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**Data used in preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 
the ADNI contributed to the design and implementation of ADNI and/or provided data but did not 
participate in analysis or writing of this report. A complete listing of ADNI investigators can be 
found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 
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Highlights 

1. Metabolomics analysis guided by CSF biomarker and imaging data provide novel mechanistic insights 

about Alzheimer’s disease (AD), information that can guide novel approaches for drug discovery.  

2. Early biochemical changes in AD are noted that precede cognitive changes and that inform about 

biochemical dysfunctions related to Aβ and tau pathology.  

3. Peripheral metabolic profile of patients informs about trajectory of disease progression, disease 

subtypes and can lead to development of valuable biomarkers for accelerating clinical trials.  

4. Metabolic network failures in AD provide a systems approach for the study of the disease in line with 

recommendations of AD Summits of 2012 and 2015.   
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ABSTRACT 

INTRODUCTION:  

The Alzheimer’s Disease Research Summits of 2012 and 2015 incorporated experts from academia, 

industry and non-profit organizations to develop new research directions to transform our understanding 

of Alzheimer’s disease (AD) and propel the development of critically needed therapies. In response to 

their recommendations, big data at multiple levels are being generated and integrated to study network 

failures in disease. We used metabolomics as a global biochemical approach to identify peripheral 

metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging 

features, and cognitive performance.    

METHODS:  

Fasting serum samples from the Alzheimer’s Disease Neuroimaging Initiative (199 control, 356 mild 

cognitive impairment and 175 AD participants) were analyzed using the AbsoluteIDQ®-p180 kit.  

Performance was validated in blinded replicates, and values were medication adjusted.  

RESULTS:  

Multivariable adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines 

were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, 

including the branched chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. 

Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and 

Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1-42, Tau, imaging and 

cognitive changes provided initial biochemical insights for disease-related processes. Co-expression 

networks interconnected key metabolic effectors of disease. 

DISCUSSION:  

Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. 

Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes 

provides a powerful roadmap for drug and biomarker discovery.  
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Keywords: metabolomics, metabonomics, pharmacometabolomics, pharmacometabonomics, biomarkers, 

serum, metabolism, systems biology, biochemical networks, precision medicine, Alzheimer’s disease, 

dementia, branched chain amino acids, sphingomyelins, phospholipids, acylcarnitines.  
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1. INTRODUCTION  

Alzheimer's disease (AD) is the most common cause of dementia. An anticipated 136 million people will 

be affected by dementia by 2050, presenting major global health and economic challenges. There are 

currently no treatments that modify AD, hence AD remains the largest unmet medical need within 

neurological disorders [1, 2].  

 

Many biochemical processes are affected in AD, including amyloid precursor protein metabolism, 

phosphorylation of tau protein, oxidative stress, impaired energetics, mitochondrial dysfunction, 

inflammation, membrane lipid dysregulation and neurotransmitter pathway disruption [3, 4]. Impaired 

cerebral glucose uptake occurs decades prior to the onset of cognitive dysfunction in AD [5], and 

neurotoxicity associated with AE is thought to participate in impaired neuronal energetics including 

mitochondrial dysfunction and release of reactive oxygen species. Growing evidence supports the concept 

that insulin resistance can contribute to AD pathogenesis, and therefore, AD could be regarded as a 

metabolic disease mediated in part by brain insulin and insulin-like growth factor resistance [3]. Mapping 

the trajectory of biochemical changes in AD is therefore becoming a priority as filling knowledge gaps 

about disease mechanisms and their link to metabolic processes can lead to developing much-needed 

biomarkers and therapies [3]. How does peripheral metabolism, diet, gut microbiome, and exposome 

impact the metabolic heath of the brain, and thus cognitive function? Which pathways are affected by 

genes that have been implicated in AD, such as presenilin 1 (PSEN1) and PS2 or apolipoprotein E 

(APOE)? Biochemical information elucidating these questions is critical for developing drugs that target 

enzymes and transporters which regulate metabolism. 

 

Metabolomics provides powerful tools for mapping global biochemical changes in disease and treatment 

[6-10]. In contrast to classical biochemical approaches that focus on single metabolites or reactions, 

metabolomics and lipidomics approaches simultaneously identify and quantify hundreds to thousands of 
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metabolites [11-19].  Measurement of large numbers of  metabolites enables network analysis approaches 

and provides means to identify critical metabolic drivers in disease pathophysiology [20].  Initial small 

scale metabolomics studies in AD have highlighted metabolic alterations including ceramide-

sphingomyelin pathways [10], PC [15, 21], PE plasmalogens [22, 23], amines [24], and mitochondrial 

defects [25] among others [13, 14]. Metabolic networks have linked central perturbations in 

norepinephrine and purines with elevated cerebrospinal fluid (CSF) tau, and changes in tryptophan and 

methionine to decreased Aβ levels [18]. More recently, the ARIC Neurocognitive Study identified PC aa 

C36:1 as being linked to lower risk of dementia; however, no metabolite from the panel measured added 

significantly to prediction of dementia beyond routine clinical variables [26].  A recent plasma-pathology 

correlative study found that plasma ceramides C16:0, C18:1, C20:0 and C24:1 and 

monohexosylceramides C18:1 and C24:1 were elevated in those with autopsy-confirmed AD pathology 

[27], but these metabolites did not differentiate AD from dementia with Lewy bodies.  An autopsy study 

of frontal cortex metabolites from AD patients versus controls showed six central metabolic pathways 

were altered along with glycerophospholipid metabolism and aspartate metabolism.  A metabolomics 

study in an AD mouse model (APPswe/PS1deltaE9 double transgenic) found abnormalities in polyamine 

metabolism, essential amino acids, BCAAs, and serotonin, as well as phospholipid and acylcarnitine 

homeostasis with brain changes preceding those in the blood [28].  While these studies highlight specific 

metabolic underpinnings of AD, not all metabolomics findings have been replicated.  For example, a 

metabolomics study of two separate cohorts     the Baltimore Longitudinal Study of Aging, and the Age, 

Gene/Environment Susceptibility-Reykjavik Study – did not replicate an earlier finding [11, 12, 15].  

 

Earlier metabolomics studies had major limitations, including not accounting for important confounds 

such as impact of medications use; small studies that lacked evaluation across datasets; limited ability to 

connect peripheral metabolic changes with central changes to define what might be related, and lack of 

attempts to connect metabolic changes within a pathway and network context. Network biology and 

‘network medicine’ approaches have become important tools to dissect molecular mechanisms triggering 
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neurodegeneration [29].This approach accounts for the fact that complex diseases arise from alterations in 

multiple genes, proteins and metabolites, and a network may be described as an interaction map among 

the wide range of biological entities which contribute to disease. As many of the metabolites that are 

associated with AD are interconnected through metabolic pathways, co-factors, and common 

intermediates, changes to one metabolite can entail several others, as well as have downstream effects on 

other co-regulated pathways. A systems biology approach integrating metabolites and their interrelations 

(for instance quantified by partial correlations) in metabolic networks can provide important mechanistic 

insights about how biochemical reactions are dysregulated during different stages of disease. In contrast 

to looking at single dysregulated metabolite at a time, the visualization of changes in the metabolic 

network captures the totality of influences on interconnected biochemical reactions in far more 

informative ways and allows one to follow these changes over disease stages.  

