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Motile cilia are found on unicellular organisms such as the
green alga Chlamydomonas reinhardtii, on sperm cells, and on
cells that line the trachea and fallopian tubes in mammals. The
motility of cilia relies on a number of large protein complexes
including the force-generating outer dynein arms (ODAs). The
transport of ODAs into cilia has been previously shown to
require the transport adaptor ODA16, as well as the intraflagel-
lar transport (IFT) protein IFT46, but the molecular mechanism
by which ODAs are recognized and transported into motile cilia
is still unclear. Here, we determined the high-resolution crystal
structure of C. reinhardtii ODA16 (CrODA16) and mapped the
binding to IFT46 and ODAs. The CrODA16 structure revealed a
small 80-residue N-terminal domain and a C-terminal 8-bladed
�-propeller domain that are both required for the association
with the N-terminal 147 residues of IFT46. The dissociation
constant of the IFT46-ODA16 complex was 200 nM, demon-
strating that CrODA16 associates with the IFT complex with an
affinity comparable with that of the individual IFT subunits.
Furthermore, we show, using ODAs extracted from the axo-
nemes of C. reinhardtii, that the C-terminal �-propeller but not
the N-terminal domain of CrODA16 is required for the interac-
tion with ODAs. These data allowed us to present an architec-
tural model for ODA16-mediated IFT of ODAs.

Cilia are organelles that protrude from the surface of eukary-
otic cells to serve a number of functions in cell motility, sensory
reception, and developmental signaling. Motile cilia are the cel-
lular machines that propel unicellular organisms through aque-
ous media (1). They are also vital for human health because they
drive the mucociliary flow to remove inhaled pathogens from
the airways, move egg cells through the fallopian tubes to reach
the uterus, and drive the left-right asymmetry during develop-
ment, which is required for the correct positioning of inner
organs (2). It is thus not surprising that mutations causing

absence or defects in motile cilia result in diseases and disorders
categorized as primary cilia dyskinesia (3, 4).

Primary and motile cilia adopt the same slender hair-like
appearance and share a microtubule-based axoneme sur-
rounded by a ciliary membrane (5). They do, however, differ in
the presence of a number of motility complexes found only in
the axoneme of motile cilia. These include outer dynein arms
(ODAs),3 which are large ATPase complexes that, together
with several inner dynein arms, power the bending of cilia
required for cilium-mediated motility (6). ODAs are MDa-
sized multisubunit complexes that preassemble in the cyto-
plasm before trafficking into the cilium (7). Four ODAs are
found within the 96-nm repeat of the axoneme, where they
attach stably to the A tubule of the microtubule doublets and
transiently interact with the B-tubule to cause bending of the
axoneme resulting in motility (8 –12).

Several high-resolution structures have recently shed light
onto the molecular mechanisms of dynein motors (13–15). Less
is known about the molecular basis of how ODAs are recog-
nized and transported into the axonemes of motile cilia. This
trafficking process is, however, known to require the adaptor
protein ODA16, which was discovered through the character-
ization of a C. reinhardtii oda16 mutant displaying reduced
beat frequency and altered swimming behavior because of a
partial loss of axonemal ODAs (16). ODA16 is a predicted WD
protein conserved only in organisms with motile cilia (WDR69
in human, 62% sequence identity to the C. reinhardtii protein
(16)) and is also required for proper motile cilium function in
zebrafish (17).

A more detailed picture of the molecular function of ODA16
emerged when it was discovered that ODA16 acts in ODA
transport through an interaction with the intraflagellar trans-
port (IFT) machinery (18, 19). IFT is an evolutionarily con-
served process (20, 21) that moves proteinacious particles bidi-
rectionally inside cilia to deliver axonemal building blocks such
as tubulin to the tip of cilia (22–26). IFT relies on a 22-subunit
IFT complex that organizes into a 16-subunit IFT-B and a
6-subunit IFT-A complex (27–29). The 16-subunit IFT-B com-
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plex can be further subdivided into a 10-subunit IFT-B1 sub-
complex and a 6-subunit IFT-B2 subcomplex (30 –32), both of
which can be reconstituted and purified separately (31, 33).
IFT46 is an IFT-B1 subunit that is necessary for IFT complex
assembly through an interaction of its C-terminal domain with
IFT52, another IFT-B1 subcomplex component (33–35). IFT46
was shown to interact directly with ODA16 (18) and to be
required for the transport of ODAs into cilia (19). Whereas the
ift46 null mutant is unable to assemble flagella, likely because of
a failure in IFT complex formation, a suppressor strain that
alleviates this “no cilia” phenotype of ift46 was isolated and
shown to have full-length cilia that specifically lack ODAs. This
ift46 suppressor mutant likely expresses the C-terminal
domain of IFT46 required for IFT complex formation but
lacks the N-terminal region of IFT46, suggesting that the
ODA16 interacting domain is found within this region of
IFT46 (19).

