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Aims The vascular effects of high-density lipoproteins (HDL) differ under certain clinical conditions. The composition of
HDL is modified in patients with chronic kidney disease (CKD). As a consequence, uremic HDL induces endothe-
lial dysfunction. We have previously shown that accumulation of symmetric dimethylarginine (SDMA) in HDL
causes these adverse effects of HDL in CKD. The aim of the study is to determine the impact of the accumulation
of SDMA on the association between HDL and mortality.

...................................................................................................................................................................................................
Methods
and results

Mortality, renal function, serum SDMA and HDL-cholesterol (HDL-C) were assessed in the LURIC study including
3310 subjects undergoing coronary angiography. All-cause mortality was 30.0% during median follow-up of 9.9
years. Serum SDMA levels significantly predicted all-cause and cardiovascular mortality, and were significantly cor-
related with SDMA accumulation in HDL. Notably, higher serum SDMA was independently associated with lower
cholesterol efflux (P = 0.004) as a measure of HDL functionality. In subjects with low SDMA levels, higher HDL-C
was associated with significantly lower mortality. In contrast, in subjects with high SDMA, HDL-C was associated
with higher mortality. These findings were confirmed in 1424 participants of the MONICA/KORA S3 cohort. Of
note, we derived an algorithm allowing for calculation of biologically effective HDL-C’ based on measured HDL-C
and SDMA. We corroborated these clinical findings with in vitro evidence showing that SDMA accumulation abol-
ishes the anti-inflammatory and regenerative properties of HDL.

...................................................................................................................................................................................................
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Conclusion The data identify SDMA as a marker of HDL dysfunction. These findings highlight on the pivotal role of SDMA ac-
cumulation in HDL as a mediator of pre-mature cardiovascular disease in patients with CKD.
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Introduction

Cardiovascular disease (CVD) represents the major cause of
death in Europe.1 Amongst other cardiovascular (CV) risk factors,
chronic kidney disease (CKD) represents one of the strongest and in-
dependent risk factors for CVD.2–5 Interestingly, even mild kidney
dysfunction substantially increases the cardiovascular burden.6–9

Notably, the demographic change in Europe with a growing propor-
tion of elderly with high prevalence of diabetes mellitus and arterial
hypertension leads to a steadily increasing incidence and prevalence
rate of CKD. The prevalence of CKD in the 6th decade of life is higher
than 30%.10 This inevitably moves CKD in the focus of cardiovascular
medicine.

In healthy subjects, high-density lipoproteins (HDL) exert vaso-
protective effects by stimulating endothelial nitric oxide production,
reducing endothelial production of reactive oxygen species (ROS)
and preventing pro-inflammatory responses of the endothelium.11–13

Observational studies confirm that high concentrations of HDL-
cholesterol (HDL-C) are associated with improved cardiovascular
outcome.14,15 Interestingly, under several disease conditions such as
CKD, diabetes mellitus, and coronary artery disease, HDL may lose
its vasoprotective properties.16–18 Of note, a recent register study of
1 764 986 US-Veterans found a U-shaped relationship between
HDL-C and mortality. The association of HDL-C >_50 mg/dL
(>1.3 mmol/L) with mortality became more prominent the more
eGFR decreased.19

In CKD patients, several factors can modify the composition of the
HDL particle in different ways. Uremic toxins, increased oxidative
stress as well as a pro-inflammatory micro-environment contribute
to a remodelling of the HDL particle, thereby altering the compos-
ition of the proteome and lipidome of HDL and inducing post-trans-
lational modifications of HDL’s protein cargo.20 The accumulation of
uremic toxins such as dimethylarginines with kidney impairment
might therefore play a key role in the HDL dysfunctionality. The
dimethylarginines, asymmetric dimethylarginine (ADMA) and sym-
metric dimethylarginine (SDMA) are predictors of atherosclerosis
and cardiovascular events in CKD patients as well as in the general
population.21–23 Whereas ADMA exerts its negative effects on the
vascular wall as an endogenous inhibitor of nitric oxide synthesis, the
vascular effects of SDMA are still not completely understood.24