 

In this large study, we profiled baseline serum samples from the Alzheimer’s Disease Neuroimaging 

Initiative -1 (ADNI-1) cohort where vast data exist on each patient including cognitive decline and 

imaging changes over many years, information on CSF markers, genetics and other omics data. We used 

CSF biomarkers to define early metabolic changes in cognitively normal participants who have CSF 

pathology, and to evaluate metabolic signatures that might be related to Aβ1-42 and tau pathology. Using 

partial correlation networks, we defined progressive metabolic changes that accompany changes in CSF 

Aβ1-42, CSF tau, brain structure and cognition [30], while co-expression networks were used to connect 

key metabolic changes implicated in disease. The relationship of metabolites with longitudinal cognitive 

and imaging changes helped us define metabolic signatures correlated with disease progression. Key 

associations were also present in multiple independent cohorts. We believe that the systems approach 

taken in our study to elucidate metabolic changes along different stages during the progression of AD will 

transform our understanding of disease mechanisms and lead to valuable peripheral biomarkers that can 

inform and accelerate clinical trials.   
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2. METHODS  

2.1 Study Cohorts and Samples 

A. ADNI-1 baseline samples  

ADNI shipped 831 samples with unique identifiers belonging to 807 subjects. These initial identifiers 

were different from the ADNI subject identifiers. There were duplicate aliquots from the same CSF draw 

for 24 subjects to help us evaluate analytical performance. Only after the final raw data was submitted to 

ADNI, was the information obtained to link the samples identifier to the subject RID and identify the 

duplicates. 

 

Data were obtained from the ADNI database in September 2015 (http://adni.loni.usc.edu). ADNI-1 was 

launched in 2004 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering, the Food and Drug Administration, private pharmaceutical companies and non-profit 

organizations [31]. ADNI-1 patients underwent extensive clinical and cognitive testing, including the 

Alzheimer’s Disease Assessment Scale-Cognition (ADAS-Cog13), which was used as a measure of 

general cognition in this analysis. AD dementia diagnosis was established based on the NINDS-ADRDA 

criteria for probable AD. Mild cognitive impairment (MCI) participants did not meet these AD criteria 

and had largely intact functional performance, meeting predetermined criteria for amnestic MCI [31]. 

Controls were cognitively normal (CN) (Supplementary Table 1).  Additional details of participant 

selection criteria and protocol are available at http://www.adni-info.org and in the methods in the 

Supplementary Materials. The study was approved by institutional review boards of all participating 

institutions and written informed consent was obtained from all participants and/or authorized 

representatives prior to study commencement.   

 

B. Rotterdam and Erasmus Rucphen Family (ERF) Cohorts  
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Participants from the Erasmus Rucphen Family (ERF) study (N=905) were metabolically profiled from 

fasting blood samples using the Biocrates AbsoluteIDQ p150 kit platform (Supplementary Table 2) 

[32], which measures a subset of metabolites from the P180 and excludes many of the amines. A 

previously described quality control (QC) protocol was applied [32]. Valine was measured in fasting 

blood samples using the brainshake® platform [33] in 2,752 participants from the Rotterdam large 

prospective cohort study [34]. Participants of the ERF study underwent a standardized cognitive test 

battery at the study center on the same day blood was drawn (Supplementary Table 2) [35]. Participants 

of the Rotterdam study underwent cognitive tests at the time of valine measurement and all participants 

were followed up for AD clinical diagnosis [36], as previously described in detail [37]. 

The general cognitive ability or ‘g-factor’ was calculated using previously described methods in 

dementia-free participants with available cognitive tests in the ERF study (N=905) and Rotterdam Study 

(N=2480) [38]. In short, the g-factor is a general cognitive function phenotype created by principal 

component analysis of multiple cognitive tests. A higher g-factor is associated with a higher general 

cognitive function, in contrast to the cognitive measure used for analysis of the ADNI-1 cohort, the 

ADAS-Cog13.  

 

C. The Indiana Memory and Aging Study (IMAS):  

IMAS is an ongoing longitudinal study investigating multimodal neuroimaging, cognition, fluid 

biomarkers, and genetics in early prodromal stages of AD with follow-up visits every 18 months [39-42]. 

IMAS participants included CN participants, euthymic older adults with subjective cognitive decline in 

the absence of significant psychometric deficits, and patients with amnestic MCI or probable AD 

(Supplementary Table 3). Due to limited sample size compared to other cohorts, analyses were limited 

to assessment of [11C] Pittsburgh Compound B (PiB) positron emission tomography (PET) amyloid 

status. Thirty four participants had PET scans to measure brain Aβ load; 30 participants underwent 

[11C]PiB PET scans on a Siemens HR+ PET scanner and 4 participants underwent [18F]Florbetapir PET 
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scans on a Siemens mCT. For the [11C]PiB PET, participants underwent either a 90-minute dynamic scan 

starting at time of tracer injection or a 50-minute dynamic scan after a 40-minute uptake period after 

injection of approximately 10mCi of [11C]PiB. The [18F]Florbetapir PET scans were collected as a 30-

minute dynamic scan after a 40-minute uptake period following an injection of approximately 10mCi of 

[18F]Florbetapir. [11C]PiB and [18F]Florbetapir scans were motion-corrected and normalized to Montreal 

Neurologic Institute (MNI) space using parameters from a same timepoint structural MRI scan. For the 

[11C]PiB PET images, a 40-90 minute standardized uptake value ratio (SUVR) image was created by 

averaging the appropriate frames and intensity normalizing to mean cerebellar grey matter uptake. For the 

[18F]Florbetapir PET, a 40-70 minute SUVR image was created by averaging the appropriate frames and 

intensity normalizing to mean whole cerebellar uptake. Finally, amyloid positivity was defined as a mean 

[11C]PiB PET SUVR of ≥ 1.37 or a mean [18F]Florbetapir SUVR of ≥ 1.20 from a cortical grey matter 

region of interest (ROI). These cut-offs were determined by simultaneous processing of the ADNI 

[11C]PiB and [18F]Florbetapir PET images using the same pipeline and adjusting the locally-derived cut-

offs to best match either the previously reported [11C]PiB PET cut-off of mean cortical SUVR ≥ 1.5 [43] 

or the [18F]Florbetapir PET cut-off of SUVR ≥ 1.10 [44], respectively. A side by side comparison of the 

three cohorts, including sample sizes, baseline cognitive diagnoses and studied outcomes in each cohort is 

offered in Supplementary Table 4. 

 

2.2 Absolute IDQ p180 Kit Metabolite Measurements  

Metabolites were measured with a targeted metabolomics approach using the AbsoluteIDQ® p180 Kit 

(BIOCRATES Life Science AG, Innsbruck, Austria), with a ultra-performance liquid chromatography 

(UPLC)/MS/MS system (Acquity UPLC (Waters), TQ-S triple quadrupole MS/MS (Waters)) which 

provides measurements of up to 186 endogenous metabolites quantitatively (amino acids and biogenic 

amines) and semi-quantitatively (acylcarnitines, sphingomyelins, PCs and lysoPCs across multiple 

classes) (see methods in Supplementary Materials).  The AbsoluteIDQ® p180 kit has been fully 
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validated according to European Medicine Agency Guidelines on bioanalytical method validation. 

Additionally, plates include an automated technical validation to approve the validity of the run and 

provide verification of the actual performance of the applied quantitative procedure including 

instrumental analysis. The technical validation of each analyzed kit plate was performed using MetIDQ® 

software based on results obtained and defined acceptance criteria for blank, zero samples, calibration 

standards and curves, low/medium/high-level QC samples and measured signal intensity of internal 

standards over the plate. This is a highly useful platform that was used in hundreds of publications, 

including several studies in AD [11, 12, 15].   

