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Abstract

Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and
technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German
population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in
whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip
array. Gene expression signal intensities were similar after applying the log2 or the variance-stabilizing transformation. In
all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially
influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification
batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation
and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the
monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the
expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known
single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included
common SNPs (minor allele frequency .5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific
expression signals (Bonferroni corrected p-value,0.05), but in almost half of these events the signal intensities were even
increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on
hybridization efficiency. In summary, adjustment for a few selected technical factors greatly improved reliability of gene
expression analyses. Such adjustments are particularly required for meta-analyses.
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Introduction

Global gene expression studies are widely conducted in

molecular biology and functional genomics [1]. They have

successfully provided new insights into the etiology of common

diseases [2]. Especially for cancer, gene expression profiling is

already used in medical applications, such as the identification of

breast cancer disease subgroups using the intrinsic subtype

classifier [3] or the prognosis of breast-cancer survival using

MammaPrint [4,5]. Furthermore, gene expression analysis is

applied in clinical trials to examine drug response [6] (for an

overview, see [7]) and some gene expression profiles have already

been cleared by the US Food and Drug Administration (FDA) as

in vitro diagnostic multiple index assay, now generally termed

companion diagnostic, to be used as predictive biomarkers for

guiding treatment decision [8,9].

Although gene expression studies have been successfully applied

to a wide range of clinical issues, they are often criticized for low

robustness and lack of reproducibility [10,11]. Concerns also

include improper statistical analysis or validation, insufficient

control of false positives, and inadequate reporting of methods [1].

As a consequence, virtually all major journals have adopted

standards for the conduct and reporting of microarray experi-

ments [12].

When multiple independent gene expression studies are avail-

able, their combined analysis or even a meta-analysis can increase

the reliability and generalizability of the results [1]. Another

important advantage of combined analyses or meta-analyses is the

increase in statistical power. Furthermore, the combination of

several studies may help to identify and to better understand

heterogeneity between studies. To this end, meta-analyses have

been performed on studies covering a wide range of diseases,

ranging from various cancers [13,14,15,16] to very rare diseases

including intracranial aneurysms [17] and systemic lupus erythe-

matosus [18]. Recently, several methodological developments have

been made to facilitate meta-analyses of gene expression studies

[19,20] and several web resources are now available [21,22,23,24].

Despite these developments meta-analyses of global gene expression

studies remain challenging. The issues encountered include

problems common to traditional meta-analyses [25], such as

differences in study design, as well as concerns that are specific for

analyzing gene expression data [1,26]. One of the latter aspects is

related to the technology used. Specifically, different types of

microarrays vary fundamentally in important aspects, such as length

of probes, scale of measurements or coefficients of variation [1,26].

As a result, cross-platform comparisons are difficult to perform.

Even if several independent studies use the same microarray

technology, there may be study-specific laboratory effects,

originating from differences in experimental procedures, labora-

tory protocols, sample preparation [1,26], or type of tissue [27]. In

addition, different preprocessing of the data as well as batch

effects, e.g. due to grouped sample processing, may lead to

differences in measured gene expression levels in large sample size

studies.

Recently, we have established the MetaXpress (Meta-Analysis

of Gene Expression) Consortium within the German Center for

Cardiovascular Disease (DZHK) to facilitate the meta-analysis of

gene expression studies. Members of the consortium are three

population-based cohorts, the Study of Health in Pomerania

(SHIP-TREND) [28], the Cooperative Health Research in the

Region of Augsburg (KORA F4) [29], and the Gutenberg Health
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Study (GHS) [30]. In all three studies, gene expression levels in

terms of mRNA abundances were measured using BeadChip

arrays (Illumina, HumanHT-12 v3). The gene expression data

were generated from whole blood cells (SHIP-TREND, n = 991

and KORA F4, n = 993) or from blood monocytes (GHS,

n = 1374).

In the present study, we investigated the influence of data

preprocessing and technical factors related to sample processing

on measured gene expression levels in whole blood cells or blood

monocytes. First, we compared the log2 transformation (L2T) of

intensity values [31] with the recently proposed variance-

stabilizing transformation (VST) [32]. Next, we searched for main

factors correlating with the overall expression levels. Since within

study variation is often corrected for by adjusting for principal

components (PC), we analyzed the correlation between the PCs

and technical as well as biological factors. Our data demonstrate

that the variation of gene expression signal intensities can be

reduced by appropriate technical covariate adjustment. Previously,

doubts have been raised about the suitability of using probes

containing single nucleotide polymorphisms (SNPs) in gene

expression studies [33]. We therefore investigated to what extent

signal intensities were affected by mismatch alleles of SNPs within

probes. Furthermore, we discuss how gene expression levels will be

compared between the different studies in a Supplement (Text S1).

Finally, we provide a probe annotation file based on transcript

mapping.

Results

Study description
In this project, we analyzed gene expression levels in terms of

specific mRNA abundances measured in whole blood cell (SHIP-

TREND and KORA F4) or blood monocyte samples (GHS). The

descriptive statistics of the participants and parameters analyzed in

the study are provided in Table 1 and in Table S1. We

investigated the effects of body mass index (BMI) as an example

phenotype which is known to be strongly associated with gene

expression profiles in whole blood cells [34] and monocytes [30].

Furthermore, we analyzed a pseudo-phenotype generated by

selecting random values from a standard normal distribution. This

so-called random phenotype is free of any correlation with or

confounding effects of technical parameters related to the arrays or

sample phenotypes.

Comparison of log2 and variance-stabilizing
transformation

To assess possible differences between different data prepro-

cessing steps, we compared L2T signal intensity data with those

obtained after VST as implemented in the lumi Bioconductor

package [31]. L2T data were almost equal to the VST data for

signal intensities greater than 29, but recognizably smaller for low

intensity values, which corresponds to results published before

(Figure S1) [32]. Both the absolute effect sizes and standard errors

(SEs) were smaller with VST data than with L2T data for low

signal intensities resulting in similar association p-values across the

Table 1. Cohort characteristics.

