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ABSTRACT 22 

In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the 23 

very first time as a powerful and effective weight loss pill but quickly withdrawn from the market 24 

due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and 25 

death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and 26 

therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. 27 

Moreover, in the past 20 years, transgenic mouse models were generated to understand the 28 

molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling 29 

protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of 30 

chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner 31 

mitochondrial membrane, thus allowing maximum activity of the respiratory chain and 32 

compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, 33 

targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice 34 

increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin 35 

resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-36 

autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative 37 

stress tolerance. This review provides an overview of novel chemical uncouplers as well as the 38 

metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic 39 

health and survival. 40 
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1 Introduction 70 

Metabolic diseases such as obesity, hypertriglyceridemia and type 2 diabetes (T2D) have reached an 71 

epidemic level globally [1, 2]. Metabolic health is closely associated with body weight and whole-72 

body energy balance which can be regulated by the amount of energy intake or energy expenditure. 73 

Targeting processes that lead to a reduction in mitochondrial coupling/efficiency could be a 74 

promising therapeutic strategy to combat obesity and its co-morbidities. The uncoupling protein 1 75 

(UCP1) is the first identified and most studied uncoupling protein, discovered almost 40 years ago 76 

[3, 4]. Despite the existence of other UCPs such as UCP2 [5] and UCP3 [6, 7], only UCP1 seems to 77 

mediate energy dissipation as heat for adaptive thermogenesis via functional mitochondrial 78 

uncoupling in vivo [8, 9]. UCP1 is predominantly expressed in brown adipose tissue (BAT) 79 

mitochondria and dissipates upon activation the proton gradient across the inner mitochondrial 80 

membrane [10], thus uncoupling electron transfer system from ATP synthesis and accelerating 81 

mitochondrial oxidative phosphorylation (OXPHOS) in order to maintain ATP homeostasis [11]. 82 

Basically, mitochondrial uncoupling refers to a loss of coupling between the mitochondrial inner 83 

membrane electrochemical proton gradient and the synthesis of ATP (Fig. 1), thereby releasing 84 

energy as heat [12]. Within BAT depots, this metabolic process is called non-shivering 85 

thermogenesis which is UCP1-dependent and strongly increased by cold exposure [13, 14]. The 86 

manipulation of UCP1 activity is an excellent approach to influence energy expenditure and a 87 

natural defense against obesity. However, it is localized in BAT, a tissue which, when not activated 88 

by cold induction, represents only a small part of the human body [15-18].  89 

Pharmacological agents that increase metabolic rate by increasing uncoupling of mitochondrial 90 

OXPHOS were intensively studied in the past. However, systemic chemical mitochondrial 91 

uncoupling agents, such as 2,4-dinitrophenol (DNP) or carbonyl cyanide p-(trifluoromethoxy) 92 

phenylhydrazone (FCCP) lack selectivity and have a narrow therapeutic window, largely due to 93 

their severe side effects and toxic doses [19]. Instead, tissue-specific and thereby targeted 94 

mitochondrial uncoupling has been investigated during the last decades as a powerful strategy to 95 

regulate whole-body energy homeostasis and metabolic health for the treatment of obesity and 96 

associated metabolic disorders. This review provides an overview of the metabolic consequences 97 

and adaptive processes in response to a targeted treatment with chemical uncoupling agents or 98 

ectopic overexpression of functional UCP1, as a model of tissue-targeted mitochondrial uncoupling. 99 