Here we purified recombinantly produced ODA16 and
ODA16-IFT46 complexes of the biflagellate green alga C. rein-
hardtii and dissected the molecular basis of the IFT46-ODA16-
ODA interaction underlying the ciliary trafficking of ODAs.
We determined the high-resolution crystal structure of ODA16
and mapped the interaction with ODAs and IFT46 using bio-
chemical and biophysical methodology. The results show that
ODAs associate with the C-terminal ODA16 �-propeller,
whereas IFT46-interaction requires the small 80-residue N-ter-
minal domain of ODA16.

Results

ODA16 binds directly to the N-terminal 147 residues of IFT46

Previously published yeast two-hybrid and pulldown analysis
revealed an interaction between ODA16 and IFT46 (18). Fur-
thermore, analysis of an IFT46 suppressor strain suggested that
the N-terminal region of IFT46 is responsible for the IFT of
ODAs (19). To analyze the ODA16-IFT46 association using
direct protein-protein interaction assays, we purified recombi-
nant ODA16 (Fig. 1, a and b) and GST-IFT46 (all proteins used
in this study are of the green alga C. reinhardtii) and carried out
pulldown experiments, which revealed a strong ODA16-IFT46
interaction (Fig. 1c). The ODA16-IFT46 complex appears stoi-
chiometric at 200 mM NaCl, but the complex gradually falls
apart when the salt concentration is increased to 1 M (Fig. 1c),
suggesting at least a partly hydrophilic mode of association. Size
exclusion chromatography (SEC) of IFT46, ODA16, or an
equimolar mixture of the two proteins in 200 mM NaCl dem-
onstrated the formation of a stable complex (Fig. 1d). Whereas
ODA16 elutes from SEC close to the position of a globular
protein, IFT46 elutes at a significantly smaller volume, suggest-
ing an elongated shape. This is consistent with the predicted
modular multidomain organization, as well as with the pres-
ence of a long flexible region (Figs. 1d and 2a and supplemental
Fig. S1). To quantify the affinity of the ODA16-IFT46 interac-
tion, we titrated purified untagged ODA16 with untagged
IFT46 in isothermal titration calorimetry (ITC) experiments.
The result shown in Fig. 1e demonstrates that ODA16-IFT46
forms a stoichiometric complex (n � 0.96) with a dissociation
constant (Kd) of 217 nM in agreement with the stable complex

formation observed in SEC. The affinity of ODA16 for IFT46 is
thus similar to that observed between IFT subunits, suggesting
that ODA16 could be an integral subunit of the IFT-B complex
during cilium formation (Refs. 31, 33, and 34 and data not
shown).

To map the domain(s) of IFT46 required for association with
ODA16, we carried out binding studies with truncated versions
of IFT46. The C-terminal domain of IFT46 associates with
IFT52, is required for the formation of the IFT-B1 complex
(33–35), and rescues the more severe ciliogenesis phenotype
observed in the ift46 C. reinhardtii mutant but not the lack of
axonemal ODAs (19). In agreement with these data, IFT46147-C
(IFT46C) did not co-elute with ODA16 in SEC (Fig. 2b). Con-
sistently, IFT46C did not show any detectable interaction with
ODA16 in ITC experiments, suggesting that the association, if
any, is at least 2 orders of magnitude weaker than for full-length
(fl) IFT46 (Fig. 2c). To probe the interaction between the N-ter-
minal IFT461–147 region (IFT46N) and ODA16, the two pro-
teins were incubated and applied to SEC, which demonstrated a
stable ODA16-IFT46N complex (Fig. 2d). To assess the inter-
action quantitatively, ODA16 was titrated with IFT46N in ITC,
revealing a stoichiometric complex (n � 1.08) with a Kd of 247
nM (Fig. 2e). IFT46 (fl) and IFT46N thus interact with ODA16
with similar affinities (difference in Kd is smaller than 1 stan-
dard deviation; see Figs. 1e and 2e). This indicates that the
IFT46N construct contains the entire ODA16-binding region.
We were unable to carry out a more detailed mapping of the
IFT46N construct, because shorter IFT46 fragments tested
were either insoluble or not expressed (data not shown). We
conclude that residues 1–147 of IFT46 interact with nanomolar
affinity with the ODA cargo-adaptor ODA16.

