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ABSTRACT 

Purpose of review: The pathogenesis of lung cancer and pulmonary fibrotic disorders 

partially overlap. This review focuses on the common features of the two disease 

categories, aimed at advancing our translational understanding of their pathobiologx 

and at fostering the development of new therapies. 

Recent findings: Both malignant and collagen-producing lung cells display enhanced 

cellular proliferation, increased resistance to apoptosis, a propensity for invading and 

distorting the lung parenchyma, as well as stemness potential. These characteristics 

are reinforced by the tissue microenvironment and inflammation seems to play an 

important adjuvant role in both types of disorders. 

Summary: Unravelling the thread of the common and distinct characteristics of lung 

fibrosis and cancer, might contribute to a more comprehensive approach of the 

pathobiology of both diseases and to a pathfinder for novel and personalized 

therapeutic strategies.  

Keywords: fibroblast, carcinoma, scar, hallmarks, nuclear factor-κB. 
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TEXT OF REVIEW 

Introduction 

Idiopathic pulmonary fibrosis (IPF) is a progressive age- and smoking-related diffuse 

parenchymal lung disease believed to result from chronic alveolar epithelial cell 

injury and defective repair in response to yet unknown environmental insults [1]. IPF 

culminates from perpetual proliferation and migration of mesenchymal cells and from 

formation of fibroblast foci, in which activated myofibroblasts secrete increased 

amounts of extracellular matrix (ECM) leading to remodelling and distortion of 

pulmonary structure and function [2]. The disease is rare, but its incidence increases 

worldwide [3]. Moreover, IPF unequivocally leads to death within 2-5 years after 

diagnosis and there is no effective etiologic cure, a fact that underlines the need for 

novel aproaches [4-6]. 

Lung cancer is the leading cause of cancer-related death in men and women 

worldwide [7]. This age- and smoking-related tumor results from chronic exposure of 

the airway and alveolar epithelium to environmental smoke leading to repetitive 

cycles of mutagenesis, apoptosis, defective DNA repair, mutation persistence, 

progressive hyperplasia and dysplasia, and frank lung occupation and dissemination 

[8]. Similar to IPF, death usually ensues within few years after diagnosis despite 

targeted therapies [9]. 

Several studies have highlighted the clinical risk factors associated with lung cancer 

development in IPF patients and examined the clinical characteristics and survival of 

patients having both IPF and lung cancer [11-20]. In terms of anatomy, fibrosis is 

present in IPF patients mainly in the lung periphery, as well as in the lower lobes, the 
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same regions in which a great percentage of lung tumours are observed in tomography 

scans [14, 21]. Interestingly, patients who undergo lung transplantation for idiopathic 

pulmonary fibrosis have a 20-25 times higher incidence of primary lung cancer 

development than the general population [22, 23].  These observations have fueled a 

search for the molecular links between the two lung diseases [14, 15, 24-26].  

Malignant properties of pulmonary fibroblasts  

Upon injury, epithelial cells interact with mesenchymal cells and the ECM, promoting 

the progression of fibrosis [27, 28]. In a similar pattern, tumours behave like open 

wounds and activated mesenchymal cells are implicated in the pathobiology of both 

fibrosis and cancer [29]. The continuous process of tumorigenesis is characterised by 

evasion of cell death, sustained proliferative signalling, evading growth suppressors, 

enabling replicative immortality, activating invasion and metastasis, and tumour-

promoting inflammation, among other features, but most strikingly, by unremitted 

growth and development of tumour niches supported by their interactions with 

stromal cells and the tumor microenvironment [30, 31]. Alike tumor-initiated tissues, 

fibrotic tissues are comprised by epithelial cells and fibroblasts/mesenchymal cells in 

close interaction with immune cells, angiogenic factors and the ECM [30, 32].  

Apoptosis 

As opposed to normal wound repair, scar myofibroblasts escape apoptosis like cancer 

cells [33-38] and can be restrained upon inhibition of anti-apoptotic signalling 

pathways [39-44]. The mechanisms involved in mesenchymal cell resistance to 

apoptosis during IPF are multiple and are not fully understood [33, 34, 41-43, 45-47]. 

Apoptosis may be mediated by two pathways. The extrinsic pathway promotes 
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apoptosis by stimulation of members of the tumor necrosis factor receptor (TNFR) 

family, and the intrinsic pathway induces apoptosis by certain cellular stressors like 

DNA damage or growth factor inhibition. Along the extrinsic pathway, death 

receptors like Fas are implicated in lung fibrosis both by enforcement of epithelial cell 

apoptosis during the injurious phase and through resistance of fibroblasts to Fas-

induced apoptosis during the resolution of lung injury. The Fas/Fas ligand (FasL) 

pathway is important in the attenuation of lung fibroblast survival during lung repair 

and fibrosis [47-49]. The expression of FasL by lung fibroblasts during IPF leads to 

continuous epithelial cell apoptosis and cell death escape by immune surveillance [50, 