Variable (mean/SD) SHIP-TREND KORA F4 GHS

Sample size 991 993 1374

Storage time* [days] 204.06153.8 855.56179.4 314.4691.6

RNA integrity number 8.5660.50 8.6860.61 9.3660.43

Females (%) 555 (56.0) 493 (49.6) 622 (48.4)

Age [years] 50.1613.7 70.465.4 54.7611.0

Body height [cm] 169.869.0 165.368.8 171.069.3

Body weight [kg] 79.0615.1 78.9613.7 79.1615.5

Body mass index [kg/m2] 27.364.6 28.964.5 27.064.6

Hip circumference [cm] 101.369.6 107.869.3 100.569.6

Waist circumference [cm] 88.0612.9 98.6612.1 93.5613.4

Waist-to-hip ratio 0.8760.09 0.9160.08 0.9360.09

White blood cell count [Gpt/l] 5.7261.48 6.0061.80 7.0463.81

Red blood cell count [Tpt/l] 4.6360.39 4.5060.40 4.6960.41

Hematocrit 0.4260.03 0.4160.03 0.4260.03

Hemoglobin [mmol/l] 8.6260.74 8.6960.75 9.1060.74

Platelets [Gpt/l] 225.7650.3 244.7665.1 271.5667.9

Serum C-reactive protein [mg/l] - 3.0566.27 3.7864.92

High density lipoprotein [mmol/l] 1.4860.37 1.4360.36 1.4760.40

Serum triglycerides [mmol/l] 1.4260.85 1.5060.84 1.4660.91

Active smokers [%] 214 (22.0) 66 (6.7) 239 (18.6)

Systolic blood pressure [mmHg] 124.4616.9 128.7620.0 132.2617.8

Diastolic blood pressure [mmHg] 76.669.8 74.0610.1 83.569.68

*Storage time: Time between blood donation and RNA isolation (SHIP-TREND and KORA F4) or time between RNA isolation and RNA amplification (GHS).
A dash indicates that the variable was not available in the cohort.
doi:10.1371/journal.pone.0050938.t001
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whole intensity spectrum for both, the body mass index (BMI) and

the random phenotype (Figure 1, Figure S2).

Main factors influencing overall gene expression data
To unravel components having a large influence on the overall

expression signal intensity values, we conducted a principal

component analysis (PCA). In the data sets from all three studies,

the first PC accounted for approximately 96% and the first 10 PCs

accounted for more than 97% of the total variation. These results

were essentially unaffected by the transformation method and by

the exclusion of low intensity probes that were not significantly

expressed above the background level (according to the Illumina

GenomeStudio software, detection p-value$0.01 in at least 50%

of the samples) (Figure S3). To identify specific parameters

correlating with the measured expression profiles, we used the

PCA-based Eigen-R2 algorithm [35], which estimates the propor-

tion of the expression profiles’ variance explained by predefined

factors. We selected 66 technical and biological factors that were

available in SHIP-TREND (Table S2). Among these factors, the

technical parameters Illumina chip (33.7%), RNA amplification batch

(20.2%), and RNA isolation batch (16.5%) had the strongest effects on

the gene expression profiles, whereas storage time of the samples (time

between blood donation and RNA isolation, 2.9%) and the RNA integrity

number (RIN) (1.4%) had only a minor effect. Biological factors of

notable effect were white blood cell composition parameters of the

whole blood samples, such as percentage of lymphocytes and

neutrophils (2.8% and 2.7%, respectively), followed by sex (0.9%),

serum magnesium concentrations (0.9%), somatometric parame-

ters (,0.8%) including BMI (0.7%), serum triglyceride concen-

trations (0.7%) and age (0.6%). The results were similar across

studies for variables available in multiple data sets (Table 2, Table

S3) with some minor exceptions. Differences between the whole

blood cell and monocytes samples were observed for the effects of

hemoglobin and the percentages of lymphocytes and neutrophils

as well as for other blood cell-related parameters as expected due

to the different blood cell types analyzed. There was a high Eigen-

R2 value for the month of blood donation in SHIP-TREND. This can

be explained by the grouping of blood samples into array

processing batches consecutively by their date of blood collection

in this sample. The month of blood donation was therefore highly

correlated with both the RNA amplification batch and the RNA

isolation batch.

Correlation of available parameters with PCs
In an attempt to identify the technical and biological

underpinnings of the PCs, we correlated the first 50 PCs with 66

selected factors that were available in SHIP-TREND. The

technical parameters that explained most of the variance of the

measured gene expression levels, i.e., the Illumina chip assignment,

the RNA amplification batch, and the RNA isolation batch, were highly

correlated with almost all PCs. The strongest association of these

three parameters with a PC was observed for the second one

(p,10230). Altogether, 26 factors had their lowest association p-

value (Bonferroni corrected p,0.05/66 = 7.661024) with one of

the first five PCs: Sample storage time, RIN, serum concentration of

magnesium, calcium and potassium, parameters related to the type

of blood cell composition, such as white blood cell count (WBC),

and percentage of lymphocytes and neutrophils, anthropometric

parameters such as BMI, waist and hip circumference and body

weight, metabolic parameters such as vitamin B12, triglycerides

and high-density lipoproteins as well as serum concentration of

intracellular enzymes associated with blood group antigens

(alanine aminotransferases, lactate dehydrogenase and lipase) as

well as regulatory factors such as partial thromboplastin time

(Table S2). These factors were tested in KORA F4 and GHS if

available. The technical factors showed similar association patterns

with the PCs except for RIN, which was measured before storage

of the RNA samples in GHS and after the storage of blood

samples and subsequent isolation of RNA in both, SHIP-TREND

and KORA F4 (Figure S4). The patterns of the biological factors

varied between the studies and even more so between samples

obtained from whole blood cells and those obtained from

monocytes.

Variance reduction by covariate adjustment
Adding the first 50 PCs as covariates to the regression models of

the gene expression levels for both the random phenotype and

BMI reduced the unexplained variance by approximately 30%

(Figure 2). The information obtained from PCA-based analyses

was used to increase the statistical power of association analyses by

reducing the residual variance when regressing the probes’

expression values on a phenotype of interest. In detail, we

compared the mean overall unadjusted effects, SEs and association

p-values of the BMI and the random phenotype with the

respective values after adding the technical and biological

parameters or PCs as additional covariates into the linear

regression model. For the random phenotype, the lowest mean

SE was achieved by adding the first 50 PCs as covariates, thereby

reducing the SEs by 21%, 27% and 25% compared with the

unadjusted models in SHIP-TREND, KORA F4 and GHS,

respectively (Table 3). Since some PCs could be correlated with

the phenotype of interest, effect estimates of true associations

might converge to zero using this approach. Therefore, in most

scenarios adjustments for well-defined parameters will be prefer-

able to a PC adjustment. By adjusting for RNA amplification batch,

RIN and the sample storage time (time between blood donation and RNA

isolation in SHIP-TREND and KORA F4 or time between RNA

isolation and amplification in GHS), the SEs in both the BMI and the

random phenotype association analyses were reduced by more

than 8%. Additionally adding sex, age, and parameters related to

white blood cell composition (percentage of lymphocytes, neutro-

phils, monocytes, eosinophils, and basophils) or even adding all

biological parameters with an Eigen-R2 value.0.3% in SHIP-

TREND led only to marginal reductions in mean SEs or even

slightly increased SEs in random phenotype associations (Table 3,

Figure S5). As expected, when adjusting the regression of gene

expression intensities on BMI for correlated parameters, the effect

estimates of most associations were reduced and close to zero, the

SEs changed substantially, and the p-values increased (Figure S5).