2 Metabolic impact of chemical mitochondrial uncoupling agents 100 

Apart from dietary and pharmacological interventions affecting satiety or intestinal absorption 101 

efficiency to decrease energy intake, increasing energy output through pharmacological uncoupling 102 

has been proposed as a weight-loss therapy [20]. Below we review well-known and novel chemical 103 

uncoupling agents and discuss their relevance for metabolic health and treatment of human 104 

metabolic disease.  105 

2.1 DNP (2,4-Dinitrophenol) 106 

The first and best-studied example is the artificial uncoupler DNP, a lipid-soluble weak acid which 107 

acts as a chemical protonophore and allows protons to leak across the inner mitochondrial 108 

membrane [21], mimicking the uncoupling effect of activated UCPs. In the 1930s, DNP was widely 109 

used to treat obesity [22]. Nevertheless, because at high doses nonspecific uncoupling in all tissues 110 

causes dangerous side effects including hyperthermia and death [23], DNP was withdrawn from the 111 

market by the US Food and Drug Administration (FDA) in 1938. Case reports demonstrated that an 112 

acute administration of 20–50 mg per kilogram of body weight in humans can be lethal [24]. 113 
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Nevertheless, in 2015 in the UK, a substantial increase was reported in clinical presentations with 114 

toxicity and associated high mortality caused by exposure to DNP [25]. In contrast, recent studies 115 

demonstrate that long-term treatment with low doses of DNP protects against diet-induced obesity, 116 

improves insulin sensitivity and increases lifespan in mice [26, 27]. Because of the strong effects on 117 

body weight in humans and survival in mice, the mechanism of action of DNP remains under 118 

investigation as a potential approach for the treatment of obesity and associated metabolic disorders 119 

(Fig. 2). In 2006, Murphy and colleagues developed a mitochondrial-targeted form of DNP, by 120 

coupling it to the lipophilic triphenylphosphonium (TPP) cation, which accumulates within 121 

mitochondria driven by the membrane potential [28]. They found that MitoDNP was extensively 122 

taken up by mitochondria, however no increase in uncoupling could be observed. Six years later 123 

Chalmers et al. developed a compound called MitoPhotoDNP, a mitochondria-targeted 124 

photoactivated protonophore [29]. Comparable with MitoDNP, it is targeted to mitochondrion by 125 

TTP, but releases DNP only in response to directed irradiation with UV light. Indeed, 126 

MitoPhotoDNP led to the selective uncoupling of individual and/or several mitochondria within a 127 

cell when used in conjunction with fluorescence imaging. Thus, MitoPhotoDNP represents a 128 

promising tool to elucidate the effects of mitochondrial uncoupling on cellular metabolism in vitro 129 

which is of great importance in the development of less toxic protonophore.  130 

2.2 Next generation chemical uncouplers 131 

Several novel mitochondrial- or tissue-targeted chemical uncouplers with a higher safety and 132 

therapeutic value were developed and investigated in the last couple of years (Fig. 2). In 2010, the 133 

group of Vladimir P. Skulachev synthesized penetrating cation/fatty acid anion pairs as 134 

mitochondria-targeted protonophore. While initially searching for mitochondria-targeted 135 

antioxidants, they discovered that the synthesized plastoquinone derivates SkQ1 (10-(6´-136 

plastoquinonyl) decyltriphenylphosphonium) and C12TPP (dodecyltriphenylphosphonium) 137 

potentiated the fatty acid-induced uncoupling of respiration and OXPHOS in isolated rat-liver 138 

mitochondria [30]. SkQ1 was further investigated as mitochondria-targeted antioxidant for potential 139 

treatment of various age-related diseases, such as Alzheimer’s disease [31] or retinopathy [32, 33]. 140 

Furthermore, a recent study demonstrated that the mitochondrial-targeted C12TPP effectively 141 

increased oxygen consumption in isolated brown-fat mitochondria, independent of UCP1, and 142 

abolished diet-induced obesity in mice by reducing food intake, increasing the resting metabolic 143 

rate and overall fatty acid oxidation [34]. 144 

In addition, Rhodamine 19 butyl ester (C4R1), a short-chain alkyl derivative of Rhodamine 19, was 145 

found to decrease the membrane potential and stimulate respiration of isolated liver mitochondria as 146 

well as reduce oxidative stress induced by brain ischemia and reperfusion in rats [35]. In addition, 147 

similar to the in vivo effects of C12TPP, the penetrating cation C4R1 effectively reduced body 148 

weight and fat mass of obese mice fed a high-fat diet [36]. Thus, both C12TPP and C4R1 are 149 

considered as novel promising candidates for mild mitochondrial uncoupling anti-obesity drugs. 150 

