assess the causality of AKT2 expression for fasting insulin (FI) levels. 
 
The results from the meta-analysis of the EuroBATS and METSIM data and for the instrumental variable (IV) estimator are shown for the 
EuroBATs eSNPs (rs11880261) additionally separated by whether BMI adjustment was used for SNP-FI and AKT2-FI analyses. 
 

 
 
Association: The pair of traits tested or the instrumental variable (IV) 
N: The sample size in meta-analysis 
Effect: The effect estimate in the association 
SE: Standard error 
P-value: The P-value for the association 
P-value for difference: The P-value for the difference between the IV estimator and the AKT2-FI estimate 
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