Crystal structure of ODA16

All protein constructs and complexes shown in Figs. 1 and 2
were screened for crystallization, which resulted in crystal hits
for ODA16 but not IFT46 (fl or N) or ODA16-IFT46 com-
plexes. X-ray diffraction data at 2.4 Å resolution together with
the molecular replacement model of an eight-bladed �-propel-
ler structure from the ribosomal assembly factor 4 (RSA4; PDB
code 4wjs) were used to determine the three-dimensional
structure of ODA16 (Fig. 3 and Table 1). Full-length ODA16
was crystallized, and the resulting map had visible electron den-
sity for both the smaller �80 residue N-terminal domain
(ODA16N) and the �-propeller but not for the most �25 C-ter-
minal residues that are presumably disordered (Figs. 1a and 3a
and supplemental Fig. S2). The N-terminal ODA16 domain
folds into a three-stranded anti-parallel �-sheet followed by
two �-helices that connect to the C-terminal �-propeller
domain via a seven-residue linker region (Fig. 3a). This linker
region together with residues from two loop regions (amino
acids 13–15 and 33–36) of ODA16N interact with residues
from loop regions of the N-terminal face of the �-propeller to
position the two domains relative to each other via a rather
small interface (Fig. 3b). ODA16N shows structural similarity
to domains found in otherwise functionally unrelated proteins
such as the Ser/Thr kinase WNK1 (PDB code 2lru) and the
ribosomal proteins UL2 and UL12 (PDB codes 4w20 and 1vx1)
(36, 37). The protein structure in the PDB most similar to the
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ODA16 �-propeller is the ribosome biogenesis factor RSA4
(38), which interestingly also has a small but structurally diver-
gent domain positioned on the N-terminal face of the �-pro-
peller (Fig. 3c).

The relative positions of the two ODA16 domains create a
pronounced interdomain cleft with dimensions of �20 � 20 �
10 Å3 (Fig. 4, a and b). This cleft is relatively well conserved,
lined by a mixture of hydrophobic and hydrophilic residues and
constitutes a potential protein-protein interaction site. A sec-
ond highly conserved surface patch is found on the C-terminal
face of the �-propeller (Fig. 4c). This conserved patch is mostly
acidic in nature and overlaps with the protein interaction inter-
face of structurally similar �-propellers found in proteins such
as the Fbw7 subunit of a cyclin E ubiquitin ligase complex (Fig.
4, c and d) (39). Both the interdomain cleft and the C-terminal
�-propeller surface of ODA16 constitute likely interaction
interfaces for IFT46 and ODAs.

Both N- and C-terminal domains of ODA16 are required for
ODA16-IFT46 complex formation

To assess whether IFT46 binds to the conserved acidic patch
located on the C-terminal side of the ODA16 �-propeller, GST-
IFT46 was used to pull down fl ODA16 or any of three differ-
ent ODA16 constructs lacking either the N-terminal domain
(residues 80 – 445, ODA16�N), the C-terminal unstructured
tail (residues 1– 423, ODA16�C), or both (residues 80 – 423,
ODA16�N�C) (see schematics in Fig. 5a). The results of this
experiment revealed that the N-terminal domain of ODA16 but
not the C-terminal unstructured tail is required for interaction
with IFT46 (Fig. 5b). Given that ODA16N is required for the
interaction with IFT46, it appears unlikely that the C-terminal
conserved patch of the ODA16 �-propeller, located more than
20 Å away from ODA16N, constitutes the interaction interface
for IFT46. To test whether ODA16N is sufficient for the inter-
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action with IFT46, GST-tagged IFT46 was used in pulldown
assays with ODA16N, which showed no detectable interaction
(Fig. 5c). Both ODA16N and ODA16C domains are thus
required for the association with IFT46. To test whether
ODA16N and ODA16�� have to be covalently attached to
mediate IFT46 interaction, GST-IFT46 was incubated with a
mixture of purified ODA16N and ODA16�� in trans, which
did also not result in any detectable interaction (Fig. 5c). Given
that only few interdomain interactions dictate the relative posi-
tion of ODA16N and the ODA16 �-propeller (Fig. 3b), the
requirement of covalently attached ODA16N and ODA16��
for the association with IFT46 suggests that the interdomain
cleft may constitute the IFT46 binding site.