With the overall aim to identify mitochondrial-targeted uncouplers that lack off-target activity at the 151 

plasma membrane, the lipophilic weak acid named BAM15 was recently identified by a small 152 

molecule library and bioenergetics screening approach [37]. Interestingly, the authors could show 153 

that although BAM15 is less cytotoxic because it does not depolarize the plasma membrane, it still 154 

effectively uncouples OXPHOS in L6 myoblast mitochondria in vitro. Furthermore, first in vivo 155 

experiments demonstrated that BAM15 protects mice from acute renal ischemic-reperfusion injury, 156 

whereas effects on metabolic diseases have not be been addressed so far.  157 
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However, the above-mentioned uncoupling agents are not selective for particular mitochondria and 158 

the challenge still is to find a way to deliver those molecules to mitochondria within individual 159 

tissues or cells. Two additional novel mitochondrial uncouplers, named C1 and CZ5, were recently 160 

uncovered performing a high-throughput screening assay for modulators of mitochondrial 161 

membrane potential [38, 39]. The small-molecule compound C1 increased fat oxidation and activity 162 

of key cellular energy sensor AMP-activated protein kinase (AMPK) [40] acutely 2 hours after 163 

intraperitoneal injection specifically in liver of lean mice as well as reduced hyperglycemia and 164 

plasma fatty acids in diabetic db/db mice after long-term oral administration for 4 weeks [38]. 165 

Remarkably, the compound CZ5 was described to act as a cell type-specific uncoupler that only 166 

targets skeletal muscle and adipose tissue, but not liver [39]. Chronic orally administrated CZ5 for 167 

25 days ameliorated diet-induced obesity via both increased energy expenditure and suppressed 168 

food intake. Besides, CZ5 treatment improved glucose and lipid metabolism in vivo, accompanied 169 

by an activated AMPK phosphorylation in targeted white fat depot and skeletal muscle. 170 

Finally, a recent study by Tao et al. could show that treatment with niclosamide ethanolamine salt 171 

(NEN) uncouples mammalian mitochondria at upper nanomolar concentrations and increases 172 

energy expenditure and lipid metabolism in mice [41]. Interestingly, NEN represents a salt form of 173 

niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide), an anthelmintic drug approved by the 174 

FDA for treating intestinal infections of tapeworms [42]. Remarkably, oral NEN efficaciously 175 

prevented and treated hepatic steatosis and insulin resistance in high-fat-fed mice and improved 176 

glycemic control accompanied by delayed disease progression in db/db mice. Moreover, NEN 177 

activated AMPK in a dose- and time-dependent manner in liver, but not in muscle and adipose 178 

tissue of treated mice. Thus, the authors concluded that liver is a direct target of NEN treatment and 179 

AMPK-activation as key mechanism on promoting lipid oxidation. 180 

2.3 Liver-targeted chemical uncouplers 181 

A study has recently demonstrated that a functionally liver-targeted derivative of DNP, DNP-182 

methyl ether (DNPME), reversed a high-fat diet-induced hypertriglyceridemia, hepatic steatosis, 183 

and whole-body insulin resistance in rats without inducing hyperthermia or associated hepatic or 184 

systemic toxicities [43]. Here, the authors hypothesized that derivatives of DNP, such as DNPME, 185 

would be preferentially metabolized by the hepatic cytochrome P450 system to yield the active 186 

protonophore DNP in hepatocytes as primary target cells. Interestingly, they reported that the 50% 187 

lethal dose (LD50) of DNPME is almost 10-fold higher than that of classic DNP. In a follow-up 188 

study, the same group developed a controlled-release oral formulation of DNP, called CRMP 189 