 

De-identified samples were analyzed following the manufacturer’s protocol, with metabolomics labs 

blinded to diagnosis and pathological data. Serum samples from all 807 ADNI-1 participants were 

analyzed, but after QC, a smaller number of participants were included in the analysis (Supplementary 

Figure 1). Three participants were excluded due to incomplete clinical data, 70 samples were excluded 

due to non-fasting status, and 2 samples were excluded during the multivariate outlier detection step (see 

below), leaving 732 participants included in the final analyses. Each assay plate included two sets of 

replicates: 1) A set of duplicates obtained by pooling the first 72 samples in the study (QC pool 

duplicates), and 2) 20 blinded analytical duplicates (blinded duplicates). 

 

2.3 P180 QC 

Metabolites with >40% of measurements below the lower limit of detection (LOD) were excluded from 

the analysis. Metabolite values were scaled across the different plates using the QC pool duplicates. LOD 

values were imputed using each metabolite‘s LOD/2 value. Using the blinded duplicates, we selected 

metabolites with a coefficient of variation <20% and an intraclass correlation coefficient >0.65. Based on 

the QC process, 32 of the flow injection analysis (FIA) metabolites and 14 of the UPLC metabolites were 

excluded from further analysis (Supplementary Table 5). We checked for the presence of multivariate 

outlier participants by evaluating the first and second principal components in each platform. Two 
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multivariate outliers were beyond 7 standard deviations and were therefore excluded. For the participants 

with duplicated measurements, we used the average values of the two measured values in further 

analyses.  

 

2.4 CSF Aβ1-42 and Tau Biomarkers 

Lumbar puncture was performed in the mornings after an overnight fast. Aβ1-42, total tau (t-tau), and tau 

phosphorylated at threonine 181 (p-tau181) were measured using the multiplex xMAP Luminex platform 

(Luminex Corp, Austin, TX) with Innogenetics immunoassay kit-based reagents (INNO-BIA AlzBio3; 

Ghent, Belgium; for research use-only reagents) (methods in Supplementary Materials) [45]. CSF 

samples were available and measured for 48.8% of the CN, 52% of the MCI and 54.9% of the AD 

participants. Aβ1-42-defined groups were classified as normal or pathological based on the previously 

published concentration (192 pg/ml) [46]. 

 

2.5 Magnetic Resonance Imaging (MRI) Measures 

1.5-T MRI non-accelerated sagittal volumetric 3D magnetization-prepared rapid gradient-echo MRI 

images were acquired at each performance site for the ADNI-1 participants (http://www.adni-info.org; 

http://adni.loni.usc.edu). Only images that passed QC evaluations were included. Cortical grey matter 

volumes were processed using the FreeSurfer version 4.4 image processing framework 

(http://surfer.nmr.mgh.harvard.edu/) [47]. Freesurfer ventricular volume of MRI scans that passed the QC 

was adjusted for total intracranial volume and used for longitudinal analyses. The Spatial Pattern of 

Abnormality for Recognition of Early Alzheimer’s Disease (SPARE-AD), an index that captures brain 

atrophy related to AD and has shown association with AD CSF biomarker and clinical measures, and was 

calculated for the baseline visit of ADNI-1 participants, was assessed in the present analysis [48, 49]. 

  

2.6 Medication Adjustment 
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In the ADNI and IMAS cohort, 41 major medication classes used to treat psychiatric (including different 

categories of benzodiazepines, antipsychotics, and antidepressants) and cardiovascular conditions 

(including different categories of anti-hypertensives, cholesterol treatment, and anti-diabetics), as well as 

dietary supplements (Co-Q10, fish oil, nicotinic acid, and acetyl L-carnitine) were systematically coded 

and available for model-based evaluations of the influence of each drug type on metabolite levels 

(methods in Supplementary Materials). Intake of any medication within a category was coded as 

present or absent. Dose effect was not evaluated. The list of the studied medication categories and the 

percentage of subjects taking these medications in each of the diagnostic categories for the ADNI cohort 

is listed in supplementary table 6. 

 

2.7 Statistical Analysis  

Metabolites with a skewness>2 [50] that showed a departure of the normality distribution (D’Agostino 

test p-value<0.05) [50, 51] were log10 transformed to normalize their distribution.  We implemented a 

two-stage regression approach, whereby metabolites were first adjusted for confounding medications and 

dietary supplements in a linear regression model. For each metabolite, medications were backward-

selected via Bayesian information criteria (BIC) to select an optimal combination of medications for 

preventing confounding while limiting model complexity. One AD medication class, i.e. anti-

cholinesterases, were excluded from this process due to highly significant correlations (Spearman’s rho = 

63,4%, P = 1.28 x 10-83) of these medications with diagnosis (for details, see methods in Supplementary 

Materials). The residuals for each metabolite were then carried forward to test associations with clinical 

outcomes.  

 

The cross-sectional association with categorical outcomes (clinical diagnosis and CSF Aβ1-42 group) was 

studied using a logistic regression model. For the cross-sectional quantitative outcomes (t-tau/Aβ1-42 ratio, 

SPARE-AD and ADAS-Cog 13), a linear regression model was applied. Age and gender were forced 
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covariates in all the models associating with clinical variables, and education was also forced into the 

models for ADAS-Cog 13 and clinical diagnosis, whereas APOE ε4 was backward-selected based on BIC 

for each outcome (see methods in Supplementary Materials and Supplementary Table 7). Diagnosis 

was not included as a covariate in the models in the primary analyses that studied Aβ1-42, t-tau/Aβ1-42 ratio, 

SPARE-AD and ADAS-Cog 13 associations. The p-values were Bonferroni corrected to adjust for 

multiple comparisons and a corrected 0.05 two-tailed p-value was considered significant. A Cox hazard 

model including age, gender, APOE ε4 presence, and education as covariates was used to evaluate the 

association of metabolite levels with progression from MCI to AD with a median follow-up of 3.0 years 

(IQR: 2.0-6.1). A mixed-effects model that included age, gender, education, APOE ε4 presence, time, and 

metabolite level as independent variables was used to study longitudinal associations between the 

metabolites and volumetric MRI changes  (transformed to normalized distribution)  during follow-up in 

the MCI participants (AD participants were excluded due to short follow-up) [52]. A mixed-effects model 

was also used to evaluate the association of metabolites with change in ADAS-Cog13 (transformed to 

normalized distribution) and included education as an additional covariate. Both models accounted for 

baseline cognitive and MRI measures for each participant. Median follow-up times for the MRI and 

cognitive analyses were 3.0 years (IQR: 2.0-5.0). An interaction with time was included in all mixed-

effects models for the studied metabolites.  

 

In the Rotterdam study, a linear regression model was fitted for the cross-sectional analysis with g-factor 

as the outcome and valine as the determinant, adjusting for age, gender, lipid lowering medication, and 

education. P-values and effect estimates of the significant metabolites are reported. [11C]PiB PET analysis 

for IMAS samples included age, gender, and APOE ε4 presence, along with the Aβ1-42 status on PET, as 

independent predictors of target metabolite measures using a linear regression model. All analyses were 

performed using the R software package [53]. 
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2.7.1 Co-expression Network Construction and Module Analysis  

We investigated the global baseline cross-sectional correlation structure of metabolites and their 

correlation with a subset of clinical and biomarker measures at baseline (AE1-42, Tau/AE1-42 ratio and 

ADAS-Cog13). We built the p180 co-expression network based on baseline-normalized data adjusted for 

age, education, gender, and APOE ε4 presence using the WGCNA R package [54].  