To gain structural insights into the ODA16-IFT46 complex,
SEC combined with small-angle X-ray scattering (SEC-SAXS)
was used to obtain solution scattering data for ODA16 alone as
well as in complex with IFT46N (Table 2 and Fig. 6, a and b).
The pair distance distribution functions in Fig. 6c show that the
maximum distance between scattering points (Dmax) increases
from �8 to �13 nm when ODA16 associates with IFT46N,

suggesting a complex with an elongated shape. Envelopes cal-
culated from the SAXS data revealed that the ODA16-IFT46N
complex has significant extra density extending along the axis
of the N- and C-terminal ODA16 domains (Fig. 6, d and e). This
result indicates that IFT46N binds close to the N-terminal
ODA16 domain consistent with the biochemical data shown in
Fig. 5. Based on the biochemical and structural data, we con-
clude that the N-terminal region of IFT46 associates with the
N-terminal region of the ODA16 molecule in an interaction
where both the N- and C-terminal domains of ODA16 are
required for ODA16-IFT46 complex formation.

ODAs bind to the �-propeller of ODA16

To investigate how ODAs interact with ODA16, we first
wanted to confirm that we can detect such an interaction in
pulldown assays. Flagella were isolated from C. reinhardtii cul-
tures and subsequently fractionated to obtain an axonemal
extract enriched in ODAs. When a GST-IFT46-ODA16 com-
plex was used as bait, several outer dynein-arm components
were efficiently enriched, as confirmed by mass-spectrometric
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analysis (nano-LC-MS/MS), as well as immunoblotting with
anti-IC2 antibodies (supplemental Fig. S3). Furthermore, sub-
units of the inner dynein arms, IFT particles, IFT motors, radial
spokes, docking complex, tubulins, and flagellar-associated
proteins were identified in the MS experiments (supplemental
Fig. S3), indicating that the GST-tagged IFT46 construct
assembles into larger IFT complexes together with factors
present in the extract. To investigate the interaction between
ODA16 and ODAs more directly, as well as to test for the con-
tributions of ODA16 domains to this interaction, we used var-
ious His-tagged versions of ODA16 for pulldowns from axon-
emal flagellar extract, followed by immunoblotting for the
IC2 subunit of ODAs. Although both the full-length and the
isolated �-propeller constructs co-precipitated significant
amounts of IC2, the N-terminal domain alone did not (Fig. 7a).
This result shows that the ODA binding site resides in the
ODA16 subunit and is not formed by association of ODA16
with IFT46, a possibility we could not rule out in the pulldown
with GST-IFT46-ODA16 as bait (supplemental Fig. S3). Fur-

thermore, whereas both the N terminus and the �-propeller of
ODA16 are required for the interaction with IFT46 in the IFT
complex, only the �-propeller is necessary for binding to an
as-of-yet-unidentified component of ODAs. Given that this
domain contains highly conserved surface residues, which in
structurally related proteins are responsible for direct protein-
protein interactions (Fig. 4, c and d), it is tempting to speculate
that ODA16-ODA binding occurs via a similar mechanism.
Future experiments should be aimed at identifying the direct
ODA16 interaction partner and determining the structural
basis for their association.

Discussion

Here we provide structural insights into the IFT of outer
dynein arms during flagellar assembly by dissecting interac-
tions within the IFT46-ODA16-ODA protein complex. IFT46
is a core member of the IFT-B1 complex and is required for IFT
complex formation (19, 33, 40) through the association of its
C-terminal domain with IFT52 (Fig. 7b). The region containing
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the N-terminal 165 residues of IFT46 is mostly predicted to be
disordered (41) (Figs. 2a and supplemental Fig. S1), is not
required for IFT complex formation (19, 33), and likely pro-
trudes from the IFT complex. We now show that the 147 most
N-terminal residues of IFT46 are sufficient for the high affinity
interaction with ODA16 (Kd of �200 nM). The stability of
the ODA16-IFT46 complex is similar to what we previously
observed for purified IFT subcomplex (31, 33, 34),4 suggesting
that ODA16 could be a stoichiometric subunit of the IFT com-
plex during flagellar assembly. Interestingly, both the small
N-terminal domain and the C-terminal �-propeller, but not the
very C-terminal 22 residues of ODA16 (only found in the
C. reinhardtii ODA16 sequence), are required for the associa-
tion with IFT46. The crystal structure of ODA16, together with
SAXS reconstructions of the ODA16-IFT46N complex and
biochemical data, suggests that the N-terminal region of IFT46
may associate with the pronounced cleft observed between the
N- and C-terminal domains of ODA16 (summarized in Fig. 7b).
The SAXS reconstruction of the ODA16-IFT46N complex sug-
gests that it adopts an elongated conformation (Fig. 6c). Inter-
estingly, although IFT46 is conserved in all organisms that
assemble cilia via IFT, the N-terminal region of IFT46 is only
well conserved in organisms with motile cilia (42), consistent
with a function in ODA16-mediated IFT of ODAs.