51] which can be reversed due to the low expression of Fas from fibrotic lung 

fibroblasts [52, 53]. Furthermore, lung fibroblasts express c-FLIP (cellular Fas-

associated protein with death domain-like interleukin-1β-converting enzyme-

inhibitory protein), which represses apoptotic signals downstream of Fas [47]. In 

addition, interleukin (IL)-6, a cytokine known to be involved in repair and 

remodelling, inhibits apoptosis and induces expression of the anti-apoptopic protein 

Bcl-2 in fibroblasts of patients with IPF who also exhibit inhibition of the 

mitochondrial depolarisation that is a critical component in the apoptotic programme 

[41, 54]. Finally, IPF fibroblasts overexpress IAP proteins which can inhibit apoptosis 

via blockade of caspase activation [41, 44, 46, 47]. In both tumorigenesis and fibrosis 

interplay with the ECM is important for apoptosis evasion [55-60]. Mechanical forces 

influence several biological processes, which involve cell adhesion and ECM 

organization where proteins and protein kinases have a critical role.  Interactions like 

PTEN (protein phosphatase and tensin homologue) suppression, PI3K 

(phosphatidylinositol 3-kinase) negative regulation and AKT activation are capital for 

anti-apoptosis [56, 61]. Hippo and its interplay with TGF-β is also a key regulator of 



MS - 6 
 

ECM remodelling and cell differentiation and are implicated in both lung fibrosis and 

cancer development through pro-tumour phenomena like apoptosis resistance [60].  

Moreover, cell culture substrates that recapitulate the stiffness of fibrotic lungs are 

sufficient to decrease fibroblast apoptosis and increase pro-survival BCL-2 expression 

[41, 57, 62]. TGF-β1 also promotes MRTF-A (myocardin-related transcription factor-

A) nuclear localisation where as a transcriptional co-activator of serum response 

factor it regulates myofibroblast differentiation and survival, further promoting lung 

fibrosis [41, 42, 62, 63]. MRTF-A has also been targeted as a partner of tumour 

progression and metastasis [64-66]. Apart from the ECM, several apoptosis signalling 

pathways are directly linked to fibrosis and malignancies. Protein kinases like AKT 

(also known as protein kinase B) and FAK (focal adhesion kinase) known for their 

active role in a variety of tumours, are also activated by profibrotic mediators like 

TGF-β1 and endothelin-1 in lung fibrosis [67-72]. These kinases induce the 

expression of downstream partners like IAP family members that are highly expressed 

in fibrotic lung fibroblasts and have also been shown to play a crucial role in cancer as 

they promote apoptosis escape [34, 44, 46, 67, 73-75].  

Cellular proliferation 

Another characteristic of malignant cells is their perpetual proliferative signalling 

which has also been described in fibrotic lung fibroblasts and represents a mechanistic 

similarity between the two diseases. In patients with IPF lung fibroblasts display high 

and heterogenic proliferative properties [76].  Although signals that enhance cell 

proliferation are reported in the pathogenesis of lung fibrosis in humans and murine 

models, the exact mechanisms by which this event is promoted are not yet fully 

understood. Several protein kinases, well known for their multifaceted role in 
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malignancies, such as the receptors for vascular endothelial growth factor (VEGF), 

platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF), were 

recently implicated in sustained proliferation of pulmonary fibroblasts [77]. 

Moreover, TGF-β1, endothelin-1 and ECM ligation of cell-surface integrins activate 

the PI3K/AKT pathway which is highly observed in the IPF fibroblastic foci [68, 78-

80]. PI3K/AKT activation induced by β1-integrin urges fibroblasts to abjure the 

antiproliferative signals [81]. Furthermore, inhibition of its signalling reduces lung 

fibroblast proliferation and fibrosis development both in vitro and in vivo [82-86]. 

Anticancer treatments have been shown to act suppressive in IPF patients, further 

amplifying the various consequences of proliferating signalling [87-89]. In addition, 

lung fibroblasts have been shown to abjure mediators for growth suppression, a main 

characteristic of malignant cells. IPF fibroblasts resist signals like prostaglandin 

(PG)E2, that inhibits proliferation and differentiation while enhancing susceptibility 

to apoptosis in normal lung fibroblasts or polymerised collagen growth  [81, 90]. 