Recently, our group identified the accumulation of SDMA in the
HDL particle of patients with impaired kidney function being respon-
sible for the adverse effects of HDL in CKD.25 Notably, we could not
detect any ADMA in the HDL fractions. This accumulation of SDMA
in the HDL particle transforms HDL into a noxious molecule induc-
ing endothelial dysfunction, pro-inflammatory activation and hyper-
tension. These deleterious effects of HDL on endothelial cells are
mediated via Toll-like receptor-2.25 We could document the adverse
endothelial effects of HDL also in children with CKD, in whom

cardiovascular risk factors such as smoking, hypertension, diabetes
mellitus, and dyslipidaemia were not yet present,26 highlighting on im-
paired renal function itself as the culprit, which modifies the vascular
properties of HDL.

However, the clinical relevance of these experimental
findings remains unknown. Therefore, in the present study, we
examined the effect of SDMA on the long-term prognostic value
of HDL-C.

Methods

Study populations
Between 1997 and 2000, the Ludwigshafen Risk and Cardiovascular
Health (LURIC) study enrolled 3316 patients undergoing coronary angi-
ography.27 The study design and the examinations of the whole cohort at
baseline have been previously described.27 The median follow-up time
was 9.9 years. Taken together 30.0% of the participants of the LURIC
study died (n = 995) during follow-up time. Cardiovascular mortality was
defined as sudden cardiac death, fatal myocardial infarction, death due to
congestive heart failure, or death immediately after intervention to treat
coronary artery disease and fatal stroke.

The population-based MONICA/KORA S3 study comprises 4856 par-
ticipants being recruited in 1994/95 in the German city Augsburg region
including the city of Augsburg and the two adjacent counties Augsburg and
Aichach-Friedberg as part of the international World Health Organization
(WHO) MONItoring of trends and determinants in CArdiovascular
Diseases (MONICA) project, which is now continued in the framework of
KORA (Co-poperative health research in the region of Augsburg). Details
of the MONICA/KORA S3 study have been previously described in de-
tail.28,29 A total of n = 1678 men and women participated in an echocardio-
graphic substudy.30,31 Of these, 1424 participants, in whom SDMA and
ADMA were available at baseline, were included in the present analysis.
The median follow-up time was 16.8 years. In summary 18.0% of the partici-
pants (n = 256) included in the present analysis died during follow-up
period. Studies were performed in accordance with the Declaration of
Helsinki and have been approved by the local authorities (Rhineland-
Palatinate Chamber of Physicians, Bavarian Chamber of Physicians,
Germany). Written informed consent of the participants was obtained.

Laboratory measurements in Ludwigshafen

risk and cardiovascular health and MONICA/

KORA S3
Detailed procedures of laboratory measurements in the LURIC and
MONICA/KORA S3 study have been described.18,28,29,32 SDMA and
ADMA measurements in the LURIC study have been performed by
reversed-phase HPLC.33 SDMA and ADMA measurements in the
MONICA/KORA S3 study have been performed by using a fully validated
high-throughput LC-MS/MS assay.34
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..Measurement of the cholesterol efflux

capacity in Ludwigshafen risk and

cardiovascular health
Cholesterol efflux capacity was measured in 2472 participants of the
LURIC study as described.35 Briefly, J774 cells, derived from a murine
macrophage cell line, were plated and radiolabelled with 2 mCi of
3H-cholesterol per millilitre. Cells were incubated with 0.3 mM cAMP
(C3912, Sigma-Aldrich) to upregulate ABCA1. Subsequently, efflux me-
dium containing 2.8% apolipoprotein B–depleted serum was added for
4 h. All steps were performed in the presence of 2 mg/mL acyl–coenzyme
A: cholesterol acyltransferase inhibitor (Sc-215839A, Santa-Cruz
Biotechnology). Liquid scintillation counting was used to quantify the ef-
flux of radioactive cholesterol from the cells. Percent efflux was calcu-
lated by the following formula: (microcuries of 3H-cholesterol in medium
containing 2.8% apolipoprotein B-depleted serum—microcuries of 3H-
cholesterol in serum-free medium)/microcuries of 3H-cholesterol in cells
extracted before the efflux step� 100. To correct for interassay variation
across plates, a pooled serum control was included on each plate. Values
for samples from patients are given in percentage of this control (% C).
All assays were performed in triplicate.