Whereas IFT46 binds to the N-terminal face of the ODA16
molecule, we show that ODAs only require the C-terminal

�-propeller for association with ODA16 (Fig. 7a). We observe
no direct association between IFT46 and ODAs (data not
shown), suggesting that ODA16 is a true cargo adaptor sand-
wiched between IFT46 and the MDa-sized ODA complexes.
However, the observation that some ODAs are still incorpo-
rated into the axoneme in the absence of ODA16 suggests that
there might be alternative albeit less robust mechanisms of cil-
iary import of ODAs (16, 18). Although it is difficult to imagine
how larger quantities of the MDa-sized ODA complexes enter
cilia by diffusion, additional weaker binding sites on IFT com-
ponents other than IFT46 may result in the ciliary import of
smaller quantities of ODAs. Another currently unanswered
question is which component(s) of ODAs interact with IFT46.
Our pulldown experiments with ODAs extracted from C. rein-
hardtii axonemes do not provide us with any insights into
which ODA subunit may be responsible for the binding to
ODA16. Also, although it appears likely that the conserved
extended patch on the C-terminal face of the ODA16 �-propel-
ler is the interaction surface for ODAs (Fig. 4c), this notion

4 M. Taschner, A. Mourão, M. Awasthi, J. Basquin, and E. Lorentzen, unpub-
lished results.

Table 1
X-ray data collection and refinement statistics
Statistics for the highest-resolution shell are shown in parentheses.

CrODA16 native data
and refinement

Wavelength (Å) 1.000
Resolution range (Å) 49–2.4 (2.48–2.40)
Space group P61
Unit cell (a, b, c, �, �, �) 62.8, 62.8, 460.5, 90, 90, 120
Total reflections 244,365 (23291)
Unique reflections 39,781 (3869)
Multiplicity 6.1 (6.0)
Completeness (%) 99.7 (97.1)
Mean I/�(I) 7.3 (1.2)
Rmerge 0.198 (1.19)
CC1⁄2 0.989 (0.403)
Twinning statistics

Twin law h, � h � k, � l
Twin fraction (phenix.refine) 0.31
�I 2	/�I	 2 1.681
�F	 2/�F2	 0.855
� E 2–1 	 0.609
� L 	, �L 2	 0.407, 0.232

Rwork 0.1611
Rfree 0.2195
Number of non-hydrogen atoms 6810

Macromolecules 6510
Ligands 15
Water 285

Protein residues 825
RMS bonds 0.097
RMS angles 1.2
Ramachandran favored (%) 96.3
Ramachandran outliers (%) 0.24
Clashscore 12.3
Average B-factor 36.10

Macromolecules 36.00
Ligands 54.70
Solvent 36.70

90°

a

b

c

d

90°

-5kT +5kT

ODA16 b-propeller

Fbw7 bound to cycline E peptideFbw7 bound to cycline E peptide
(pdb 2OVQ)(pdb 2OVQ) 

evolutionary conservation

high weak
notmoderate

Figure 4. Structure of ODA16 reveals two potential protein-protein
interaction sites. a– c, cartoon representation (left panel), surface conserva-
tion (middle panel), and electrostatic potential (right panel) of three different
orientations of the ODA16 crystal structure. d, cartoon of the superposition-
ing of the ODA16 and the Fbw7 structures. The phosphorylated cyclin E pep-
tide bound to the C-terminal face of the Fbw7 structure is shown in stick
representation.
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remains to be proven. Another important unanswered question
is how ODAs dissociate from the ODA16-IFT complex at the
tip of flagella to allow incorporation into the growing axoneme.
Possibly, the remodeling of IFT complexes at the tip of cilia

weakens the ODA16-ODA interaction to release the ODA car-
goes and allow for axonemal incorporation or such a switch is
mediated by as yet unidentified post-translation modification
of one or more key players in this process.