An increase in the mean SE was also observed after adjustment for

sex and age in the BMI regression model compared to the

unadjusted model.

Effects of SNPs located within oligonucleotides of the
probes

SNPs localized within mRNA regions complementary to probes

cause base-pairing mismatches, which may result in decreased

hybridization efficiency and reduced probe-specific signal inten-

sities. In order to systematically investigate whether these

mismatches decrease the binding efficiency of a probe, we

analyzed 8898 probes of the HumanHT-12 v3 BeadChip array.

Each probe was selected because it covered exactly one exon and

could be uniquely mapped to a known transcript listed in the

UCSC database [36,37]. Altogether, 3376 (38%) of these

transcripts contained at least one SNP that was included in the

1000 genomes reference panel. When considering the 986

genotyped SHIP-TREND samples, 24% of these regions included

a polymorphic SNP, whereas 7% and 4% of these probes
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contained a SNP with a minor allele frequency (MAF) greater than

0.01 and 0.05, respectively. A subset of 2128 SNPs was used for

regression of the probes’ expression levels on the number of

mismatching alleles per transcript, resulting in 2148 tests due to

overlapping probes.

The number of transcripts associated with decreased expression

signal intensity per mismatch allele of a SNP was significantly

higher than the number of transcripts associated with increased

signal intensity. This result was consistent in unfiltered analyses

and after filtering by nominal or Bonferroni-corrected p-

values,0.05 (one-sided binomial test, p-value,0.001 in all three

analyses). Nevertheless, 45% of all tested SNPs were associated

with increased signal intensity values per mismatch allele (Figure 3).

No significant accumulation of association p-values below 0.05 was

observed for probes spanning three or more (maximum five) SNPs

(x2-test, p-value = 0.73). Furthermore, among 129 SNPs with an

association p-value,0.05 many SNPs had at least one SNP in

linkage disequilibrium (LD) (n = 86 for R2.0.1 and n = 61 for

R2.0.5) located within the 100 kb region upstream the transcrip-

tion start site of the respective gene. After the analyses were

performed conditional on the SNP having the highest R2 with the

probe’s SNP, p-values increased for all but 12 (91%) transcripts.

Finally, out of the 31 statistically significant associations (Bonfer-

roni corrected p-values,2.361025), only 12 remained statistically

significant after conditioning for the SNP in LD. These results

were neither affected by the relative position of the mismatch allele

within the probe sequence nor by a low imputation quality of the

SNPs (Figure S6, Table S4).

Annotation of probes using transcript mapping
Since the probe annotation file (HumanHT-

12_V3_0_R3_11283641_A, provided by Illumina) was outdated,

a new annotation was created based on matching of the probes’

sequences to known transcripts listed in the UCSC database (12/

06/2009) and by alignment on the human DNA sequence (build

HG18 and HG19). The new annotation file for the HumanHT-12

v3 BeadChip array includes 28,961 (59%) probes that perfectly

mapped to known transcripts or annotated RefSeq genes and were

aligned to build HG19 (Table S5). The chromosomal position as

provided in the manufacturer’s annotation file (HumanHT-

12_V3_0_R3_11283641_A) was unambiguously assigned to co-

ordinates of build HG18 and HG19 for 72% and 28% of uniquely

mapped probes, respectively.

Discussion

Our study showed that the reliability of gene expression analyses

is greatly improved by the adjustment for technical factors, which

were in particular the RNA amplification batch, RIN and sample

storage time. Larger intensity values tend to have higher variance

than lower intensity values when repeatedly measured [32]. To be

able to perform a linear regression analysis, it is necessary to

remove this heteroscedasticity. This can be achieved by applying a

logarithm-based transformation on the expression values. A

common transformation method used is the L2T, but recently

the VST was developed to improve the reduction of the

heteroscedasticity, especially in the lower signal intensity range

[32]. As pointed out by Schmid et al. [38], VST was originally

validated on a pre-released version of the HumanRef-8 v1

BeadChip array (Illumina), which differs considerably from the

Illumina HumanHT-12 v3 BeadChip array used in the present

study and in the work by Schmid et al. [38]. Based on the analysis

of HaCaT cell expression values, these authors pointed out that

VST was outperformed by other methods for the Illumina

HumanHT-12 v3 BeadChip array (e.g. L2T) [38]. Although

previously reported differences within the lower expression level

range [32] could be confirmed in our study by analyzing mRNA

signal intensities obtained from human whole blood cells and

Figure 1. Log2 transformation (L2T) versus variance-stabilizing transformation (VST). The panels show the association results for the
random phenotype (A–C) and for body mass index (BMI) (D–F) on each mRNA probe adjusted for sex, age, RNA amplification batch, RNA integrity
number (RIN) and the sample storage time based on L2T expression values (x-axis) and on VST values (y-axis) in the SHIP-TREND cohort. The upper
panels (A, D) show the betas, the middle panels (B, E) show the standard errors (SEs) and the lower panels (C, F) show the negative log10 association
p-values. The corresponding squared Pearson product-moment correlation coefficient between the plotted values is given in the upper right corner
of each plot. Each spot represents a probe and is colored according to its mean L2T expression value from all samples. The color code is given in the
legend located in the lower right corner of each plot. Although betas and SEs differ between both transformations, the association p-values are
highly correlated.
doi:10.1371/journal.pone.0050938.g001

Table 2. Eigen-R2 results for SHIP-TREND, KORA F4 and GHS.

Eigen-R2

Parameter SHIP-TREND KORA F4 GHS

Illumina Chip (12 arrays per chip) 33.75% 48.18% 26.55%

RNA amplification batch (96 well plate) 20.18% 24.30% 12.44%

Storage time* [days] 2.86% 1.60% 1.70%

Month of blood donation 18.72% 3.31% 8.11%

Time of blood donation [h] 0.20% 0.41% 0.61%

RNA integrity number 1.36% 0.77% 0.29%

Sex 0.95% 0.87% 1.51%

Age [years] 0.58% 0.45% 0.30%

Body height [cm] 0.54% 0.48% 0.82%

Body weight [km] 0.59% 0.60% 0.51%

Body mass index [kg/m2] 0.68% 0.54% 0.35%

Hip circumference [cm] 0.60% 0.41% 0.27%

Waist circumference [cm] 0.77% 0.67% 0.52%

Waist to hip ratio 0.65% 0.70% 0.82%

White blood cell count [Gpt/l] 0.89% 0.74% 0.23%

Red blood cell count [Tpt/l] 0.38% 0.35% 0.65%

Hematocrit 0.47% 0.46% 0.83%

Hemoglobin [mmol/l] 0.50% 0.42% 1.03%

Platelets [Gpt/l] 0.32% 0.27% 0.63%

High density lipoprotein [mmol/l] 0.49% 0.48% 0.48%

Serum triglycerides [mmol/l] 0.68% 0.87% 0.23%

Active smokers [%] 0.36% 0.23% 0.26%

Systolic blood pressure [mmHg] 0.41% 0.15% 0.26%

Diastolic blood pressure [mmHg] 0.37% 0.14% 0.19%

Serum C-reactive protein [mg/l] - 0.30% 0.26%

*Storage time: Time between blood donation and RNA isolation (SHIP-TREND and
KORA F4) or time between RNA isolation and RNA amplification (GHS).
The first six lines of the Table represent technical parameters. A dash indicates
that the parameter was not available in the cohort.
doi:10.1371/journal.pone.0050938.t002
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monocytes using the HumanHT-12 v3 BeadChip array, these