 

2.7.2 Partial Correlation Analysis 

Biochemically related metabolites and propagation patterns of effects on the clinical variables were 

investigated from a network perspective. A Gaussian graphical model (GGM) calculation was performed 

as described in Krumsiek et al. [55] using the GeneNet R package with default parameters. To illustrate 

effect propagation on clinical variables, we colored the resulting network similar to that in Mittelstrass et 

al. [56]. In brief, a GGM is an undirected graphical model based on partial correlation coefficients, i.e. 

pairwise correlation coefficients conditioned against correlations with all other included variables. GGMs, 

contrary to correlation networks, thus can reveal the direct relations between metabolites. To account for 

correlations between metabolites and clinical or other potentially predictive variables, we used metabolite 

residuals that accounted for effects of medication and dietary supplements (as described above) and 

additionally included age, gender, APOE ε4 presence, and education as covariates in the GGM generation 

process. To obtain significant partial correlations, we used a significance threshold of 0.05 after 

Bonferroni correction for all possible edges in the model (0.05/10,296 = 4.86 x 10-6). For each clinical 

variable, we colored the network representation of the GGM using the results of our regression analyses 

using sign(β)*(-log10(P)) to visualize both strength of association and direction of effect. 

 

3. RESULTS 

Metabolomic analyses were performed in the ADNI-1 cohort and key findings were further tested in the 

Rotterdam, EFR, and IMAS cohorts. Overall descriptions of sample size, composition and studied 
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outcomes across the different cohorts are shown in Supplementary Table 4. The results are presented for 

each cohort below.  

 

3.1 ADNI-1 Cohort 

In ADNI-1, CN, MCI, and AD participants did not differ in mean age, but as expected differed in APOE 

ε4 frequency, baseline cognition, MRI atrophy index, and CSF levels of T-tau and Aβ1-42. The heatmap 

(Figure 1) (and the later described co-expression networks in Supplementary Figure 2) show that the 

global (i.e. direct and indirect) correlation structure between metabolites is formed into biochemical 

classes, illustrating that the metabolites with significant findings can be seen as proxies for the group of 

their correlating metabolites (Supplementary Material File 2 presents the correlation values). 

 

3.2 ADNI-1: Metabolites Associated With Cross-Sectional Clinical, MRI and CSF Biomarker Measures 

The metabolites that remained in the analyses after the QC steps showed different correlation strengths, 

indicating groups of metabolites that may be involved in similar processes (Figure 1). After applying 

Bonferroni multiple comparison correction, 13 metabolites showed significant associations (Bonferroni 

adjusted p-value<0.05) with cognitive scores and CSF and MRI biomarker measures (Table 1). Six 

metabolites were associated with CSF Aβ1-42 positivity (PC ae C36:2, PC ae C40:3, PC ae C42:4, PC ae 

C44:4, SM (OH) C14:1, SM C16:0), four were associated with t-tau/Aβ1-42 ratio (C18, PC ae C36:2, SM 

C16:0, SM C20:2), five were associated with ADAS-Cog13 scores (C14:1, C16:1, SM C20:2, α-

aminoadipic acid -α-AAA-, and valine), and 6 were associated with SPARE-AD scores (C12, C16:1, PC 

ae C42:4, PC ae C44:4, α-AAA and valine).  In all analyses, higher acylcarnitine, PC, and SM values 

were associated with worse clinical and biomarker measures, whereas the opposite direction of 

associations was observed for valine and α–AAA values. The complete results for the 138 studied 

metabolites are listed in Supplementary Table 8, where many amines (including isoleucine, glutamate, 

tyrosine, tryptophan, glycine, proline, histidine, T4OH proline) and other metabolites within PC and SM 

classes showed significant non-comparison corrected associations with clinical markers and outcomes but 
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did not survive Bonferroni multiple comparison correction. Supplementary Tables 9 and 10 present the 

analyses adjusted by clinical diagnosis and stratified by each of the three clinical diagnostic categories, 

respectively. All significant correlations were in the same directions in the clinical diagnostic groups. 

 

We next evaluated differences in levels of key metabolites associated with cognitive or biomarker 

measures from the analyses reported above between the three diagnostic groups (CN, MCI, and AD) sub-

classified by CSF Aβ1-42 positivity status. Metabolites showed three different patterns of associations with 

the CSF AD biomarkers. PC ae C44:4, PC ae C36:2, and C18 represented the most significant examples 

of each of this patterns and the values in the six groups are shown in Figure 2. Of note, CN participants 

(red boxes) with pathological CSF Aβ1-42 values showed significant metabolic changes in a specific group 

of metabolites when compared to CN with no pathological CSF Aβ1-42 values (Figure 2A). Some of the 

changes associated with CSF Aβ1-42 values appeared in clinical stages of disease (MCI and AD) (Figure 

2B). Other metabolic changes were only observed in comparing CN participants to clinically impaired 

subjects (Figure 2C), but showed no associations with pathological CSF Aβ1-42 status. Figure 2D 

illustrates valine correlation with cognition in the ADNI-1 study.  

 

3.3 Metabolites Associated with Longitudinal Outcomes in the ADNI-1 Cohort 

We evaluated whether levels of metabolites at baseline were associated with 1) ADAS-Cog13 changes up 

to 5 years; 2) ventricular volume changes up to 5 years; or 3) progression from MCI to AD (Table 2). 

Regression coefficients of six metabolites (PC ae C40:3, PC ae C42:4, PC ae C44:4, SM (OH) C14:1, SM 

C16:0 and SM C20:2) showed a positive association with all three longitudinal outcomes. In addition, the 

coefficients for valine and α–AAA were positively associated with cognitive decline, while the coefficient 

for valine was negatively associated with ventricular volume. Figure 3 shows some of these associations 

as examples, including Figure 3A which shows the Cox hazards model of the association of SM C20:2 

with conversion from MCI to AD, and Figure 3B which shows the association between baseline 
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concentration of SM 20:2 (presented as tertiles) and longitudinal cognitive (ADAS-Cog13) and MRI 

(brain ventricular volume) change.  

 

3.4 Evaluation of Findings in the Rotterdam and ERF Studies  

In the Rotterdam and ERF studies, only a subset of metabolites were measured from the panel of P180 

metabolites evaluated in the ADNI-1 study (P150 panel, Supplementary Table 11). Using a targeted 

approach, we tested whether the metabolites that showed a significant association in the ADNI-1 study 

were also correlated with cognition (general cognitive ability: g-factor) in the Rotterdam Study or ERF.  

For the cross-sectional analysis, 8 metabolites were available in the ERF study. Two of these metabolites 

(PC ae C40:3, SM C20:2) were associated with cross-sectional general cognitive ability in the expected 

direction based on the discovery ADNI-1 cohort. Notice that higher general cognitive ability levels 

indicate better cognition as opposed to ADAS-Cog13. Valine was strongly associated with a higher 

general cognitive ability (p=0.00035) in the Rotterdam study (Figure 2E), which is in line with the 

association with ADAS-Cog13 in ADNI-1 (Figure 2D). Longitudinally, 342 participants developed AD 

in the Rotterdam study after a median follow-up time of 9.7 years (IQR 5.6-10.5). A Cox proportional 

hazard model was fitted adjusting for age at baseline, gender, education and lipid-lowering medication, 

and indicated that a one-SD increase in valine concentration was also associated with a decreased risk of 

AD (p=0.044). 