Endothelial assays
Detailed description is presented in Supplementary material online.

Statistical analysis
Detailed description is presented in Supplementary material online. In
brief, in LURIC the association between HDL-C and SDMA with all-
cause and cardiovascular mortality as end-points has been examined
by using Cox regression analyses including 1st-order interaction
terms between HDL-C � SDMA. In endothelial assays, to determine
the functionality of HDL, statistical differences were examined by
one-way analysis of variance followed by Dunnett’s multiple

comparison post hoc test. Statistical analyses were carried out with
SPSS 21.0 and R project.

Results

The baseline characteristics of the participants of the Ludwigshafen
risk and cardiovascular health study (LURIC study) with 3316 partici-
pants are presented in Supplementary material online, Table S1 ac-
cording to quartiles of SDMA and ADMA serum levels. As shown in
see Supplementary material online, Figure S1, both SDMA and
ADMA significantly and inversely correlate with kidney function (i.e.
eGFR creatinine-cystatin C by using CKD-EPI equation). However,
the correlation between eGFR and SDMA was much stronger as
compared with eGFR and ADMA (R2 0.542 and R2 0.175, respect-
ively). In contrast to ADMA, SDMA serum levels were only associ-
ated with kidney function and not with other confounding factors
such as diabetes mellitus or smoking (Table 1). In subjects with an
eGFR below 60 mL/min, SDMA concentrations were almost twice
compared with those with an eGFR within the normal range.

After a median follow-up time of 9.9 years in the LURIC study,
30.0% (n = 995) of the enrolled participants died. More than half of
deaths were caused by cardiovascular or cerebrovascular events
(66.5%, n = 622). Survival analyses revealed both SDMA and ADMA
as significant predictors for all-cause as well as cardiovascular mortal-
ity (see Supplementary material online, Figure S2).

Next, we determined the relationship between total SDMA serum
levels and SDMA concentration in HDL from 35 patients with differ-
ent degrees of kidney impairment (Figure 1A). We found a significant
association between SDMA serum levels und SDMA in the HDL frac-
tions (R2 = 0.66, P < 0.0001). We therefore tested the hypothesis

....................................................................................................................................................................................................................

Table 1 Association of cardiovascular risk factors and markers of disease severity with SDMA and ADMA concentra-
tions in the LURIC study

SDMAa (mmol/L) Mean differenceb (%) P ADMAa (mmol/L) Mean differenceb (%) P

Acute coronary syndrome

Yes 0.65 þ2.5 0.090 0.85 þ1.1 0.190

No 0.63 0.84

Diabetes

Yes 0.64 -0.2 0.855 0.85 þ1.2 0.059

No 0.64 0.84

Smoking

Yes 0.64 -1.1 0.366 0.86 þ2.2 0.001

No 0.64 0.84

Gender

Female 0.64 -1.4 0.267 0.85 -0.1 0.828

Male 0.65 0.85

eGFR

>_ 90 mL/min 0.46 0.77

60-89 mL/min 0.56 þ22.2 <0.001 0.83 þ7.5 <0.001

< 60 mL/min 0.90 þ95.5 <0.001 0.94 þ21.2 <0.001

ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine.
aEstimated marginal means as calculated in a generalized linear model, adjusted for age, sex, high-sensitive C-reactive protein (CRP), eGFR, body mass index, diabetes, smoking
status, acute coronary syndrome, lipid-lowering therapy, Friesinger score, haemoglobin, albumin.
bFor the comparison with the first category of each variable.
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.that SDMA serum levels might also be a surrogate for the functional
properties of HDL, and examined the association between SDMA
and ADMA with cholesterol efflux capacity in a sub-group of the
LURIC study (Figures 1B and C), in which cholesterol efflux capacity
has been measured (n = 2472). Importantly, SDMA was a significant
predictor for the HDL-associated cholesterol efflux (P = 0.004) while
there was no association between cholesterol efflux and ADMA, cor-
roborating the specificity of the interaction between SDMA and
HDL-C. Also the first-order interaction term between SDMA and
HDL-C was a significant predictor of the cholesterol efflux (P = 0.016
for SDMA� HDL; P = 0.438 for ADMA�HDL). These findings indi-
cate that SDMA serum levels not only relate to SDMA in HDL frac-
tion but also to HDL functionality.