(controlled-release mitochondrial protonophore) in order to further improve the safety and efficacy 190 

of DNP, consequently increasing the therapeutic window of this agent [44]. Using a polymer 191 

hydroxypropylcellulose/ethylcellulose coating system they generated a novel DNP version with 192 

lower peak plasma levels and sustained-release pharmacokinetics. In rat models of diet-induced or 193 

genetic obesity, daily CRMP administration reversed hepatic steatosis, insulin resistance, T2D, 194 

steatohepatitis, and liver fibrosis without detectable toxicity [44].  195 

Altogether, tissue-targeted chemical mitochondrial uncoupling agents provide an elegant strategy to 196 

combat obesity and associated disorders, although the issue of dose-dependence and self-limitation 197 

remains an important open question (Fig. 3A). Thus, regulation and activation of endogenous 198 

proteins with uncoupling action, such as UCP1 or the adenine nucleotide translocase (ANT) [45], 199 

may provide an alternative strategy for dose-independent and self-limiting tissue-restricted 200 

mitochondrial uncoupling. 201 
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3 Targeted expression of UCP1 to white fat depots 202 

White adipose tissue (WAT) plays an important role as an endocrine regulator and is involved in 203 

whole body glucose as well as energy homeostasis. However, its major role is the control of 204 

systemic fatty acids levels and the storage of metabolic energy, thus the opposite of energy burning 205 

thermogenic brown adipose tissue. 206 

3.1 Metabolic consequences of white adipose tissue-targeted mitochondrial uncoupling 207 

In 1995, Kopecky and coworkers established a transgenic mouse model (AP2-UCP1 mice) 208 

expressing UCP1 in WAT [46-48]. In these mice, the fat-specific AP2 promoter was used to drive 209 

expression of UCP1, resulting in enhanced protein expression of UCP1 in both WAT and BAT. 210 

Notably, whereas the total protein amount of transgenic UCP1 in WAT of adult mice did not exceed 211 

2% of native UCP1 found in bona fide BAT depots, this was still sufficient to uncouple OXPHOS 212 

in WAT adipocytes [49]. Moreover, AP2-UCP1 mice showed resistance to diet induced obesity, 213 

which is consistent with the hypothesis, that thermogenesis from elevated expression of UCP1 214 

reduced adiposity (Fig. 3B). In contrast, the transgene particular led to BAT atrophy which 215 

impaired thermogenic mechanisms for protecting body temperature [50]. In fact, it was shown that 216 

ectopic WAT-targeted UCP1 overexpression particularly activated AMPK and mitochondrial 217 

biogenesis in unilocular white adipocytes [51, 52]. Transgenic UCP1 also reduced lipogenesis and 218 

modulated lipolysis and hormonal control of lipid metabolism [53, 54] but resulted in only a 219 

marginal stimulation of RMR [50]. Moreover, UCP1 expression in WAT of AP2-UCP1 mice 220 

decreases with age [52], suggesting a posttranscriptional control of the ectopic UCP1 expression or 221 

an elimination of UCP1-containing adipocytes with time. Finally, Yamada et al. could demonstrate 222 

that ectopic expression of very low levels of UCP1 in epididymal WAT through injection of a 223 

UCP1 adenovirus vector reversed both insulin and leptin resistance, improved glucose tolerance and 224 

decreased food intake in both diet-induced and genetically obese mouse models [55].  225 

3.2 Induction of endogenous UCP1 in white fat depots 226 

Nowadays research focus intensively on the induction of endogenous UCP1 in WAT depots, also 227 

called the “browning” of white fat, which is characterized by the infiltration or transdifferentiation 228 

of so called beige/brite fat cells within white adipose tissue depots [56]. It was already reported 30 229 

years ago that cold stimulus induces multilocular, UCP1-positive fat cells within certain WAT 230 

depots [57, 58]. Today we know that endogenous UCP1 can be induced in WAT not only by cold 231 

exposure, but also in response to different pharmacological and nutritional stimuli [59] as well as by 232 

secreted endogenous factors [60, 61]. In line with the results of ectopic expression of UCP1 in 233 