 

3.5 Evaluation of Aβ1-42 Signature in the IMAS Cohort 

Three of the six metabolites (PC ae 42:4, PC ae 44:4 and SM(OH) C14:1) that showed an association with 

CSF Aβ1-42 positivity in the ADNI-1 cohort were also associated with amyloid positivity on PET in the 

IMAS cohort (Supplementary Table 12) (n=34).  

 

3.6 Partial Correlation Networks for Aβ1-42, T-Tau, SPARE AD, ADAS-Cog13 – Metabolic Trajectory for 

Disease 
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We strived to define insights into the trajectory of biochemical changes that correlate with established 

models for disease [30], Aβ pathology, tau, imaging changes, and cognitive decline, building partial 

correlation networks for each clinical measure. 

 

The partial correlation networks established direct connections between the measured metabolites, which 

have been shown to depict direct biochemical relationships between metabolites while omitting mediated 

correlations [55, 57].  Figure 4 integrates the strength of the partial correlations between metabolites and 

overlays on these networks the associations with the studied outcomes Aβ1-42, t-tau, SPARE-AD, and 

ADAS-Cog13 (partial correlation networks for p-tau and t-tau/Aβ1-42 ratio are not shown). The networks 

showing the direct links between metabolites (nodes) identified through their strong partial correlations 

(edges) expand the heatmap information (Figure 1). Through coloring of the metabolite nodes by their 

association to CSF, imaging and cognitive markers, respectively (where bright colors indicate strong 

associations and blue and red color indicate up and down-regulation of metabolites), these networks 

demonstrate how the effects of clinical variables propagate along the edges within the network suggesting 

that the results follow biochemically plausible pathways. The studied outcomes cover the different stages 

of AD, matching known biomarkers of disease [30]. 

 

The network for Aβ1-42 (Figure 4A) highlighted direct correlations with short- and medium-chain SMs 

and PC with ether-bonds, suggesting a role for membrane structure and function, contact sites, and 

membrane signaling in amyloid pathology. The correlation pattern for t-tau (Figure 4B) highlighted 

metabolites among long chain acylcarnitines and SMs implicated in lipid metabolism. The SPARE-AD 

and ADAS-Cog13 (Figure 4B) partial correlation networks were very similar, suggesting associations of 

brain atrophy and cognitive decline with metabolic changes in branched chain amino acids and short 

chain acylcarnitines implicated in mitochondrial energetics as well as additional changes in lipid 

metabolism. 
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3.7 Co-expression Network- Direct and Indirect Connections for Key Metabolites 

The partial correlation networks above evaluated only direct connections among metabolites. To capture 

both indirect and direct correlations, we built co-expression networks to evaluate the number of modules 

in our dataset and evaluate additional connections between key metabolites identified as related to 

cognitive or biomarker measures in ADNI-1. The full co-expression network, which identified seven 

metabolic modules, can be found in Supplementary Figure 2 and Supplementary Material File 3 

presents each of the individual correlations. 

 

We investigated the correlation structure of the three metabolites in the ERF and Rotterdam datasets that 

significantly associated with cognition, namely PC ae C40:3, SM C20:2, valine as shown in Figure 5. 

The subnetwork shows these three metabolites to have high correlations (marked as red edges) to other 

functional metabolic modules via direct and indirect links. Valine was highly correlated with isoleucine 

and α-AAA, whereas SM C20:2 was highly correlated with a subset of the SMs including SM C16:0. 

Finally, PC ae C40:3 was highly correlated with PCs and SMs, but not amines and acylcarnitines. These 

SMs and PCs were significantly associated with cognitive scores, CSF biomarkers and MRI measures 

(Table 1).  
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4. DISCUSSION      

The Alzheimer Disease Metabolomics Consortium (ADMC) funded by the NIA under the AMP-AD and 

MOVE-AD initiatives and in partnership with ADNI has as its goal to create a comprehensive 

metabolomics database for AD. This data will fill in biochemical knowledge about disease mechanisms 

that can be used as a roadmap for novel drug discovery and establishment of blood-based biomarkers.  

Eight complementary, targeted and non-targeted, metabolomics platforms are currently in the process of 

generating data on ADNI participants to define the metabolic trajectory of disease connecting central and 

peripheral metabolic failures in a pathway and network context. We seek to replicate earlier findings and 

test hypotheses, but also expand on biochemical coverage to better understand disease pathogenesis by 

using complementary data unique to ADNI-1.  The unique opportunity of having longitudinal cognitive 

and imaging data on each subject for close to a decade enables identification of peripheral biomarkers that 

are disease related.  

 

This is the first report from ADMC on use of a targeted, highly validated metabolomics platform with the 

analysis guided by CSF markers and imaging data.  Using 732 baseline serum samples from the ADNI-1 

cohort, we systematically evaluated the relationships between metabolomics data and cross-sectional 

clinical, CSF, and MRI measures, as well as their association with longitudinal cognitive and brain 

volume changes. We demonstrate a novel approach to the analysis of neurodegenerative disease 

mechanisms. Multiple comparisons and covariate-adjusted analyses, that included relevant medications, 

identified sets of metabolites that became altered at specific disease stages (preclinical AD with 

biomarker-defined AD pathology vs symptomatic stages) [30]. Using partial correlation networks we 

integrate our findings of metabolic effects on AD pathogenesis, linking central and peripheral metabolism 

in a way that consistently reconciles biochemical trajectories of disease with this established temporal 

sequence of pathophysiological stages of AD. In the following, we therefore discuss our findings in their 

temporal order along AD pathogenesis.  
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Aβ pathology 

Changes observed earliest in AD, namely in biomarker-defined preclinical stages [58] in CN participants, 

were higher levels of a specific set of PCs (PC ae C36.2, PC ae C40.3, PC ae C42.4, and PC ae C44.4) 

and SMs (SM (OH) C14.1, SM C16.0). These metabolites were associated with abnormal CSF Aβ1-42 

values in CN participants to a similar degree as observed in MCI, indicating an early role of ether-

containing PC species and SM in the development of the disease. Interestingly, most of these metabolites 

were also associated with later cognitive decline and global brain atrophy changes in the MCI group 

(Table 1). The use of information on AD CSF biomarkers was extremely useful and guided our 

metabolomics data . Only after sub-stratification of the diagnostic groups (CN, MCI and AD) based on 

CSF biomarkers were we able to detect the increased values of these metabolites in participants with CSF 

pathology stressing the importance of using biomarkers to detect early biochemical changes [59]. Our 

findings along with those of several others [11, 15] all point to problems with phospholipid metabolism 

that happen early in the disease process. These early changes by themselves are not sufficient predictors 

of disease or progression but they might provide extremely valuable mechanistic insights.  