differences did not affect the expression association results. Even

though both, the VST and L2T, performed well, no remarkable

advantage of the VST was observed in our study. Therefore, we

decided to perform this and future analyses using the commonly

applied L2T instead of VST gene expression data.

PCA revealed that the first PC explained more than 95% of the

total variation in gene expression levels. The strong impact of the

first PC was consistently found in both cohorts using whole blood

cell samples and in the cohort using monocyte samples (Figure S3).

We expected to observe consistent results in the two cohorts using

whole blood samples because they were obtained from the same

tissue type and were processed according to identical protocols in

the same laboratory. The additional conformity with the results

from the cohort using monocyte samples was surprising, because

monocyte samples were handled differently from whole blood

samples with respect to several important technical aspects

including the time between blood donation and RNA isolation as well as

the time between RNA isolation and RNA amplification (Figure 4). To

take these differences into account, we used different parameters to

define the sample storage time for whole blood cell and monocytes

samples. Of note, after adjusting for the technical parameters RNA

amplification batch, RIN and sample storage time, the additional

adjustment for the first PC lead only to a marginal reduction of the

variability of the association results (Table 3), indicating that much

of the variation in gene expression signals represented by the first

PC may be explained by these three technical factors. Further-

more, the above mentioned technical parameters had the strongest

influence on the overall expression signal intensities besides the

factors Illumina chip, RNA isolation batch and the signal-to-noise ratio.

Almost all samples belonging to the same chip (Illumina chip) or 96

well plate after RNA isolation (RNA isolation batch) were also

processed together on the same 96 well plate after RNA

amplification (RNA amplification batch). Therefore, adding the

parameters Illumina chip or RNA isolation batch to the regression

model did not account for additional variation in this study.

Furthermore, one HumanHT-12 v3 BeadChip includes 12 single

arrays, each targeting one sample, whereas 96 samples can be

processed on one amplification plate. Using the BeadChip

information instead of the assigned plate layout after RNA

amplification for adjustment would add many more factor levels in

the model and might therefore be less powerful. In theory,

adjustment for the signal-to-noise ratio or the number of detected genes

(detection p-value,0.01) could further slightly reduce the SE

(Table 3). On the other hand, adjusting for these two parameters

might falsify the association results for the phenotype of interest

like BMI as being correlated with both, the signal-to-noise ratio and

Figure 2. Unexplained variance after adjustment for principle components (PCs). The panels show the percentage of adjusted
unexplained variance (y-axis) of the regression on the log2 transformed (L2T) gene expression levels and body mass index (BMI) (A) or the random
phenotype (B) over the first 100 PCs (x-axis). With both phenotypes the unexplained variance decreases continuously with the addition of further PCs
to the regression model. Results are given separately for the SHIP-TREND, KORA F4 and GHS cohorts.
doi:10.1371/journal.pone.0050938.g002
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the number of detected genes (Pearson correlation coefficient in SHIP-

TREND: r = 20.14 and r = 20.13, respectively).

Investigating the gene expression levels in 24 whole blood cell

samples hybridized to the Affymetrix GeneChipH U133plus 2.0

Array, Xu et al. [34] found that the top three PCs explained

28.2%, 17.0%, and 10.2% of the total variance, respectively,

which differed strongly from the values obtained from the PCA

performed in our study. To investigate whether these differences

may be related to the much smaller sample size in the study by Xu

et al. [34], we selected a random subset of 24 samples (66% female)

that belonged to two different BeadChips but were processed on

the same 96 well plate for RNA amplification. The PCA results in

this small subsample were similar to those obtained from the full

dataset (Figure S3) with the top three PCs explaining 97.3%,

0.4%, and 0.3% of the total variance, respectively. However,

Eigen-R2 results in the subsample were about an order of

magnitude larger than those in the complete dataset and similar

to those reported by Xu et al. [34]. After adjusting for the effects of

technical factors on the gene expression signal intensities and re-

running the analyses in the full dataset, the first PC, the top 10 PCs

and the top 50 PCs explained 5.9%, 24.8% and 38.5% of the total

variation, respectively. Under these conditions, the Eigen-R2 results

for the biological parameters remained essentially unchanged,

except for serum magnesium concentration (Table S2). These data

suggest that the reported Eigen-R2 results reported by Xu et al. [34]

seemed to be overestimated, probably due to the small sample size.

Overall, our data suggest that the large contribution of the first PC

may be explained by specific technical factors of the Illumina

BeadChip arrays.

Among the biological factors showing the most significant

correlation with one of the first five PCs were serum electrolyte

concentrations including calcium. Electrolytes as constituents of

the internal milieu are involved in several important cellular

process and might therefore exert an influence on gene expression

in general.

Although much of the variation in expression levels was

removed by adjusting for technical parameters (RNA amplification

batch, RIN and the sample storage time), the variation was further

reduced by correcting for the first 50 PCs (Table 3, Figure S5).

This approach was used in recent expression quantitative trait

locus (eQTL) analyses [39,33] and is applicable if the variable of

interest (i.e. the SNP) is uncorrelated with any of the PCs used for

adjustment. The additional reduction of the variance might be

used to successfully reveal additional associations of smaller effect

sizes. On the other hand, some PCs may correlate with the

phenotype of interest, thereby influencing the association results.

In many association settings the PCA approach may therefore not

be suitable.

In the present study no consistent effects of SNPs located within

the sequence of a probe on hybridization efficiency were observed.

Effects that did occur were modest to small and may have been

caused by cis-effects of SNPs in LD with the respective SNPs in the

Table 3. Mean standard errors (SEs) for SHIP-TREND, KORA F4 and GHS after different covariate adjustments for the random
phenotype and body mass index (BMI).