An important question in cilia biology is how large amounts
of axonemal components are transported along cilia to their
assembly site at the ciliary tip and how all these factors are
bound by the large, but still limited, surface of the multisubunit
IFT complex. Whereas it is conceivable that less abundant car-
goes share individual binding sites, those that are required in
large amounts during ciliary/flagellar assembly (e.g. tubulin
dimers, axonemal motors, radial spokes, etc.) should have their
own dedicated attachment points (42, 43). We and others have
previously shown that tubulin dimers are transported by asso-
ciation with a binding module formed by the N-terminal
domains of IFT81 and IFT74 (Fig. 7b) (22, 26). Another tubulin-
binding domain was shown to be located at the N terminus of
IFT54 (31), but its exact function during ciliogenesis in vivo
remains to be determined. Accumulating evidence points to
dedicated binding sites for inner dynein arm subunits in the IFT
subunits IFT56 (44) and IFT57 (45), based on the analysis of the
flagellar proteome from respective Chlamydomonas mutants
(Fig. 7b). Biochemical studies will be necessary to confirm such
interactions in vitro. Taken together, our understanding of the
interactions between the IFT complex and abundant ciliary car-
goes has increased significantly in the past few years, but future
studies will be necessary to determine the underlying biochem-
ical and structural basis of efficient IFT-mediated ciliogenesis.

Experimental procedures

Cloning, expression, and purification of CrODA16 constructs

The CrODA16 open reading frame was obtained by PCR
amplification from a C. reinhardtii cDNA library. Sequences
encoding the full-length protein or the various N- and C-termi-
nal truncations were amplified with addition of a C-terminal
hexahistidine tag, as well as a 5
 BamHI and a 3
 HindIII recog-

Figure 5. IFT46 association requires both N- and C-terminal domains of
ODA16. a, schematic representation of the different ODA16 constructs used
in this figure. b, pulldowns of various ODA16 constructs with GST-IFT46 shows
that the N-terminal ODA16 domain, but not the �25-residue unstructured
tail of ODA16, is required for association with IFT46. c, neither ODA16N alone
nor the N- and C-terminal domains in trans are significantly pulled down by
GST-IFT46, demonstrating the requirement for covalent attachment of the
two ODA16 domains for IFT46 association. C-term., C-terminal; N-term., N-ter-
minal; MW, molecular mass.

Table 2
SAXS data collection
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nition sequence, and cloned into MCS2 of the pFL vector (46)
between BamHI and HindIII restriction sites. The resulting
plasmid was transformed into DH10Bac competent cells, and
recombinant baculovirus was produced in Sf21 cells exactly as
described previously (31). The virus was then used to infect
large volumes (typically 3– 6 liters) of HighFive cells at a density
of 106 cells/ml and incubated for 3 days at 26 °C. The cells were
harvested, resuspended in lysis buffer (50 mM Tris-HCl, pH 7.5,
500 mM NaCl, 10% glycerol, 5 mM �-mercaptoethanol, 1�
complete protease inhibitor mixture (Roche), 10 �g/ml DNa-
seI), and sonicated to open the cells (VS70T sonication tip, 40%

amplitude, 1 s on and then 2 s off; total energy typically 8 –10
kJ). The lysate was clarified by centrifugation at 75,000 � g for
45 min, and the supernatant was incubated with 3 ml of nickel-
nitrilotriacetic acid resin (Roche) for 2 h at 4 °C. The resin was
then collected and washed three times in lysis buffer, and the
bound material was recovered by incubation with 35 ml of elu-
tion buffer (20 mM Tris, pH 7.5, 200 mM NaCl, 10% glycerol, 500
mM imidazole, pH 7.5). The obtained eluate was passed through
a 5-ml ion-exchange column (Q-Sepharose HP), and the flow-
through was concentrated and loaded onto a HiLoad Super-
dex200 SEC column in SEC buffer (10 mM HEPES-KOH, pH
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Figure 6. SAXS reconstructions reveal an elongated ODA16-IFT46N complex. a, experimental solution scattering curves of ODA16 (green) and ODA16-
IFT46N (blue). b, Guinier plot region for the SAXS data of ODA16 (green) and ODA16-IFT46N (blue). c, distance distribution function of the SEC-SAXS profile for
ODA16 (green) and ODA16-IFT46N (blue). d, cartoon representation of ODA16 and ab initio reconstruction of the ODA16 envelope fitted to ODA16 crystal
structure. e, cartoon representation of ODA16-IFT46N and ab initio reconstruction of the ODA16-IFT46N envelope fitted to the ODA16 crystal structure.
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7.5, 200 mM NaCl). Finally, peak fractions were analyzed by
SDS-PAGE, and fraction containing the protein at sufficient
purity were pooled and concentrated and then either used
immediately or snap-frozen in aliquots in liquid nitrogen for
future use.