 

Partial correlation networks showed that the pathological CSF Aβ1-42 values were associated with two 

groups of lipids, composed primarily of ether-containing PCs and relatively short-chain SMs. Ether-

containing PC (PC ae) metabolites are PC species with an ether linkage of an aliphatic chain to the first 

hydroxyl position of glycerol. These lipids are not completely characterized and may represent a mixture 

of lipid metabolites including plasmalogens, acyl-alkyl PC or PC containing an odd-numbered fatty acyl 

chain.  When measured in the serum, the ether-containing lipids are derived from liver metabolism and 

are possible indicators of peroxisomal function and lipid oxidation status [60, 61]. Plasmalogens and SMs 

are enriched in membrane rafts where they facilitate signal transduction and serve as a source for lipid 

secondary messengers [62]. The association of PCs and SMs in our study and others [14, 63] with early 

changes in AD and with pathological CSF Aβ1-42 levels (Figures 4B and 5) may be indicative of early 
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neurodegeneration and loss of membrane function. Ether-linked PC metabolites are found in high 

abundance in plasma membranes, and are a source for signaling molecules [64], particularly platelet 

activating factor and arachidonic acid. Similarly, they are found in high abundance in immune cells, are 

regulatory factors, and may be part of the link between inflammation and AD [65]. Both SMs and ether-

linked PCs may be located in membrane rafts, supporting the hypothesis that lipid rafts are directly 

associated with regulation of amyloid precursor protein processing, the production of Aβ1-42, and facilitate 

its aggregation [66]. All of these lipid biological functions related to Aβ1-42 might provide great insight 

about mechanisms of Aβ1-42 pathology, but at this early stage, we cannot assign cause or effect.  Because 

this study was conducted using peripheral blood, we cannot directly associate the changes in neuronal 

lipid rafts with changes in signaling and accumulation of cerebral Aβ1-42.   

 

Previous smaller studies relying on clinical measures identified only associations between these 

metabolite categories and dementia diagnosis or clinical progression [12, 15, 67], indicating that these 

metabolic pathways may contribute significantly to AD pathophysiology. Differences in the specific 

metabolites identified in the published studies [12, 15, 67] may be due to differences in sample selection 

criteria, disease severity or for the absence or presence of controlling for different confounders in the data 

analysis.  

 

Tau pathology 

In this study, pathological CSF Aβ1-42 shows an association with ether-linked PC, and shorter chain SM, 

but not amines, lysoPC, or acylcarnitines.  Aβ1-42 changes happen early in disease, followed by 

accumulation of tau protein in the CSF [30]. In our analysis, tau related metabolites were very different 

both from those that correlate with Aβ1-42  as well as from metabolites associated with brain atrophy and 

cognitive changes. Tau related metabolites thus appear to belong to an intermediate stage between Aβ1-42 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26 
 

accumulation and changes in imaging and cognitive function (Figures 4B), further supporting our 

hypothesis that different metabolic events occur at different disease stages.  

 

Long-chain acylcarnitines, PC ae C36:2, and SM.C20:2 were higher only in cognitively impaired 

participants with AD-like CSF Aβ1-42 values, indicating that changes in these metabolites are more 

specific to AD-related neurodegeneration reflecting possible changes in multiple cellular processes. 

Specifically, accumulation of acylcarnitine species containing long fatty acyl chains indicates malfunction 

of fatty acid transport and/or E-oxidation in mitochondria, inefficient utilization of fatty acids as energy 

substrates [68] or alterations in tau metabolism [69]. In the current study, we revealed that the levels of 

several acylcarnitine species were increased either at the MCI stage or in clinical AD [70] (Table 1). 

Acylcarnitines  have important functions in the brain [70] such as mitochondrial function, energetics, and 

neurotransmission that need to be further explored and connected to peripheral function.   

 

Brain volume changes and cognitive decline  

In our study, partial correlation networks show a pattern of inverse associations between brain volume 

changes (measured by SPARE-AD) and cognition (ADAS-Cog 13) and long and short acylcarnitines, 

valine, and α-AAA, indicating a shift in energy substrate utilization in later stages of AD (Figure 4). By 

using a second type of networking analysis, a co-expression network, our data show the relationship 

between valine and short acylcarnitines (Figure 5, dark green cluster), reinforcing the hypothesized 

changes in energetics. The association of the long chain acylcarnitines, odd-numbered acylcarnitines and 

amino acids in relation with ADAS-Cog scores, supports a switch of utilization from fatty acids to amino 

acids and glucose. In the network analysis, the amines and short-chain acylcarnitines did not link to PCs 

and SMs, rather they clustered together in smaller groups. This may indicate that the short chain 

acylcarnitines are associated in energy and amino acid metabolism rather than lipid metabolism in AD 

participants. This novel finding indicates a disease-associated transition in pathways for utilization of 
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energy substrates. Whether such a switch is associated specifically with AD pathogenesis or is a function 

of aging [71] remains to be tested. Interestingly, ADAS-Cog13 does not show the associations with SMs 

or ether-linked PCs found with pathological CSF Aβ1-42. Therefore, it is possible that metabolic pathways 

other than those associated with lipid rafts are dysregulated later in the disease process.  

 

It is not clear if insulin resistance is a cause, an effect or some combination of cause and effect in AD 

[72]. Insulin resistance, obesity, and diabetes are risk factors for AD [73], with lipid metabolism disorder 

(and inflammation) being a common link between metabolic disease, vascular disease, and AD. Several 

ether-linked PC metabolites have been associated with the risk of diabetes [74 ], insulin resistance 

promotes aminoacidaemia and the use of amino acids for energy [68], and BCAA and α-AAA have been 

identified as predicting diabetes risk [75, 76]. BCAAs (valine, leucine and isoleucine) play central roles in 

metabolism and have been implicated in insulin resistance, type 2 diabetes mellitus (T2DM) and obesity. 

Our findings in ADNI related to low levels of valine and its correlation with cognitive changes were 

confirmed in the large Rotterdam study, pointing to an important role for this BCAA in cognitive changes 

in AD.  Low levels of BCAAs have been implicated in hepatic insulin resistance in liver disease and may 

have a broader role in insulin resistance in the brain [77]. The seemingly paradoxical directionality 

difference in correlation of BCAAs with diabetes and cognition needs to be further evaluated in 

longitudinal studies taking into account weight changes, tissue type and differences in human and animal 

model systems [28, 78]. Our understanding of the biochemical crossroads between diabetes and AD could 

be greatly enhanced by metabolic profiling of both central and peripheral tissues in both diseases and over 

time.  

 

Concluding remarks 

In summary, by using metabolomics and network approaches this study has revealed lipid metabolic 

changes related to early stages of disease, as well as later changes related to mitochondrial energetics and 
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energy utilization. We hypothesize that the lipid changes measured in this study reflect alterations in 

membrane structure and function early in the disease process, and suggest a change in lipid rafts, which in 

turn, cause alterations in Aβ processing [66]. We hypothesize that over time, the changes in lipid 

membranes, particularly mitochondrial membranes results in increased lipid oxidation, loss of membrane 

potential, and changes in membrane transport [79, 80].  All of these lipid membrane changes might be 

reflected as disruption in BCAA as an energy source, production of acylcarnitines and altered energy 

substrate utilization. The link between the altered energy metabolism, glycolysis, use of ketone bodies, 

and development of insulin resistance are all subject of ongoing longitudinal studies using complementary 

metabolomics platforms that enable the study of those biochemical pathways. The specific interactions 

between the peripheral metabolic network changes, central changes and the timeline of AD 

pathophysiology reveal that peripheral metabolic changes can impact long-term brain health and function. 

This study thus provides an approach to define viable disease biomarkers based on understanding of 

whole-body AD pathophysiology at a systems level.  