WAT, the induction of WAT browning has been associated with improved metabolic health [62]. 234 

However, while it was demonstrated that UCP1 in brite/beige adipose tissue mitochondria is indeed 235 

thermogenically functional [63], we could recently demonstrate a clear dissociation of WAT 236 

browning from obesity resistance and improved glycemic control and insulin sensitivity [61]. Thus, 237 

the precise physiological relevance of WAT remodeling, including UCP1 expression, still remains 238 

hotly debated [64]. 239 

4 Targeted expression of UCP1 to skeletal muscle 240 

Recent studies implicated that BAT and muscle cells, but not WAT cells, differentiate from a 241 

common precursor [65], suggesting that BAT cells are more similar to muscle cells than to white 242 

adipocytes. Moreover, skeletal muscle represents a plastic and highly metabolic active organ that 243 

constitutes up to 40% of total body mass in mammals and is the major contributor to RMR and total 244 

energy expenditure [66-68]. Therefore, skeletal muscle represents a predominant site of glucose 245 
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disposal and plays a crucial role in glycemic control [69] as well as uptake and utilization of plasma 246 

lipoprotein-derived and free fatty acid [70, 71]. In contrast, chronic metabolic disorders such as 247 

obesity and T2D are closely associated to impaired muscle mitochondrial function [72, 73] and an 248 

involvement of skeletal muscle in mitochondrial dysfunction-associated diseases is frequent [74]. 249 

Thus, proper muscle mitochondrial performance is tightly connected to metabolic health and the 250 

question came up whether skeletal muscle represents another suitable tissue for targeted 251 

mitochondrial uncoupling?  252 

4.1 Metabolic consequences of muscle-targeted mitochondrial uncoupling 253 

Almost 16 years ago, the first transgenic mouse model with ectopic muscle-targeted UCP1 254 

overexpression (mUCP1-Tg) driven by the rat myosin light chain 2 (MYL2) promoter was 255 

described by Li et al. demonstrating that low muscle UCP1 expression doubled muscle oxygen 256 

consumption without affecting thermoregulation [75]. Moreover, transgenic mice with muscle-257 

targeted UCP1 overexpression under control of the mouse muscle creatine kinase (MCK) [76] or 258 

the human skeletal actin (HSA) [77] promoter were generated. Again, while mUCP1-Tg mice 259 

indeed show an increased mitochondrial uncoupling and a reduced muscle mitochondrial OXPHOS 260 

capacity [78], body temperature was normal or rather decreased with declining ambient temperature 261 

[77]. mUCP1-Tg mice display increased energy expenditure [77] and a whole range of metabolic 262 

improvements such as an increased metabolic flexibility [79], muscle glucose uptake and fatty acid 263 

oxidation [80, 81], as well as an increased insulin sensitivity accompanied by decreased insulin 264 

levels, especially under high-fat diet-feeding. Interestingly, this increased insulin sensitivity is 265 

independent of diet and body fat accumulation suggesting a dissociation of obesity and insulin 266 

resistance in mUCP1-Tg mice [79, 82, 83]. Surprisingly, not only muscle is affected in mUCP1-TG 267 

mice. Furthermore they show an increased glucose uptake [84], an augmented lipid metabolism [79] 268 

as well as an induction of beige/brite adipocytes in WAT depots [85], suggesting an endocrine role 269 

of skeletal muscle uncoupling. Overall, improved glucose tolerance accompanied by an increased 270 

insulin sensitivity and muscle glucose uptake seems to be the most robust metabolic phenotype of 271 

mUCP1-Tg models (Fig 3C). 272 

4.2 Muscle-targeted mitochondrial uncoupling promotes adaptive metabolic remodeling   273 

Glycolytic and oxidative metabolic processes are rapidly activated to maintain cellular energy 274 

homeostasis in skeletal muscle. In line with the above-mentioned liver- and WAT-targeted 275 

mitochondrial uncoupling approach it was shown that muscle-restricted mitochondrial uncoupling 276 

also led to an increased AMPK activity [84, 86]. Notably, AMPKα2 activity, but not AMPKα1 was 277 

highly induced in muscle of mUCP1-Tg mice, and loss of active AMPKα2 promoted a severe 278 

reduction of overall muscle integrity together with a highly diminished physical activity tolerance 279 

and impaired mitochondrial biogenesis [80]. This revives the significance of AMPK for regulating 280 

cellular plasticity in response to chronic decreased mitochondrial energy efficiency. Interestingly, 281 

enhancing AMPK activity in brown adipocytes also increased BAT activity [87]. Thus, targeting 282 