To investigate the clinical relevance of these findings, we examined
the effect of SDMA on the association between HDL-C concentra-
tions and all-cause and cardiovascular mortality. For that purpose, we
divided the participants of the LURIC study in those with high and
low SDMA levels (above and below 90th percentile) (Table 2).
Higher HDL-C was associated with a significant, dose-depended de-
crease in all-cause and cardiovascular mortality in subjects with low
SDMA serum levels, even after adjustments for potential confound-
ers such as age, gender, high-sensitive CRP, eGFR, body mass index,
diabetes mellitus, smoking status, acute coronary syndrome (ACS),
lipid-lowering therapy, Friesinger score, haemoglobin, and albumin. In
marked contrast, in participants with SDMA concentrations exceed-
ing the 90th percentile, the association between HDL-C and mortal-
ity was inverted and mortality was increased in subjects with higher
HDL-C. To confirm these findings we additionally introduced the
interaction term between HDL-C and SDMA in the Cox regression
models (Table 2). Even after adjustment for the aforementioned vari-
ables, we found a significant interaction of HDL-C and SDMA for all-
cause as well as cardiovascular mortality (P = 0.002 and P = 0.008 in

the fully adjusted models). Importantly, ADMA concentrations did
not show any interaction with HDL-C with respect to all-cause and
cardiovascular mortality (P = 0.428 and P = 0.219 for the first-order
interaction term of ADMA� HDL-C in the aforementioned fully ad-
justed models). These findings document the specificity of the inter-
action between SDMA and HDL-C, and confirm our recent
experimental findings, that ADMA was absent in the HDL fractions.25

In complementary Cox regression models, adjustment for serum
amyloid A (SAA) did not change the association between HDL-C/
SDMA and mortality (see Supplementary material online, Table
S2). Moreover, in Cox regression models including HDL-C and
SDMA or ADMA as continuous variables, we only found a signifi-
cant interaction between HDL-C and SDMA and not ADMA (see
Supplementary material online, Table S3). Additionally, we used
hazard ratio plots to illustrate this specific interaction between
HDL-C and SDMA (Figure 2). Notably, as shown in
Supplementary material online, Table S4, we found that apolipo-
protein A-I as well as apolipoprotein A-II were both associated
with lower mortality in subjected with low SDMA. In contrast, in
subjects with high SDMA, apolipoprotein A-I and apolipoprotein
A-II lost their negative association with mortality or were even
associated with increased risk for mortality.

To validate these findings in an independent second cohort, we per-
formed similar analyses in the MONICA/KORA S3 study. The baseline
characteristics of this cohort are presented in see Supplementary ma-
terial online, Table S5. Notably, also in the MONICA/KORA S3 study,
SDMA was an effect modifier of the association between HDL-C and
mortality (Figure 3). Higher HDL-C levels were associated with signifi-
cantly lower mortality, but only in participants with low SDMA at
baseline. Similarly to our findings in the LURIC study, HDL-C com-
pletely lost its association with better outcome in participants with
higher levels of SDMA.

Figure 1 (A) Bivariate correlation between total serum SDMA (SDMASerum) and SDMA in HDL (SDMAHDL), both determined with HPLC/MS-
MS, in 35 patients with varying eGFR. (B and C) Multivariable adjusted estimated marginal means of cholesterol efflux in sub-groups of participants of
the LURIC study (n = 2472) according to quartiles of (B) SDMA or (C) ADMA, respectively. Results are adjusted for age, gender, acute coronary syn-
drome, Friesinger score, body-mass index, glycated haemoglobin, smoking, lipid-lowering therapy, cystatin C, high sensitivity CRP, and mean systolic
blood pressure. SDMA, symmetric dimethylarginine; HDL, high-density lipoproteins; ADMA, asymmetric dimethylarginine.