Mean SE

Phenotype additional covariates (besides phenotype) SHIP-TREND KORA F4 GHS

random phenotype none 0.00602560 0.00705074 0.00555893

age, sex 0.00600400 0.00692849 0.00554164

age, sex, technical 0.00549340 0.00640187 0.00528846

technical 0.00551280 0.00641387 0.00530522

technical, PC1 0.00548790 0.00637871 0.00500432

technical, detected genes 0.00544510 0.00627055 -

technical, signal-to-noise ratio 0.00544820 0.00629034 -

50 PCs 0.00474210 0.00512433 0.00419344

age, sex, technical, cell types 0.00542430 - -

technical, non-technical 0.00557310 - -

BMI None 0.00130350 0.00154734 0.00114923

age, sex 0.00135000 0.00154774 0.00117234

age, sex, technical 0.00123420 0.00142589 0.00112182

Technical 0.00119320 0.00142516 0.00109915

technical, PC1 0.00119210 0.00141686 0.00109480

technical, detected genes 0.00118540 0.00140998 -

technical, signal-to-noise ratio 0.00119490 0.00141395 -

50 PCs 0.00125360 0.00126477 0.00105583

age, sex, technical, cell types 0.00123254 - -

technical, non-technical 0.01305295 - -

50 PCs: the first 50 principal components (PCs) of the principle component analysis (PCA) over the gene expression levels; BMI: body mass index in [kg/m2]; cell types:
percentage of lymphocytes, neutrophils, monocytes, eosinophils and basophils; detected genes: number of detected genes (detection p-value,0.01); Mean SE: mean
standard error of phenotypes’ beta from all probes of the corresponding association analysis; non-technical: all non-technical parameters having an Eigen-R2

value.0.3% in SHIP-TREND; PC1: the first PC of the PCA; random phenotype: the random phenotype ,N (0,1); technical: RNA amplification batch, RNA integrity number
(RIN), storage time.
A dash indicates that the parameter was not available in the cohort.
doi:10.1371/journal.pone.0050938.t003
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probe. This notion is supported by the results of an eQTL analysis

by conditioning on one SNP in LD located within the upstream

region of the transcription start site for each probe: when this SNP

was included as an additional covariate in the regression model,

the eQTL associations lost significance in most cases. Besides

possible cis-effects, there might be other effects by which SNPs in

strong LD with SNPs within probes can alter transcript signal

intensities without affecting binding efficiency. Thus, expression

levels of gene products may be modulated by polymorphisms in

the 39-untranslated regions (39-UTRs) of the gene which

represents a preferred binding site for regulatory microRNAs

(miRNAs). Polymorphisms interfering with miRNA binding sites

have been proposed to affect miRNA-dependent regulation,

resulting in modification of the stability or/and translation

efficiency of the respective mRNA [40]. Furthermore, it is unlikely

that the association results between mRNA levels and non-genetic

factors will be markedly confounded by SNPs, regardless whether

they are located within probes or not, given the small effect sizes of

SNPs found in population-based genome-wide association studies.

It is thus more likely for SNPs within probes to cause some extra

variability in the expression levels measured by these specific

probes than to lead to false positive associations. Based on our

data, we recommend keeping probes with SNPs in their sequence

for further analyses.

The different chromosomal builds used for probe coordinates as

provided in the Illumina HumanHT-12 v3 annotation file might

affect the definition of cis- or trans-eQTL SNPs and must therefore

be taken into account when analyzing eQTL effects. Our study

shows that the exclusion of probes containing known SNPs would

remove a large proportion of probes but does not markedly

influence the association results.

In summary, we investigated the influence of data preprocessing

and technical effects from sample processing on mRNA signal

intensities. We conclude that the adjustment for technical effects

can substantially improve the association results, but there is no

need to exclude probes containing SNPs. Additionally, we provide

Figure 3. Effects of SNPs within probes on signal intensities. The effects on measured log2 transformed (L2T) gene expression levels per
mismatch allele of SNPs located within probes (y-axis) are plotted against the mean L2T expression level of the samples for each probe (x-axis). Each
spot represents a SNP-probe combination; associations with significant p-values after Bonferroni correction (p,2.361025) are colored in red and p-
values below 0.05 are colored in orange. To increase legibility the y-axis was limited from 23 to 3 excluding 176 non-significant results out of 1237
successful association results (minimum and maximum effect sizes were 2174.1 and 188.7, respectively). Surprisingly, in almost 45% of the
associations a positive effect per mismatch allele on expression signal intensity was observed.
doi:10.1371/journal.pone.0050938.g003
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a probe annotation file based on transcript mapping and HG19

chromosome build coordinates. In the future, the standardized

data preprocessing and analysis platform for measurements of

gene expression levels in blood cells as described in this report will

be used within the DZHK-MetaXpress consortium to further

facilitate meta-analyses of gene expression studies and to explore

the expression profile of blood cells associated with several clinical

parameters.

Materials and Methods

Ethics statement
The study followed the recommendations of the Declaration of

Helsinki. The study protocol of SHIP, KORA and GHS was

approved by the medical ethics committee of the University of

Greifswald, the Bavarian Chamber of Physicians (Bayerische

Landesärztekammer) and the federal data safety commissioners

(Ethik-Kommission der Landesärztekammer Rheinland-Pfalz),

respectively. Written informed consent was obtained from each

of the study participants.

Description of the samples
The Study of Health in Pomerania (SHIP) is a population-based

project in West Pomerania, a region in the northeast of Germany.

For this project, samples from the SHIP-TREND study were used.

Baseline examinations for this study started in 2008. From the total

population of West Pomerania comprising approximately 210,000

inhabitants, a stratified random sample of 8016 adults was drawn.

Stratification variables were age, sex, and city/county of residence.

Stratification variables were age, sex, and city/county of residence.

By the end of 2012, approximately 5000 participants will have

been examined. Study design and sampling methods were

previously described [28].

KORA (Cooperative Heath Research in the Region of

Augsburg) exists since 1996 in the region of Augsburg in the

southwest of Germany, and builds on the MONICA (Monitoring

of trends and determinants in cardiovascular disease) project

initiated in 1984 [29]. KORA is a regional research platform for

population-based surveys and a cohort of more than 18,000

subjects are actively followed up to date. Four cross-sectional

health surveys have been performed in five-year intervals, each

containing independent random samples of residents in the city of

Augsburg and the two adjacent counties in the age-range between

25 to 74 years at baseline examination. Between 2006 and 2008

6640 samples were collected for KORA F4.

The Gutenberg Health Study (GHS) is designed as a

community-based, prospective, observational, single-center cohort

study in the Rhine-Main area of Western Germany [41]. The

sample was drawn randomly from the governmental local registry

offices in the city of Mainz and the district of Mainz-Bingen. The

sample was stratified 1:1 for sex and residence (urban and rural)

and in equal strata for decades of age. Individuals between 35 and

74 years of age were enrolled. Exclusion criteria were insufficient

knowledge of the German language and physical or psychological

inability to participate in the examinations at the study center.