 

Previous studies have shown seemingly conflicting results regarding the diagnostic and prognostic 

classification of metabolomics data in AD [11, 15].  Our findings show that using a network approach 

many of these findings might be related such as early changes in phospholipid metabolism. Large meta 

analysis across many metabolomics studies using our network approaches is ongoing 

By using the unique data available as part of ADNI, we were able to establish robust associations 

accounting for several confounders that lead to a better understanding of metabolic changes present in 

AD. Gender showed the strongest associations with many metabolites, but also age, BMI and several 

medications and food supplements, like statins and fish oils, had significant effects on several 

metabolites. The fact that medication use varied among the groups (for example fish oil intake was more 

frequent in CN and MCI subjects while use of SSRIs was lower in CN subjects), and that sometimes 

studied groups are unbalanced in terms of demographics makes it imperative to account for all possible 

confounders. Our results thus suggest that future studies should account for associations of metabolites 
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with both gender and medications. This is an important outcome, as prior studies have failed to address 

effects of medications on the metabolome; a limitation that can cause misleading conclusions. Many of 

the drugs used by AD patients were shown to have profound effects on metabolism (for reviews on drug 

effects see Kaddurah-Daouk and Weinshilboum [8, 9]).  A detailed analysis of medications as confounds 

and meta-analysis of previously reported metabolomics studies addressing confounds will be published 

separately.  

 

Limitations of our study are several. At this early stage, we cannot determine which of the metabolic 

changes we see are causative and which are a consequence of disease. Future mechanistic studies in 

model systems are needed to test hypothesis generated along with building of predictive metabolic 

networks. Gender metabolic differences are clear from this dataset and although adjusted for in this study 

ongoing analysis and modeling of gender differences will be key. Profiling blood samples across the 

trajectory of disease will provide valuable information and is currently on going. In addition, analysis of 

CN cohort with normal CSF Aβ1-42 values will be useful to evaluate within subject variability. Linking 

peripheral and central metabolic changes in blood, CSF and brain tissue is critical for better defining 

peripheral influences like diet and environment on brain health and disease. The effect of confounds like 

medications impacts metabolomics findings in significant ways and must be addressed carefully. In our 

study, we had medication data for two of the cohort (ADNI and IMAS), but this information was not 

available for the Rotterdam and ERF studies. Therefore, there are differences in how the data was 

processed across cohorts. Finally, neuropsychological assessments evaluated in the ADNI and Rotterdam 

and ERF scores were not the same. ADNI analyses were based on a global cognitive scale, whereas in the 

Rotterdam and ERF studies a composite measure, the g-factor. Therefore, these scales might differently 

represent the summary of the diverse cognitive functions. 
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Over the past decade we have gained significant knowledge about effects of commonly used medications 

and have tried to address their confounds in studies like ADNI. More sophisticated modeling approaches 

will be needed to address complex interactions with medications so this study presents early effort. 

Defining genetic factors that influence metabolic changes is key and is ongoing.  Broad biochemical 

coverage is needed to better define mechanism and trajectory of disease. The ADMC is producing 

metabolomics datasets from eight targeted and non-targeted platforms on the large ADNI cohort.  After 

these and other cohort datasets are available, we look forward to working with the international scientific 

community to build a comprehensive model for AD using integrated multi-omic network approaches.  

  

.   
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FIGURE LEGENDS 

Figure 1. Clustering of pairwise metabolite correlations and association results with clinical 

variables. 

A. Heatmap of Spearman correlations between the residuals of metabolite concentrations on the single 

metabolites. Metabolites are clustered using hierarchical clustering using the Euclidean distance metric. 

The clustering assigns metabolites to their biochemical class: amino acids, biogenic amines, short chain 

and long chain acylcarnitines, lyso-lipids, PC and SM. Significant clusters of acyl carnitines are outlined 

in blue and amines outlined in brown. B. Association results of the regression analyses. The distribution 

of association results of metabolites with clinical variables mirrors the correlation structure of the 

metabolites. Abbreviations: Path. Aβ1-42 – Pathological A β1-42; SDMA - Symmetric dimethylarginine; T4-

OH-Pro – trans-4-Hydroxyproline; α-AAA – α-Aminoadipic acid; C0 – free carnitine; Cx:y – 

acylcarnitines; Cx:y-OH – hydroxylacylcarnitines, Cx:y-DC – dicarboxylacylcarnitines; SMx:y – 

sphingomyelins; SM (OH) x:y – N-hydroxylacyloylsphingosyl-phosphocholine; PC – glycero-

phosphatidylcholines (aa = diacyl, ae = acyl-alkyl); lysoPC – lyso-glycero-phosphatidylcholines (a = acyl); 

CN – cognitively normal; MCI –mild cognitive impairment; AD –Alzheimer disease;  

 

Figure 2. Relationship between serum metabolites, clinical diagnosis, and Aβ1-42  status 

Serum PC ae 44:4 (A), PC ae 44:4 (B) and C18 (C) concentrations stratified by clinical diagnosis and 

CSF Aβ1-42–defined groups. The concentration of each metabolite is shown for each diagnosis Red: CN, 

Green: MCI, Blue: AD and by N. Abeta: normal concentrations of Aβ1-42 (>192 pg/ml), and Path. Abeta: 

Pathological concentrations of Aβ1-42 (<192 pg/ml), Y-axes are values for each metabolite. Scatterplot for 

ADAS-Cog13 and serum valine values (D). Black line and shading is the regression line and 95% 

confidence interval. D and E correlations between valine levels and cognitive decline in ADNI-1 and 

Rotterdam respectively.  
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Abbreviations: SDMA - Symmetric dimethylarginine; T4-OH-Pro – trans-4-Hydroxyproline; α-AAA – α-

Aminoadipic acid; C0 – free carnitine; Cx:y – acylcarnitines; Cx:y-OH – hydroxylacylcarnitines, Cx:y-

DC – dicarboxylacylcarnitines; SMx:y – sphingomyelins; SM (OH) x:y – N-hydroxylacyloylsphingosyl-

phosphocholine; PC – glycero-phosphatidylcholines (aa = diacyl, ae = acyl-alkyl); lysoPC – lyso- glycero-

phosphatidylcholines (a = acyl). 

 

Figure 3. Longitudinal associations for SM C20:2 

(A) Cox hazards model of the association of conversion from MCI to AD. Black line: 1st tertile, Red line: 

2nd tertile, Green line: 3rd tertile. Analysis was conducted using quantitative values and stratification by 

tertiles was used only for graphical representation. 

(B) Association between baseline concentrations of SM 20:2 and longitudinal cognitive (ADAS-Cog13) 

and imaging (MRI: brain ventricular volume) changes during follow-up. Lines represent trajectories on 

subjects on the 25th percentile (black line), 50th percentile (red line), 75th percentile (green line) of baseline 

SM 20:2. Y-axes are ADAS-Cog13 score (left) and Ventricular Volume (right). Trajectories for these 

values are calculated based on the studied mixed-effects models. 

 

Figure 4. Network model showing metabolic pathways correlated with the temporal evolution of 

biomarkers and clinical variables in AD.  

A: Partial correlation network. Gaussian graphical model of metabolite concentrations showing 

reconstructed metabolic pathways and highlighting of the different modules involved in the steps along 

the temporal evolution of biomarkers and clinical variables in AD. Nodes in the network represent the 

metabolites, edges (lines) illustrate the strength and direction of their partial correlations. Only partial 

correlations significant after Bonferroni correction for all possible edges are included. Labels show the 

major classes of metabolites included in our study. Grey circles outline the modules highlighted in panel 

B. 
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B: Schematic diagram of the model of temporal evolution of biomarkers in AD according to Clifford and 

Holtzman [30], augmented with colored versions of the network from panel A. In these networks, nodes 

are highlighted according to the strength and direction of the metabolite’s association with the respective 

clinical trait with blue as positive and red as negative (networks in temporal order from left to right: 

Pathological Aβ1-42, T-tau, SPARE-AD, and ADAS-Cog 13). Significant associations are colored in dark 

blue/bright red, weaker (but at least nominally significant at 0.05) associations are displayed in fainter 

colors. Modules of metabolites implicated in the respective trait are highlighted by circles colored by their 

first occurrence in the temporal order following the color scheme of the time sequence on the bottom. 