1600 S. Zewinger et al.

Deleted Text: ,
Deleted Text: p
Deleted Text: p
Deleted Text: x
Deleted Text: p
Deleted Text: x
Deleted Text: hemoglobin
Deleted Text: p
Deleted Text: p
Deleted Text: x
Deleted Text:  (
Deleted Text: ).
Deleted Text: Supplemental 
Deleted Text: <bold>Supplemental</bold>
Deleted Text: see 
Deleted Text: <italic>Supplemental</italic>
Deleted Text: <bold><italic>Supplemental</italic></bold>


................................................................... ...................................................................

....................................................................................................................................................................................................................

Table 2 Association between HDL-C and all-cause and cardiovascular mortality by categories of SDMA (1st-order
interaction term)

Model Quartile of HDL-C SDMA £ 0.8 mmol/L (90th percentile) SDMA > 0.8 mmol/L (90th percentile)

HR (95% CI) P HR (95% CI) P

All-cause mortality

Crude 1 Reference

2 0.80 (0.66–0.98) 0.031 0.73 (0.46–1.16) 0.182

3 0.71 (0.58–0.87) 0.001 1.34 (0.86–2.08) 0.198

4 0.65 (0.53–0.81) <0.001 1.61 (1.03–2.51) 0.036

P = 0.014 for the interaction between HDL-C and SDMA*

Harrell’s C = 0.601a

Adjusted 1 1 Reference

2 0.80 (0.66–0.98) 0.033 0.86 (0.54–1.35) 0.502

3 0.69 (0.56–0.85) <0.001 1.49 (0.95–2.31) 0.080

4 0.63 (0.50–0.78) <0.001 1.72 (1.10–2.68) 0.017

P = 0.016 for the interaction between HDL-C and SDMA**

Harrell’s C = 0.711

Adjusted 2 1 Reference

2 0.86 (0.70–1.06) 0.151 0.84 (0.53–1.33) 0.464

3 0.78 (0.63–0.97) 0.024 1.52 (0.97–2.38) 0.066

4 0.72 (0.57–0.91) 0.005 1.98 (1.27–3.09) 0.003

P = 0.002 for the interaction between HDL-C and SDMA***

Harrell’s C = 0.745

Cardiovascular mortality

Crude 1 Reference

2 0.71 (0.55–0.92) 0.009 0.73 (0.41–1.30) 0.286

3 0.63 (0.48–0.82) 0.001 1.62 (0.96–2.76) 0.073

4 0.60 (0.45–0.78) <0.001 1.60 (0.92–2.77) 0.094

P = 0.031 for the interaction between HDL-C and SDMA****

Harrell’s C = 0.618

Adjusted 1 1 Reference

2 0.71 (0.55–0.92) 0.009 0.85 (0.48–1.51) 0.571

3 0.61 (0.47–0.79) <0.001 1.79 (1.05–3.04) 0.032

4 0.57 (0.43–0.75) <0.001 1.70 (0.98–2.93) 0.062

P = 0.031 for the interaction between HDL-C and SDMA*****

Harrell’s C = 0.718

Adjusted 2 1 Reference

2 0.78 (0.60–1.01) 0.059 0.81 (0.45–1.44) 0.468

3 0.71 (0.54–0.93) 0.013 1.84 (1.08–3.14) 0.026

4 0.69 (0.52–0.92) 0.012 1.93 (1.11–3.35) 0.020

P = 0.008 for the interaction between HDL-C and SDMA******

Harrell’s C = 0.927

High-density lipoproteins-cholesterol was divided into quartiles: quartile 1: <_ 31 mg/dl, quartile 2: 32–37 mg/dL, quartile 3: 38–45 mg/dL, quartile 4: >_ 46 mg/dL.
Adjustment 1: Adjusted for age and sex.
Adjustment 2: Adjusted for age, sex, high-sensitive CRP, eGFR, body mass index, diabetes, smoking status, acute coronary syndrome, lipid-lowering therapy, Friesinger score,
haemoglobin, albumin.
HR, Hazard ratio; CI, confidence interval; SDMA, symmetric dimethylarginine; HDL-C, high-density lipoproteins-cholesterol.
aHarrell’s C for Cox regression model including only HDL-C: 0.545.
bHarrell’s C for Cox regression model including only HDL-C: 0.557.
*P = 0.380,
**P = 0.306,
***P = 0.428,
****P = 0.130,
*****P = 0.110, and
******P = 0.219 for the interaction term between HDL-C and ADMA in similar Cox regression models as shown using ADMA instead of SDMA.
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Based on these findings, we developed a method, which allows the