Baseline examination of 15,000 study participants was performed

between 2007 and 2012.

Sample selection and preparation
The present analysis is based on a subset of SHIP-TREND

participants, and a subset of all KORA F4 participants aged 62 to

81 years [42]. For the first 1001 SHIP-TREND probands that

fasted for at least 10 hours prior to blood sampling and had serum

fasting glucose levels #8 mmol/l and 1002 randomly selected

KORA F4 probands, RNA was prepared from whole blood

collected and stored in PAXgene tubes (BD, Heidelberg,

Figure 4. Workflow – from blood sampling to measured mRNA intensities. From left to right: Whole blood was collected and stored in
PAXgene tubes until isolation of RNA from whole blood cells in both SHIP-TREND and KORA F4. In GHS, monocytes were separated from whole blood
and RNA was isolated from monocytes within 24 hours after blood sampling, subsequently storing the isolated RNA until amplification. The sample
storage time refers to the duration the whole blood (SHIP-TREND and KORA F4) or isolated RNA (GHS) was stored before further processing, shown as
mean 6 standard deviation in days. The samples were processed in 96 well plates both after isolation and amplification of the RNA. The
corresponding plate layouts were called RNA isolation batch and RNA amplification batch, respectively. Finally, the RNA was hybridized and the arrays
were scanned, quality controlled and analyzed.
doi:10.1371/journal.pone.0050938.g004
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Germany) using the PAXgene Blood miRNA Kit (Qiagen, Hilden,

Germany). Isolation of RNA was performed using a QIAcube

according to protocols provided by the manufacturer (Qiagen) in

SHIP-TREND and manually in KORA F4. Purity and concen-

tration of RNA were determined using a NanoDrop ND-1000

UV-Vis Spectrophotometer (Thermo Scientific, Hennigsdorf,

Germany). To ensure a consistently high RNA quality, all

preparations were analyzed using a 2100 Bioanalyzer and RNA

6000 Nano Lab Chips (both from Agilent Technologies, Santa

Clara, CA, USA) according to the manufacturer’s instructions.

Samples exhibiting a RIN less than seven were excluded from

further analyses. Altogether 17 RNA samples from KORA F4

with automatically called RIN values less than seven were included

after manual adjustment. Using the Illumina TotalPrep-96 RNA

Amp Kit (Ambion, Darmstadt, Germany), 500 ng of RNA were

reverse transcribed into cRNA and thereby labelled with biotin-

UTP. Hybridization of 3000 ng of labelled cRNA to the Illumina

HumanHT-12 v3 Expression BeadChip arrays was followed by

washing steps as described in the Illumina protocol. After isolation

and quality control processing of all SHIP-TREND and KORA

F4 RNA samples was performed at the Helmholtz Zentrum

München.

In addition, the present analysis includes a sample of 1374 GHS

subjects successively enrolled from April 2007 to April 2008. Blood

sampling was carried out under fasting conditions (overnight fast

of at least eight hours). Total RNA was isolated from monocytes

within 24 h to ensure rapid sample processing. Separation of

monocytes from whole blood and preparation of RNA were

performed as described previously [30]. The integrity of the total

RNA was assessed through analysis on an Agilent Bioanalyzer

2100 (Agilent Technologies, Böblingen, Germany). Samples with a

RIN less than seven were excluded from further analyses. Gene

expression analyses were performed using the Illumina Hu-

manHT-12 v3 BeadChip. RNA samples were processed in 96

well plates. Reverse transcription of 200 ng total RNA and cRNA

synthesis with simultaneous biotin labeling were performed using

the Illumina TotalPrep-96 RNA Amplification Kit (Ambion,

Darmstadt, Germany). Hybridization of 700 ng of each biotiny-

lated cRNA sample with a single array on the BeadChip was

performed at 58uC for 16–18 hours. BeadChips were scanned

using the Illumina Bead Array Reader.

Expression data transformation and quality control
In SHIP-TREND and KORA F4 the GenomeStudio V 2010.1

Gene Expression Module was used to impute missing values and

for quality control. In detail, samples with less than 6000

significantly detected probes (p,0.01) were excluded (SHIP-

TREND: n = 10, KORA F4: n = 4). Subsequently, the probe level

data were exported to the R environment for further processing.

In GHS, the Illumina raw data files were imported directly into R.

Quantile normalization and L2T was performed in R using the

lumi package from the Bioconductor open source software (http://

www.bioconductor.org/). Based on expression patterns of probes

localised on the X and Y chromosome, we discarded samples

which did not match the recorded sex. After quality control,

expression data were available for 991 SHIP-TREND, 993

KORA F4 and 1374 GHS samples.

Principal component analysis
We used a PCA to decompose the variation of the samples’

expression profiles into a set of uncorrelated variables of lower

dimensions called PCs, with the first PC accounting for the largest

part of the total variation of the expression profiles and the

subsequent PCs explain less in decreasing order.

Phenotype definition and covariate adjustment
In total, 66 technical and biological factors were available in

SHIP-TREND and selected for initial analyses (Table S2). Of

these, all parameters explaining more than 0.3% of the variance of

gene expression levels estimated by the Eigen-R2 algorithm were

included in subsequent analyses in all three cohorts, if available.

Additionally, we included the C-reactive protein (CRP), which was

not available in SHIP-TREND, for analyses in KORA F4 and

GHS, because it is known to be associated with the overall gene

expression levels. The descriptive statistics of these variables are

given in Table 1 and Table S1. Regression analyses were

performed using gene expression level as dependent variable and

the phenotype of interest together with covariates as independent

variables in a multiple linear regression model. The mean SEs

presented in the analyses of different covariate adjustments were

calculated from the corresponding association results of all probes.

The analyzed phenotypes were BMI, representing a measure of

clinical relevance that is known to influence the overall gene

expression profile in blood cells [34], and a pseudo-phenotype

artificially generated by selecting random values from a normal

distribution being free of any correlation with or confounding by

other factors. The random phenotype was used for optimizing

variance reduction.

Annotation of probes by transcript mapping
To validate the binding efficiency of the oligonucleotide probes

represented on the Illumina HumanHT-12 v3 BeadChip array,

the transcript sequences derived from the 48,803 probe sequences

provided in the Illumina annotation file (HumanHT-

12_V3_0_R3_11283641_A, version 3.0, 7/1/2010) were mapped

against all available mRNA sequences provided in the UCSC

genome annotation database (version 12/06/2009, Feb. 2009

assembly of the human genome, HG19) using string matching.