Cloning, expression, and purification of CrIFT46 constructs

CrIFT46 constructs were amplified and cloned into the pEC
vector series for bacterial expression (with N-terminal His6/
GST/TEV or His6/TEV tags) as described in previously (33, 34).
BL21(DE3) Escherichia coli cells were transformed with the
resulting plasmids and grown (typically as 2 liter cultures) to an
A600 of 1.0 at 37 °C. The temperature was then reduced to 18 °C,
and expression was achieved by the addition of 0.5 mM isopro-
pyl �-D-thiogalactopyranoside and incubation in a shaker at
18 °C overnight. The cells were harvested by centrifugation and
resuspended in 2 pellet volumes of lysis buffer (50 mM Tris-HCl,
pH 7.5, 150 mM NaCl, 10% glycerol, 5 mM �-mercaptoethanol,
10 �g/ml DNaseI, 1 mM PMSF). Cell lysis and protein purifica-
tion were performed exactly as described for other IFT com-
plexes (47). To obtain GST-tagged IFT46 for pulldowns, the
elution from the nickel-nitrilotriacetic acid column was con-
centrated and subjected to SEC.

GST-affinity pulldowns

200 �l of 10 �M GST-tagged IFT46 protein was immobilized
on 15 �l of GSH-affinity resin in binding buffer (20 mM Tris-
HCl, pH 7.5, 200 mM NaCl, 5% glycerol, 1 mM DTT). When
necessary, resin was incubated only with buffer to check for
nonspecific interaction of the prey (ODA16 full-length protein
or truncation) with the beads. After 2 h of incubation at 4 °C on
a rotating wheel, the resin was collected by centrifugation
(500 � g, 4 °C) and washed once with binding buffer. For each
pulldown reaction, the prey was diluted to a concentration of 10
�M in a total volume of 200 �l with binding buffer, and an input
sample was removed for SDS-PAGE analysis. The prey dilution
was added to the washed resin, the volume was adjusted to a
final volume of 500 �l, and binding was allowed to occur at 4 °C
on a rotating wheel for 2 h. The resin was then collected by
centrifugation and washed three times using binding buffer
supplemented with higher concentrations of NaCl as required
for this experiment. Finally, the bound material was eluted by
incubation with 40 �l of binding buffer supplemented with 20
�M reduced glutathione. Input and elution samples were then
analyzed by SDS-PAGE, and the gel was stained with Coomas-
sie solution.

Interaction analysis using ITC

ITC experiments were done using a Microcal PEAQ-ITC cal-
orimeter (Malvern). Both IFT46 and ODA16 proteins were in a
buffer containing 10 mM HEPES, pH 7.5, 100 mM NaCl, and 5%
glycerol. A volume of 200 �l of ODA16 at a concentration of 20
�M was titrated with different IFT46 protein constructs at a
concentration of 200 �M at 25 °C. For each ITC experiment, a
background curve consisting of the titration of the same IFT46
sample into buffer was subtracted to account for heat generated
by dilution. Each experiment was carried out in triplicates. The

program MicroCal PEAQ-ITC provided by Malvern was used
to analyze all ITC data.

Crystallization of ODA16

Full-length CrODA16 at a concentration of 10 mg/ml in a
buffer containing 10 mM HEPES, 500 mM NaCl, and 1 mM DTT
was mixed in equal volume of precipitant solution containing
20% PEG 3350, 300 mM ammonium sulfate, and 100 mM Bis-
Tris, pH 5.5, and crystallized using the sitting drop vapor diffu-
sion technique. Crystals grew after 2–3 days at 18 °C and were
cryo-protected in mother liquor supplemented with 15% glyc-
erol and subsequently flash-cooled in liquid nitrogen.

X-ray diffraction data collection and crystal structure
determination

X-ray diffraction data were collected at the Swiss Light
Source (Villigen, Switzerland) at the PXII beamline on a Pilatus
6M detector and indexed with the XDS package (48) before
scaling with Aimless as part of the CCP4 package (49). The
space group appeared to be P6122 at the stage of data scaling,
but molecular replacement and refinement revealed the true
space group to be P61 with merohedral twinning (twin law h,
�h�k, �l, twin fraction of 0.31 according to phenix.refine; see
Table 1 for more twinning statistics). Molecular replacement
using an eight-bladed �-propeller structure with the highest
available sequence identity to ODA16 (RSA4, PDB code 4wjs)
gave a clear solution in the program Phaser (50). However,
because of the high 8-fold pseudosymmetry within the �-pro-
peller, the molecular replacement solution had to be turned by
“two blades” for successful structure solution. The N-terminal
domain placed on top of the �-propeller was built manually in
Coot (51) followed by refinement in PHENIX (52). Refinement
in space group P61 including the twin law in PHENIX resulted
in an Rfree 7.5% points lower than for refinement in the higher
symmetry P6122 space group. The data and refinement statis-
tics are listed in Table 1.