calculation of biologically effective HDL-C’ based on measured HDL-
C and SDMA concentrations:

HDL-C0 = ð1:869 LNðSDMAÞ þ ð0:227-1:054 � LNðSDMAÞÞ
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HDL-C
p

þ 1:372Þ2

The graph of this function is shown in Figure 4. Even slightly ele-
vated SDMA sufficiently reduces ‘biologically effective’ HDL-C (see
Supplementary material online, Table S6). In additional analyses, we
determined the net reclassification improvement (NRI) as well as the
integrated discrimination improvement (IDI) of this mathematical ap-
proach including HDL-C and SDMA over our previously
described algorithm including HDL-C and SAA.32 Notably, NRI and
IDI analyses revealed a discriminative superiority of the HDL-C/

SDMA model over the HDL-C/SAA model (see Supplementary
methods online).

At last, we performed additional mechanistically experiments using
HDL from healthy subjects supplemented with increasing concentra-
tions of SDMA, which were comparable to those measured in HDL
from CKD patients. First, we examined the effect of SDMA enriched
HDL on endothelial production of ROS. Accumulation of SDMA in
HDL significantly increased endothelial ROS production in a dose-
dependent manner (Figure 5A). Furthermore, HDL from healthy sub-
jects without SDMA reduced TNF-a stimulated endothelial VCAM-1
expression (Figure 5B). In contrast, HDL supplemented with SDMA
failed to reduce endothelial VCAM-1 expression. Accordingly, in a
monocyte-endothelial adhesion assay, we found that HDL without
SDMA reduced adhesion of monocytes to TNF-a treated human

Figure 2 Hazard ratios of all-cause and cardiovascular mortality according to HDL-C levels at high and low SDMA serum levels in the LURIC
study. Multivariable-adjusted hazard functions for (A) all-cause and (B) cardiovascular mortality according to HDL-C concentrations at SDMA below
and above 0.8 mmol/L (90th percentile). Solid lines represent the hazard functions, dashed lines the respective 95% confidence intervals. The median
of HDL-C (37 mg/dL) was chosen as reference (HR = 1.0). Adjusted for age, gender, acute coronary syndrome, Friesinger score, body-mass index,
glycated haemoglobin, smoking, lipid-lowering therapy, cystatin C, high sensitivity CRP and mean systolic blood pressure. HDL-C, high-density lipo-
proteins-cholesterol; SDMA, symmetric dimethylarginine; LURIC, Ludwigshafen risk and cardiovascular health; HR, Hazard ratio.
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aortic endothelial cells (HAEC) while SDMA supplemented HDL
increased the adhesion of monocytes (Figure 5C). These findings re-
veal that the accumulation of SDMA abolishes the anti-inflammatory
properties of HDL. Moreover, we examined the effect of HDL on
endothelial migration as a surrogate for the regenerative capacity of
HDL (Figure 5D). HDL from healthy subjects significantly promoted
the migration of HAEC in a classical scratch assay. Contrarily, SDMA-
supplemented HDL lost its regenerative potential.

Discussion

Here, we not only confirm the close and specific interaction between
HDL and SDMA, but for the first time demonstrate in large patient
populations that SDMA is a crucial modulator of the functionality of
HDL representing a novel mechanism for CVD particularly in pa-
tients with reduced renal function.