Altogether 29,691 probes were successfully mapped to one or

more validated mRNAs, which corresponds to previously reported

results [43,44]. Probes that could neither be mapped to a unique

mRNA nor to a single annotated RefSeq gene using the UCSC

database were flagged accordingly in the annotation file. In total,

28,961 probes (59.3%) were unambiguously associated with a

single mRNA or gene. The annotation file was updated using the

information obtained by this mapping procedure.

Genotype calling, imputation and quality control
Genotyping of the SHIP-TREND probands (n = 986) was

performed using the Illumina HumanOmni2.5-Quad BeadChip

array. DNA from whole blood was prepared using the Gentra

Puregene Blood Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s protocol. Purity and concentration of DNA were

determined using a NanoDrop ND-1000 UV-Vis Spectropho-

tometer (Thermo Scientific). The integrity of all DNA prepara-

tions was validated by electrophoresis using 0.8% agarose-1x TBE

gels stained with ethidium bromide. Subsequent sample processing

and array hybridization were performed as described by the

manufacturer (Illumina) at the Helmholtz Zentrum München.

Genotypes were called within GenomeStudio with the GenCall

algorithm of the Genotyping Module v1.0. Arrays with a call rate

below 94%, duplicate samples as identified by estimated identity

by descent (IBD) analysis as well as individuals with reported vs.

genotyped gender mismatch were excluded. The final sample call

rate was 99.51%. Imputation of autosomal genotypes in the SHIP-

TREND cohort was performed with the software IMPUTE

v2.1.2.3 against the 1000 Genomes Phase I (interim) reference

panel released June 2011 (all ancestries panel, build 37).

Altogether 667,424 SNPs were excluded before imputation
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(monomorphic SNPs, Hardy-Weinberg equilibrium p-val-

ue#0.0001, call rate #0.9, mapping problem from build 36 to

37) and 88 SNPs were removed after imputation due to duplicate

SNP IDs but different positions. The total number of SNPs after

imputation and quality control was 37,434,668. The genetic data

analysis workflow was created using the Software InforSense.

Genetic data were stored using the database Caché (InterSystems,

Cambridge, USA).

SNP-to-transcript matching and association analysis
To assess whether SNPs located within probes could affect the

expression signal per mismatch allele due to reduced hybridization

efficiency, a suitable subset of probes was selected. Of all probes

that could be mapped to a single mRNA transcript as described

before and that spanned only one exon, those with missing

chromosome or position information of the oligonucleotides were

excluded. Probes that mapped to a different chromosome than

reported by the manufacturer were also excluded. Of the resulting

8898 oligonucleotides, 72% were annotated using human genome

build HG18 coordinates and were mapped to HG19 coordinates

using Liftover (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Af-

ter excluding 163 SNPs for which none of the SNP alleles matched

the probe allele at the corresponding position, all 1561 probes

located on the DNA forward strand were used for association

analysis. Altogether, these probes contained 2128 SNPs with are

included in the 1000 genomes reference panel. The analysis of the

effect of SNPs on the respective probe’s expression level was

performed in SHIP-TREND using a linear regression model

adjusted for sex, age and the first 50 PCs using the software R [45].

Supporting Information

Text S1 Statistical approaches for comparing whole
blood cell and monocyte gene expression levels using
aggregated data.

(DOCX)

Figure S1 Log2 transformation (L2T) versus variance-
stabilizing transformation (VST): Comparison of mean
expression values. The mean L2T gene expression values (x-

axis) are plotted against the mean VST expression values (y-axis)

for each probe of the SHIP-TREND (A), the KORA F4 (B) and

the GHS (C) cohort, respectively. The L2T data were highly

correlated with the VST data for probe intensity values greater

than 29. The correlation was recognizably smaller for low probe

intensity values.

(TIF)

Figure S2 Log2 transformation (L2T) versus variance-
stabilizing transformation (VST): Comparison of asso-
ciation results in KORA F4 and GHS. The panels show the

association results of the random phenotype (A–C) and body mass

index (BMI) (D–F) on each gene expression probe adjusted for sex,

age, RNA amplification batch, RNA integrity number (RIN) and the

sample storage time based on the L2T expression values (x-axis) and

the VST expression values (y-axis) in the KORA F4 (I) and the

GHS (II) cohort, respectively. The upper panels (A, D) show the

effect sizes (betas), the middle panels (B, E) show the standard

errors (SEs) and the lower panels (C, F) show the negative log10

association p-values. The corresponding squared Pearson product-

moment correlation coefficient between the plotted values is given

in the upper right corner of each plot. Each spot represents a

probe and is colored according to its mean L2T expression value

from all samples. The color code is given in the legend located in

the lower right corner of each plot. Despite differing betas and SEs

between the two transformation methods, the association p-values

obtained with either method were highly correlated.

(TIF)

Figure S3 Explained Variance of the first 100 principle
components (PCs). (A) The cumulated percent of variance (y-

axis) explained by the first 100 PCs (x-axis) in SHIP-TREND

(blue), KORA F4 (red) and GHS (green) obtained from a principle

component analysis (PCA) over the probes using the L2T (crosses)

and VST (dots) expression values, respectively. (B) The analogous

results of the SHIP-TREND cohort using all probes (black) and

those excluded by not being significantly expressed above the

background level in at least 50% of the samples (grey). Upper left

panel: explained variance using L2T; upper right panel: explained

variance using VST; lower left panel: explained variance using a

subset of 24 samples and L2T expression values; lower right panel:

explained variance after computationally removing the influence

of technical factors using L2T expression values. In all analyses,

except after the adjustment for technical factors, the first PCs

explained a high proportion of the total variance.

(TIF)

Figure S4 Association results of selected factors with
the principal components (PCs). The association results of 26

selected technical and biological factors with each of the first 50

PCs across all three cohorts are shown. Each dot represents an

association result, with dot sizes being inversely correlated with the

corresponding association p-values. Triangles indicate the PC

giving the smallest p-value in each trait and cohort. The PCs are

shown on the x-axis. The y-axis represents the traits and cohorts.