AMPK as a key mediator of a cell-autonomous adaptive response holds therapeutic potential for the 283 

treatment of obesity and associated metabolic disorders.  284 

Furthermore, muscle-targeted mitochondrial uncoupling promotes cell-non-autonomous effects and 285 

endocrine crosstalk via secretion of myokines. Treatment of mouse C2C12 muscle cells in vitro 286 

with the chemical uncoupler FCCP resulted in a strong induction of integrated stress response (ISR) 287 

as well as fibroblast growth factor 21 (FGF21) as myokine [85, 88]. Notably, muscle mitochondrial 288 

uncoupling induces FGF21, which was previously described as enhancer of WAT browning [89], in 289 

skeletal muscle of mUCP1-Tg mice in vivo [85]. Indeed, using mUCP1-Tg/FGF21-knockout mice, 290 
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we recently demonstrated that cell-non-autonomous WAT browning and metabolic remodeling is 291 

fully FGF21 dependent [61]. Remarkably, the cell-autonomous muscle metabolic adaptation and 292 

obesity resistance was independent of FGF21 action as a myokine. With regard to metabolic health 293 

and aging it was shown that transgenic overexpression of FGF21 in liver markedly extends lifespan 294 

in mice probably in an auto-/paracrine manner by blunting the growth hormone/insulin-like growth 295 

factor-1 signaling pathway [90]. Furthermore, a recent study could demonstrate that serum FGF21 296 

levels in humans are related to BAT activity [91]. However, to date, the ultimate contribution of 297 

FGF21 to a cell-autonomous and cell-non-autonomous response on effects of targeted 298 

mitochondrial uncoupling and survival remains to be elucidated.  299 

4.3 Muscle-targeted mitochondrial uncoupling delay age-related disease 300 

Remarkably, two independent studies found that skeletal muscle-targeted respiratory uncoupling 301 

promotes survival [82, 86] and diminishes age-related diseases, such as atherosclerosis, vascular 302 

disease and blood pressure as well as diabetes [86, 92]. Interestingly, markers of lipid-oxidative 303 

stress levels were highly induced in muscle of mUCP1-Tg mice independent of the diet-feeding 304 

regime [93]. In addition, increased activity of endogenous antioxidant defense enzymes such as 305 

catalase or superoxide dismutase (total SOD) provides evidence for an elevated rather than reduced 306 

formation of reactive oxidant species (ROS) in muscle of mUCP1-Tg mice. Mitochondria are a 307 

major site of cellular ROS production [94] which by itself represents an important mediator of 308 

mitochondrial stress signaling to promote cellular adaptation [95]. In line with that, glutathione 309 

metabolism was induced followed muscle-targeted ectopic mitochondrial uncoupling [96, 97] 310 

which fits with the induced serine and glycine biosynthetic pathway [96], as both amino acids are 311 

important precursors for glutathione biosynthesis [98].  312 

Initially, a “rate of living” hypothesis has been proposed by Pearl in the late 1920s, predicting that 313 

increased energy metabolism would increase the ROS production and thus reduce life span [99]. 314 