Symmetric dimethylarginine modifies
the inverse relationship between HDL-C
and cardiovascular events
In contrast to many other agents, which have been linked to adverse
functionality of HDL only in experimental studies, the present report
is the first to show the clinical relevance of these findings in two large
prospective trials with long-term follow-up. We could clearly docu-
ment that SDMA significantly alters the association between HDL-C
and subsequent mortality. Importantly, the association between
SDMA/HDL-C and mortality was even significant after adjusting for

eGFR or SAA. Indeed, we have recently shown that the vasoprotec-
tive properties of HDL are increasingly lost as SDMA accumulates in
HDL representing a unique mechanism leading to dysfunctional or
even noxious HDL.25 Notably, the SDMA cut-off chosen in LURIC
(i.e. 90th percentile) represents a concentration, which is usually ex-
ceeded even in the earliest stages of CKD. In additional regression
models, the interaction between HDL-C and SDMA as continuous
variables was not dependent on a certain cut-off of SDMA.
Therefore, one could speculate that even a minor reduction in kidney
function as frequently observed in patients with CVD may alter the
functionality of HDL. Accordingly, in previous experimental studies
we found that HDL already lost its vasoprotective properties in pa-
tients with CKD in KDIGO stage G2 (eGFR 60–90 mL/min/
1.73m2).25,26 Also in the present analyses, we could not find a specific
interaction between ADMA und HDL-C, which underscores the
idea that SDMA incorporation in the HDL is a CKD-specific phenom-
enon. Our results were consistent in two large study populations, the
LURIC and the MONICA/KORA S3 study. The two studies comple-
ment each other.

While the LURIC study comprises participants undergoing coron-
ary angiography with a high prevalence of cardiovascular risk factors,
the MONICA/KORA S3 study includes participants from the general
population. The consistency of the findings in both cohorts points to
the general relevance of our findings. In both studies, creatinine and
cystatin C were used to calculate eGFR according to the current
KDIGO guidelines as state-of-the-art approach.36 However, in par-
ticipants of the LURIC study no urine samples were available to as-
sess albuminuria. Moreover, participants of both studies were of

Figure 3 Survival analyses for quartiles of high-density lipoproteins-cholesterol in the MONICA/KORA S3 study. Participants were divided into
two groups according to their SDMA serum levels (80th percentile). Statistical differences are calculated using Log rank test.
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..Caucasian ancestry, which limits the generalization of these findings
to other races.

Symmetric dimethylarginine affects
cellular cholesterol efflux and anti-
inflammatory properties of high-density
lipoproteins
The biological functions of SDMA have not been fully elucidated.37

Whereas ADMA is well known as a direct inhibitor of eNOS,38

SDMA is thought to be functionally inactive. Only few experimental
data on the function of SDMA are available. However, it has been
shown that SDMA may induce pro-inflammatory activation of mono-
nuclear cells.37,39 While many other modifications of HDL such as
carbamylation or the incorporation of the acute phase protein SAA
occur under different disease conditions such as diabetes mellitus,
coronary artery disease or inflammation,20,32 we speculate that the
accumulation of SDMA in HDL may represent a CKD-specific phe-
nomenon mostly independent of other pathological conditions. It is
in line with this concept that total serum SDMA was significantly

correlated with SDMA in HDL, and even more important, SDMA
was a significant determinant of the HDL-associated cholesterol ef-
flux capacity, which underscores the functional relevance of SDMA
accumulation in HDL. This is additionally supported by our in vitro
studies showing that HDL enriched with SDMA induces endothelial
ROS production, VCAM-1 expression on the cell surface and subse-
quent endothelial mononuclear cell adhesion but inhibits endothelial
cell migration. Besides these findings, we have recently shown that
HDL-enriched with SDMA potently inhibits endothelial nitric oxide
production.25

Assessment of functional high-density
lipoproteins using symmetric
dimethylarginine and higher
HDL-cholesterol
Isolation of HDL by using density-gradient ultracentrifugation is a
time-consuming and expensive procedure. It is therefore not possible
to directly examine the vascular functionality of isolated HDL in clin-
ical practice. The newly derived formula for the calculation of