For each trait, the lower line represents SHIP-TREND (blue), the

upper line represents KORA F4 (red) and the middle line

represents GHS (green). Grey dots indicate a missing trait in the

respective cohort. The PCs were obtained from a principle

component analysis (PCA) over the measured gene expression

levels. Black dots represent p-values.0.002 (0.05/26 traits). The

traits on the y-axis represent the alanine aminotransferase

concentrations (ALAT), body mass index (BMI), body weight

(WEIGHT), high density lipoprotein concentrations (HDL), hip

circumference (HIP), Illumina chip (pCHIP), lactate dehydrogenase

concentrations (LDH), month of blood donation (mDON), month of

RNA isolation (mISO), number of detected genes (DetGene), partial

thromboplastin time (PTT), percentage of lymphocytes (Lympho),

percentage of neutrophils (Neutro), RNA amplification batch (pAMP),

RNA integrity number (RIN), RNA isolation batch (96 well plate) (pISO),

serum calcium concentrations (CA), serum lipase concentrations

(LIP), serum magnesium concentration (MG), serum potassium

concentrations (K), serum triglyceride concentrations (TG), signal-

to-noise ratio (StNR), storage time (Time), waist circumference

(WAIST), white blood cell count (WBC), and vitamin B12

concentrations (B12). While association patterns related to

technical factors were similar in all studies (differences in RIN

and mDON were related to specific sample processing), the

association patterns related to biological factors varied consider-

ably between the studies and even more so between whole blood

cells (SHIP-TREND and KORA F4) and monocytes (GHS).

(TIF)

Figure S5 Standard errors and association p-values
using different covariate adjustments. The figure shows a

synopsis of the SEs (lower left of the figure) and the negative log10

p-values of the association results (upper right of the figure) for the

random phenotype (A) and body mass index (BMI) (B) based on

L2T expression levels in SHIP-TREND. The covariates used in

the linear regression models are given in the text panels stretching

from the upper left to the lower right. The adjustments used for
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the x-axis of each scatter plot are specified in the text panel above or

below the plot, respectively; the adjustments used for the y-axis of

each scatter plot are specified on the left or right, respectively. The

spots are colored according to the probes’ mean L2T signal

intensities, with red representing low and green representing high

signal intensities. The principal components (PCs) were obtained

from a principle component analysis (PCA) over the expression

levels. PC1 stands for the first PC explaining most of the variation.

Tech indicates the adjustment for the following technical factors:

RNA amplification batch, RNA integrity number (RIN), and the sample

storage time. Cell represents the white blood cell composition

parameters (percentage of lymphocytes, neutrophils, monocytes,

eosinophils and basophils, respectively). The strongest reduction of

SEs was achieved by adjusting for the first 50 PCs. On the other

hand, adjusting for the first 50 PCs resulted in increased p-values for

the BMI associations. This effect may have been due to correlations

of PCs with BMI. In contrast to its effects on the p-values of the BMI

association, adjusting for the first 50 PCs did not substantially affect

the p-values of the random phenotype association. Adjusting for the

technical factors also substantially decreased the SEs.

(TIF)

Figure S6 Effects of mismatch alleles within probes on
signal intensities. The negative log10 p-values of the association

of a SNP located within a probe’s sequence on the log2

transformed (L2T) gene expression level per mismatch allele are

shown on the y-axis. The x-axis represents the position of the SNP

in base pairs relative to the beginning of the probe’s sequence (A)

and the SNPs imputation quality (B), respectively. Each spot

represents a SNP-probe-association. Spots representing associa-

tions with significant p-values after Bonferroni correction

(p,2.361025) appear above the red horizontal line. SNPs with

a decreasing effect on the gene expression level are colored in

black; SNPs with increasing effect are colored in green. The

imputation quality is 0 for poorly and 1 for optimally imputed

SNPs. Neither the SNP position within the probe nor the

imputation quality significantly affected the association results.

(TIF)

Table S1 Cohort descriptive of additional parameters.

(XLSX)

Table S2 Eigen-R2 results for SHIP-TREND of all 66
parameters.

(XLSX)

Table S3 Eigen-R2 results for SHIP-TREND, KORA F4
and GHS of additional parameters.

(XLSX)

Table S4 Association results of SNPs in probe analysis
with p-value,0.05.

(XLSX)

Table S5 New annotation file for the HumanHT-12 v3
BeadChip array.

(XLSX)
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29. Holle R, Happich M, Löwel H, Wichmann HE, MONICA/KORAStudyGroup

(2005) Kora–a research platform for population based health research.

Gesundheitswesen 67 Suppl 1: S19–S25.

30. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, et al. (2010) Genetics and

beyond–the transcriptome of human monocytes and disease susceptibility. PLoS

One 5: e10693.

31. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing illumina

microarray. Bioinformatics 24: 1547–1548.

32. Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing

transformation for illumina microarray data. Nucleic Acids Res 36: e11.

33. Fehrmann RSN, Jansen RC, Veldink JH, Westra HJ, Arends D, et al. (2011)

Trans-eqtls reveal that independent genetic variants associated with a complex

phenotype converge on intermediate genes, with a major role for the hla. PLoS

Genet 7: e1002197.

34. Xu Q, Ni S, Wu F, Liu F, Ye X, et al. (2011) Investigation of variation in gene

expression profiling of human blood by extended principle component analysis.
PLoS One 6: e26905.

35. Chen LS, Storey JD (2008) Eigen-r2 for dissecting variation in high-dimensional

studies. Bioinformatics 24: 2260–2262.
36. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at ucsc. Genome Res 12: 996–1006.
37. Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, et al. (2012) The

ucsc genome browser database: extensions and updates 2011. Nucleic Acids Res

40: D918–D923.
38. Schmid R, Baum P, Ittrich C, Fundel-Clemens K, Huber W, et al. (2010)

Comparison of normalization methods for illumina beadchip humanht-12 v3.
BMC Genomics 11: 349.

39. Fu J, Wolfs MGM, Deelen P, Westra HJ, Fehrmann RSN, et al. (2012)
Unraveling the regulatory mechanisms underlying tissue-dependent genetic

variation of gene expression. PLoS Genet 8: e1002431.

40. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, et al. (2008)
Polymorphisms within micro-rna-binding sites and risk of sporadic colorectal

cancer. Carcinogenesis 29: 579–584.
41. Wild PS, Sinning CR, Roth A, Wilde S, Schnabel RB, et al. (2010) Distribution

and categorization of left ventricular measurements in the general population:

results from the population-based gutenberg heart study. Circ Cardiovasc
Imaging 3: 604–613.

42. Rathmann W, Strassburger K, Heier M, Holle R, Thorand B, et al. (2009)
Incidence of type 2 diabetes in the elderly german population and the effect of

clinical and lifestyle risk factors: Kora s4/f4 cohort study. Diabet Med 26: 1212–
1219.

43. Allen JD, Wang S, Chen M, Girard L, Minna JD, et al. (2011) Probe mapping

across multiple microarray platforms. Brief Bioinform.
44. Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JFJ, Ritchie ME, et al.

(2010) A re-annotation pipeline for illumina beadarrays: improving the
interpretation of gene expression data. Nucleic Acids Res 38: e17.

45. R Development Core Team (2006) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org. ISBN 3-900051-07-0.

Methodological Aspects of Gene Expression Analysis

PLOS ONE | www.plosone.org 14 December 2012 | Volume 7 | Issue 12 | e50938