The partial correlation network for Aβ1-42 (Figure 4A) highlighted direct correlations with short- and 

medium-chain SM and PC with ether-bonds suggesting a role for membrane structure and function, 

contact sites, and membrane signaling in amyloid pathology. There was a different pattern for tau (Figure 

4B) with highlighted metabolites with long chain acylcarnitines and SM implicated in lipid metabolism 

showing association with T-tau level. The SPARE-AD  and ADAS-Cog13  partial correlation networks 

were very similar suggesting associations of brain atrophy and cognitive decline with metabolic changes 

in BCAAs and short chain acylcarnitines that have been implicated in mitochondrial energetics as well as 

additional changes in lipid metabolism. 

 

Figure 5. Co-expression subnetwork with direct and indirect interconnections between select 

metabolites  

A co-expression sub-network focused on three metabolites also identified in the Rotterdam dataset (PC ae 

C40:3, Valine, and SM C20:2) was generated from the primary network (Supplementary Figure 2). The 

subnetwork shows these three metabolites have high correlations (red edges -lines-) and lower 

correlations (green edges lines-) to multiple modules via direct and indirect interconnections. Each 

module is denoted by a color representing a robust set of co-regulated metabolites in interconnected 

biochemical pathways e.g. orange module contained a subset of amines, green module consists of long 

chain acylcarnitines, teal, brown and blue modules contained exclusively PC and lyso PC, red module 
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contained SM and PC, grey module contained short chain acylcarnitines and other amines. Each node 

represents a metabolite.  The edge (line) opacity is proportional to the Pearson correlation, i.e. i.e. lighter 

means weaker correlation value and darker means stronger correlation. The inter-module edges represent 

correlations and potentially indirect interactions among metabolites and biochemical pathways. The co-

expression network captures all significant associations between metabolites and reveals a global 

correlation structure and interconnections among different modules that adds to our understanding of the 

disease network. 
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Table 1. Metabolites associated with clinical diagnosis, MRI or CSF biomarkers after 

Bonferroni correction. 

Metabolites MCI AD Aβ1-42 T-Tau/Aβ1-42 ADAS-Cog13 SPARE-AD 

C12 0.9 (1.0) -1.62 (1.0) 1.22 (1.0) 0.26 (0.33) 5.88 (0.073) 0.87 (0.041) 

C14:1 10.79 (1.0) -12.25 (1.0) 12.93 (1.0) 2.46 (0.05) 52.21 (0.037) 6.8 (0.1) 

C16:1 1.25 (1.0) -2.098 (1.0) 1.62 (1.0) 0.38 (0.091) 9.4 (0.0037) 1.2 (0.020) 

C18 14.62 (1.0) -19.27 (1.0) 21.62 (1.0) 4.64 (0.0055) 64.31 (0.5) 10.0095 (0.2) 

PC ae 

C36:2 

0.085 

(0.33) 
-0.082 (1.0) 

0.16 

(0.007) 
0.018 (0.013) 0.23 (1.0) 0.027 (1.0) 

PC ae 

C40:3 
0.98 (1.0) -3.27 (1.0) 

5.76 

(0.017) 
0.49 (0.55) 2.72 (1.0) 0.26 (1.0) 

PC ae 

C42:4 

1.62 

(0.063) 
-1.51 (0.88) 

2.32 

(0.017) 
0.19 (0.75) 3.63 (1.0) 0.79 (0.049) 

PC ae 

C44:4 
3.029 (1.0) -3.37 (1.0) 

6.11 

(0.016) 
0.6 (0.089) 11.24 (0.64) 2.059 (0.037) 

SM (OH) 

C14:1 
0.06 (1.0) -0.054 (1.0) 

0.24 

(0.044) 
0.027 (0.081) 0.2 (1.0) 0.016 (1.0) 

SM C16:0 
0.0065 

(1.0) 

-0.0074 

(1.0) 

0.015 

(0.016) 

0.0017 

(0.013) 
0.024 (1.0) 0.0037 (0.57) 

SM C20:2 0.66 (1.0) 
-1.082 

(0.22) 
0.74 (1.0) 0.18 (0.047) 

4.57 

(<0.0001) 
0.4 (0.48) 

α-AAA -0.46 (1.0) 0.67 (1.0) -0.68 (1.0) -0.13 (0.098) -3.7 (0.0025) -0.61 (<0.0001) 

Valine 
-0.0038 

(1.0) 

0.0073 

(0.079) 

-0.004 

(1.0) 
-0.0006 (1.0) 

-0.028 

(<0.0001) 

-0.0039 

(<0.0001) 
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AD: Alzheimer disease; MCI: mild cognitive impairment; SPARE-AD: Spatial Pattern of Abnormalities 

for Recognition of Early AD. 

The cells include the logistic (MCI and AD) and linear (Aβ1-42, T-Tau/Aβ1-42, ADAS-Cog13, SPARE-AD) 

regression coefficients and, in parenthesis, the Bonferroni corrected p-value.   

All model included age, and gender as covariates. APOE ε4 presence included in Aβ1-42 model and 

education was included in the MCI, AD and ADAS-Cog13 models. A complete list is found in 

Supplementary Table 2.  
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Table 2. Association of metabolites with longitudinal cognitive and MRI changes in 

MCI. 

Analytes ADAS-Cog13 

Change 

Ventricle Volume 

Change 

Progression MCI to 

AD Dementia 

C12 0.091 (0.26) 0.11 (0.73) 1.37 (0.4) 

C14:1 1.39 (0.034) 7.085 (0.006) 2.11 (0.22) 

C16:1 0.15 (0.13) 0.67 (0.092) 1.9 (0.19) 

C18 -0.16 (0.87) 1.94 (0.64) 2.41 (0.18) 

PC ae C36:2 0.0075 (0.094) 0.031 (0.096) 1.056 (0.012) 

PC ae C40:3 0.38 (0.02) 1.5 (0.020) 5.98 (0.027) 

PC ae C42:4 0.15 (0.04) 0.72 (0.013) 1.96 (0.042) 

PC ae C44:4 0.49 (0.0076) 2.33 (0.0012) 5.89 (0.027) 

SM (OH) C14:1 0.015 (0.04) 0.075 (0.01) 1.08 (0.025) 

SM C16:0 0.0009 (0.025) 0.0037 (0.023) 1.004 (0.029) 

SM C20:2 0.11 (0.0078) 0.48 (0.0035) 1.9 (0.0023) 

α-AAA -0.093 (0.022) -0.29 (0.087) 0.68 (0.061) 

Valine -0.0006 (0.035) -0.0027 (0.026) 1.0 (0.27) 

α-AAA: α-aminoadipic acid ; AD: Alzheimer disease; MCI: mild cognitive impairment. 

Table depicts the association between selected metabolites and longitudinal ADAS-Cog13 

(Column 2) and ventricular volume (Column 3) in mixed effects models that were age, 

gender and APOE adjusted. In addition, the ADAS-Cog13 model was adjusted for 

education. Boxes contain the coefficients and, in parenthesis, the p-values. The last column 

(Column 4) presents the associations of the metabolites with progression from MCI to AD 

in Cox hazards models that included age, gender, education, and APOE as covariates. 
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Values represent hazard ratio and, in parenthesis, the p-values. Significant associations are 

shaded for an easier visualization. All p values were not multiple comparison corrected. 
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