Figure 4 Graph of the function for the effective HDL-C-concentration. HDL-C’=HDL-C’(SDMA, HDL-C); isolines for HDL-
C’=10,20,30, . . . ,80 mg/dL are projected onto the HDL-C-SDMA-plane; the effective HDL-C concentration HDL-C’=f(SDMA, HDL-C) (with f(x,
y) = (1.869 ln(x)þ (0.227 - 1.054 ln(x)) y1/2þ 1.372)2) is evaluated on the grid points (xi, yj) (i = 0, . . . ,17 and j = 0, . . . ,20), where xi=0.48þ 0.03i,
yj=10þ 4j. The calculations and visualization have been performed by Matlab R2012a: the grid cells on the x-y plane are generated by the Matlab
function meshgrid, the contour plot under the 3-D-shaded surface plot is created by the Matlab function surfc.
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..‘biologically effective’, i.e. ‘protective’ HDL-C’ represents an import-
ant tool to estimate the functionality of HDL superseding time-
consuming isolations of HDL as well as expensive laboratory proced-
ures to determine the vascular function of HDL. Our findings suggest

that the relationship between HDL-C and SDMA represents a useful
surrogate of the vascular functionality of HDL. In addition, the equa-
tion outperforms our recently developed algorithm including HDL-C
and SAA.32 Notably, the current mathematical algorithm is only

Figure 5 (A) Endothelial reactive oxygen species production in human aortic endothelial cells (HAEC) as determined by using ESR spectroscopy
after incubation with HDL (50 mg/mL protein, 1 h) supplemented with increasing concentrations of SDMA. (B) Endothelial VCAM-1 expression in
HAEC pre-incubated with HDL (50 mg/mL, 1 h) supplemented with SDMA and then stimulated for 4 h with TNF-a (0.1 ng/mL). (C) Adhesion of
mononuclear cells (DiI, Red) to HAEC (DAPI, Blue) pre-incubated with HDL (50 mg/mL, 1 h) supplemented with SDMA and then stimulated for 4 h
with TNF-a (0.1 ng/mL). Numbers of cells per high-power field are given. (D) Migration of HAEC in scratch assay incubated with HDL (50 mg/mL,
16 h) supplemented with increasing concentrations of SDMA (n = 6 per group).

Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease 1605

Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &acute;
Deleted Text:  (
Deleted Text: ).


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
validated for SDMA concentrations between 0.48 and 1.20 mmol/L.
Symmetric dimethylarginine concentrations above 1.20 mmol/L indi-
cate a more severely reduced eGFR. Accordingly, we have previously
shown that in patients with moderate to severe CKD, HDL not only
looses its vasoprotective properties but turns into noxious particle
promoting vascular damage.25,26 Therefore, it is not possible to calcu-
late biologically effective HDL in patients with more advanced CKD.

Symmetric dimethylarginine measurements were performed using
different methods in LURIC and MONICA/KORA S3, HPLC and LC-
MS/MS, respectively. Absolute levels of dimethylarginines may differ
according to the assay.40 In MONICA/KORA S3, SDMA was lower
than in the LURIC study, which may be due to (i) different measure-
ment methods and/or (ii) different study populations. Therefore, our
study cannot reveal a definite SDMA cut-off, at which HDL function-
ality is impaired and our algorithm to determine functional HDL is
provisionally for the HPLC method used in LURIC before a standard-
ization of SDMA methods has been achieved.

In summary, SDMA modulates the association between HDL-C
and mortality in two study populations using two distinct methods to
measure SDMA as a specific HDL-modulating agent. Our findings es-
tablish SDMA as an essential effector of HDL function and as clinically
relevant cause for CKD-associated vascular disease. Cholesterol ef-
flux data and in vitro experiments provide insights into the biochem-
ical mechanism underlying our clinical observations. A simple
approach is suggested to estimate ‘biologically effective HDLC’,
which might represent a useful novel clinical tool for use in humans,
especially in patients with impaired renal function.

Supplementary material

Supplementary material is available at European Heart Journal online.
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