While 40 years later Peter Mitchell´s chemi-osmotic hypothesis provided the basis for 315 

understanding the actual process of OXPHOS and energy/ATP synthesis [100], it took another 40 316 

years to reveal that an inefficiency of the respiratory chain through mitochondrial uncoupling might 317 

increase longevity by reducing ROS generation, despite increased energy expenditure [101]. This so 318 

called “uncoupling to survive” hypothesis was supported by the study of Speakman et al., showing 319 

that mice with highest metabolic intensity and mitochondrial uncoupling live longer than littermates 320 

with lower metabolic rate [102]. However, whether mild mitochondrial uncoupling under 321 

physiological conditions indeed plays a role as alleviator of oxidative damage remains unclear 322 

[103]. Although mitochondrial function and increased oxidative stress are usually associated with 323 

aging [94], a ROS-induced cellular stress adaption through an increased endogenous antioxidant 324 

defense system is in line with the concept of “mitohormesis”, suggesting a link between mild 325 

oxidative stress and enhanced cellular function [104]. To date, mitohormesis has been best studied 326 

in Caenorhabditis elegans (C. elegans) as a model for neurologic and metabolic diseases [105, 327 

106]. In addition, a Drosophila model of mild muscle mitochondrial distress showed preserved 328 

mitochondrial and muscle function during aging and a prolonged lifespan [107]. Thus, the 329 

significance of the “uncoupling to survive” hypothesis related to longevity by uncoupling-mediated 330 

reduced ROS formation [101] should be re-evaluated taking into account the concept of 331 

“mitohormesis” based on the in vivo mitochondrial adaptation in response to muscle-targeted 332 

ectopic mitochondrial uncoupling.  333 

Altogether, despite using different promoters, all mUCP1-Tg mice display an overall improved 334 

metabolic phenotype of increased insulin sensitivity, reduced obesity and increased survival (Fig. 335 
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3C). However, the molecular mechanisms behind the phenotype are quite complex and not fully 336 

understood so far. 337 

5 Conclusion and therapeutic perspectives 338 

While discussing potential therapeutic targets for obesity, T2D and fatty liver disease strategies of 339 

life style change such as dietary restriction and regular exercise programs should always be kept in 340 

mind for improvement of metabolic health status. Nevertheless, if proofed to be safe and effective, 341 

tissue-targeted chemical mitochondrial uncoupling agents still provide an additional therapeutic 342 

strategy to combat metabolic syndrome and associated disorders. 343 

Studies using transgenic mice with targeted UCP1 overexpression uncovered key molecular 344 

mechanisms how mitochondrial uncoupling affects energy metabolism and metabolic health in vivo. 345 

Thereby, it was proven that AMPK plays a crucial role as a housekeeper for mitochondrial function 346 

to maintain energy homeostasis and cellular integrity. Together with mitochondrial uncoupling-347 

induced endocrine crosstalk via secretion of cytokines, such as FGF21, this potentially could open 348 

up new avenues of investigations that may help to understand how a specific target tissue is 349 

sufficient to reprogram and tune the metabolic health of the whole organism. It is worth mentioning 350 

that the first human mitochondrial disease discovered around 50 years ago, Luft´s disease, leads to a 351 

muscle atrophy due to increased uncoupled mitochondrial oxidative phosphorylation and energy 352 

depletion within skeletal muscle which is also affecting whole-body energy metabolism [108]. 353 

Thereby, Luft and colleagues described the first example how a single dysfunctional organelle 354 

within one specific tissue can affect the whole organism. However, our knowledge regarding the 355 

integrated signaling network of cell plasticity remains rudimentary and further studies are required 356 

to enlarge our understanding.  357 

Overall, there is a still increasing interest in mitochondrial uncoupling during the past 20 years 358 

[109], and we are just half-way on our journay to discover a safe “polypill” that treats metabolic 359 

disorders such as obesity and T2D. Whether the light at the end of the tunnel will be a targeted 360 

chemical mitochondrial uncoupler or a train remains to be unknown. 361 
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 678 
 679 

Fig. 1. Mitochondrial oxidative phosphorylation and uncoupling. Cellular energetics is 680 

efficiently controlled by rate of the electron transfer system (ETS) and oxidative phosphorylation, 681 

referred to as the mitochondrial respiratory chain (RC). Substrate muscle metabolism of glucose 682 