Small-angle X-ray scattering of ODA16 and ODA16-IFT46N

SAXS experiments on ODA16 or the ODA16-IFT46N com-
plex were performed at the BM29 Beamline (European Syn-
chrotron Radiation Facility, Grenoble, France) using a Pilatus
1M detector using a similar protocol the one used previously
(53). In brief, SAXS data were collected on proteins and protein
complexes eluting directly from a Superdex 200 10/300 GL SEC
column. Radiation damage, data merging, and buffer subtrac-
tion were performed on site and later verified manually using
the program PRIMUS (54). All SAXS parameters such as max-
imum particle size (Dmax) were extracted using GNOME (55)
from the ATSAS package software (56). Theoretical SAXS
curves were calculated from crystal structures using CRYSOL
(57) and fitted to the experimental data. Ab initio models of
ODA16 and ODA16-IFT46N were calculated using the bead-
modeling program DAMMIN (58) to generate 10 independent
reconstructions. SUPCOMB (59) and DAMAVER (60) were
employed to generate the average representative models shown
in Fig. 6e.
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Flagellar isolation and fractionation

Chlamydomonas flagella were isolated from 8 liters of initial
culture grown in the Tris acetate phosphate medium using the
pH shock method (61). To obtain the outer dynein arm fraction,
purified flagella were resuspended in HMDEK buffer (30 mM

HEPES, 5 mM MgSO4, 1 mM DTT, 0.5 mM EGTA, 25 mM KCl),
snap frozen in liquid nitrogen, and then allowed to thaw at
room temperature (62). After three consecutive freeze-thaw
cycles, flagella were pelleted by centrifugation at 10,000 rpm for
10 min. Supernatants was removed, and the pellets constituting
the axonemes were resuspended in HMDE (30 mM HEPES, 5
mM MgSO4, 1 mM DTT, 0.5 mM EGTA) buffer containing 0.6 M

NaCl. After 30 min of incubation on ice, the salt-extracted frac-
tion enriched in flagellar ODAs were separated from axonemes
by centrifugation at 13,000 rpm for 20 min and dialyzed over-
night in HMDE buffer containing 30 mM NaCl.

Proteomics

For each pulldown reaction, flagellar outer dynein arm frac-
tion was used as an input. SEC-purified GST-IFT46 in combi-
nation with untagged ODA16 and His-tagged ODA16(fl),
ODA16(80 – 423), and ODA16(1– 80) were used as baits for GST
pulldown and Ni2� pulldown, respectively. Recombinant GST
protein immobilized on GSH-Sepharose beads or Ni2� beads
were utilized for negative control experiments. Bait proteins
were immobilized on the respective beads by incubating 200 �l
of 10 �M protein with a 20-�l bed volume of beads. After incu-
bation for 1 h, the beads were collected, washed thrice with
HMDEK buffer, and incubated with Chlamydomonas ODA
fraction for 4 h at 4 °C on a rotating wheel. GSH or Ni2� resins
along with co-precipitated protein complexes were separated
by low-speed centrifugation at 400 � g for 2 min. The beads
were washed twice with cold 20 mM HEPES buffer. Co-precip-
itated proteins were eluted from GSH beads with GST elution
buffer (10 mM Tris-HCl, pH 8, 25 mM reduced glutathione) and
from Ni2� beads with HMDEK buffer with 300 mM immida-
zole. All experiments were performed in triplicate, and elution
fractions corresponding to each of the reaction were loaded
separately and stacked in a 10% SDS-PAGE gel. Total protein
from each lane was digested according to the standard in-gel
digestion protocol (63). Digested peptides were purified and
concentrated on a C18 StageTip (64) and were analyzed using a
Q Exactive HF mass spectrometer (ThermoFisher Scien-
tific). An Easy nLC 1000 system (Thermo Scientific) was
used to separate peptides via a 140-min gradient through
a column (15-cm column length, 75-�m inner diameter,
packed with 1.9-�m beads) maintained at a constant tem-
perature of 45 °C. Raw data were processed using MaxQuant
computational platform (65), and statistical analysis was
done using the Perseus framework.
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