(glycolysis), fatty acids (β-Oxidation) and amino acids is closely coupled with ATP formation 683 

through mitochondrial RC. The primary reducing equivalents of the ETS are nicotinamide adenine 684 

dinucleotide (NADH), and flavin adenine dinucleotide (FADH2) which are mainly generated by the 685 

tricarboxylic acid cycle or during β-Oxidation of fatty acids/acyl-CoA. Electrons received from 686 

NADH or FADH2 are passed through the series of OXPHOS complexes in the RC, ultimately 687 

reducing oxygen to water. This electron flow particular through complex I, III and IV results in 688 

pumping of protons from the matrix into the intermembrane space (IMS), generating a membrane 689 

potential (Δψm) and proton motive force that in turn is used to generate ATP from ADP and 690 

inorganic phosphate (Pi) via the ATP synthase (F1/F0). Predominantly expressed in brown adipose 691 

tissue, uncoupling protein 1 (UCP1) dissipates the proton gradient across the inner mitochondrial 692 

membrane (IMM), thus uncoupling ETS from ATP synthesis and accelerating mitochondrial RC 693 

activity in order to maintain energy homeostasis [11]. During mitochondrial uncoupling the energy 694 

amount stored in the proton gradient is released as heat. See text for details on chemical uncouplers. 695 

This figure was created using Servier Medical Art (http://www.servier.com).  696 
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 697 
 698 

Fig. 2. Timeline of chemical uncoupling agents and targeted UCP1 overexpression. This 699 

illustrates the increasing interest in mitochondrial uncoupling for the treatment of obesity and 700 

associated metabolic disorders during the past 20 years. Of note, in parallel the re-evaluation of the 701 

role of brown adipose tissue (BAT) for the treatment of obesity took place, supported by 702 

observations using positron emission tomography–computed tomography (PET/CT) scanning that 703 

revealed the presence of BAT in adult humans [15-18]. Moreover, in the last decade research 704 

focused intensively on the induction of endogenous UCP1 in white adipose tissue depots, also 705 

called the “browning” of white fat, and the effects on metabolic health [56, 62]. Abbreviations: 706 

BAM15, N
5
,N

6
-bis(2-Fluorophenyl)-oxadiazolo-pyrazine-5,6-diamine [37]; CRMP, controlled-707 

released mitochondrial protonophore [44]; C4R1, Rhodamine 19 butyl ester [36]; C1, nomenclature 708 

not defined [38], CZ5, nomenclature not defined [39]; C12TPP, dodecyltriphenylphosphonium [34]; 709 

FDA, US Food and Drug Administration; DNP, 2,4-dinitrophenol; DNPME, DNP-methylethyl 710 

[43]; NEN, niclosamide ethanolamine salt [41]; SkQ1, 10-(6´-plastoquinonyl) decyltriphenyl-711 

phosphonium) [30]; UCP1, uncoupling protein 1. See text for further details.   712 
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 713 
Fig. 3. Overview on metabolic effects of chemical mitochondrial uncouplers and targeted 714 

UCP1 overexpression. (A) Tissue-targeted chemical mitochondrial uncoupling agents provide an 715 

additional elegant strategy to combat metabolic syndrome and associated disorders. However, the 716 

issues of target tissue, dose-dependence and self-limitation remain important open questions. 717 

(B)+(C) Studies using transgenic mice with targeted UCP1 overexpression uncovered key 718 

molecular mechanisms how mitochondrial uncoupling affects energy metabolism and metabolic 719 

health in vivo. Abbreviations: AMPK, AMP-activated protein kinase; AP2, adipocyte protein 2; 720 

FAO, fatty acid oxidation; HSA, human skeletal actin; MCK, muscle creatine kinase; MYL2, 721 

myosin light chain 2,  TCA, tricarboxylic acid cycle; UCP1, uncoupling protein 1. See text for 722 

further details. This figure was created using Servier Medical Art (http://www.servier.com). 723 