Aging 

As noted above, age is highly related to lung diseases and is a risk factor for IPF and 

also for various cancers, but the mechanisms by which age contributes to each disease 

differ [91, 92]. Chromosome replication ageing is crucial for malignancies and as 

recently reported for IPF fibroblasts [39]. In contrast to cancer cells, where the 

enhanced telomerase activity lengthens telomeres and contributes to continuous cell 

proliferation, fibrotic lung fibroblasts exhibit accelerated telomere shortening and 

impaired telomerase function [93]. As a result, both increased fibrosis and decreased 

fibroblast apoptosis occur and predispose poor survival for patients with IPF [94-98]. 
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Invasion and metastasis 

One important hallmark of cancer is the ability to invade and metastasise. Among 

others, matrix metalloproteases are strongly related to invasion and migration of cells, 

as well as integrins, receptors which are a main regulator for the right cell adhesion 

[99]. The integrin expression activates the lung cancer related KRAS/RelB/NFkB 

pathway and leads to stem cell like properties like anchorage independent growth, 

tumor progression and drug resistance. Due to their function to create and maintain 

the communication between the extracellular matrix, inflammatory cells, fibroblasts 

and parenchymal cells, the integrins play not just a huge role in cancer, but also in 

IPF. They are involved in the processes of initiation, maintenance and resolution of 

tissue fibrosis. High expression of integrins was observed in myofibroblasts and in 

AECs after lung injury compared to untreated controls. It was also demonstrated that 

integrins are strong regulators of TGF-ß during lung fibrosis. The integrin family is 

therefore an interesting target for treatment of IPF. Different inhibitors are in 

preclinical and clinical phases, for example specific antibodies against αvβ6. Different 

kinds of these antibodies were tested in preclinical models of fibrosis among others 

bleomycin- models in mice. There is already one humanized antibody STX-100 in 

clinical trial phase 2 for treatment of IPF [100]. The paralleles of IPF and cancer 

concerning the aspects of migration could help finding therapeutic targets for both 

diseases. 

Inflammation 

Although the role of inflammation in IPF has been a contradiction, its participation as 

a promoting factor in the development and progression of tumorigenesis is frequently 

described [101].  Myeloid-derived suppressor cells (MDSC) are associated with poor 
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prognosis in malignancies and their expansion and accumulation in IPF is also 

correlated with disease progression [102]. Moreover, pulmonary fibrosis is 

characterized by the complex interaction with cells that are also involved in chronic 

inflammation. Overexpression of chemokines like CCL8 that attract monocytes has 

been recently associated with the disease [103]. Fibrosis-associated macrophages 

(FAMs) display an M2 phenotype, best characterised by strong expression of 

arginase, chitinase-like molecules, resistin-like molecule α and CD206 [104]. They 

facilitate the enhanced production of fibroblast growth factors [105], profibrotic 

cytokines [106, 107] and matrix metalloproteinases [108]. Their ablation by liposomal 

clodronate, or deletion of C–C-motif chemokine receptor 2 or PAI-1 protect against 

lung fibrogenesis [107, 109, 110].  

Mesenchymal features of lung cancer cells 

Mesenchymal cells are not only critical for lung development and fibrosis, but also for 

tumorigenesis [111, 112]. Stromal fibroblasts can effect tumor cell behavior in 

various manners. For instance, fibroblasts of the host environment interact with 

tumour cells and secrete in the ECM several growth factors like TGF-β, which next 

enhance a metastatic profile [113, 114].  Moreover, tumour-associated fibroblasts 

regulate matrix stiffness and, thereby, tumour cells promote angiogenesis [115, 116]. 

They also produce fibroblast activation protein (FAP), a serine peptidase whose 

expression has been associated with lymph node metastasis and overall poor 

prognosis [117, 118]. Additionally, while tumorigenesis is in progress fibroblasts 

induce a pretumoral phenotype of tumor associated macrophages, which plays a 

pivotal role in the immunosuppression induced within the tumor microenvironment 

[119]. 
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Epithelial–mesenchymal transition 

Epithelial–mesenchymal transformation (or transition; EMT) is a process of  multiple 

phenotypic transitions including shape changes towards elongated and spindle-shaped 

cellular morphology, enhanced cytoplasmic cytoskeletal protein expression and 

activity, and the capacity for anchorage-independent growth, motility, migration and 

invasion, as well as an increased resistance to apoptosis [116, 120, 121]. This 

epithelial–mesenchymal phenotypic transition has been clearly observed during the 

malignant transformation of respiratory epithelial cells, and this link is supported by 

evidence suggesting that the same oncoproteins that drive lung cancer formation and 

progression (i.e. mutant KRAS) are responsible for EMT [122, 123]. It is clear, that 

EMT with its ability to invade, contribute to metastasis and therapeutic resistance 

plays a major role in tumorigenesis [121].  EMT is induced by multiple pathways like 

WNT, RTK and TGF-ß signalling, which are controlled by genetic and epigenetic 

mechanisms. In a tumor the cells are a heterogenic population created by instability of 

these processes. A major player in EMT is the NF-κB pathway, which can be 

activated by Notch, RTKs or KRAS [121-124]. Compared with the strong evidence of 

a major role of EMT in cancer development, it is controversially discussed whether 

“true” EMT contributes to lung fibrogenesis [116, 125-128]. While some may 

consider EMT to be partial or incomplete in pulmonary fibrosis, abundant evidence 

supports the plasticity of alveolar epithelial cells that can, in the context of lung 

injury, acquire a number of mesenchymal-like phenotypic behaviours [127, 129-132]. 

This phenotypic transition is not limited to fibrotic lung injury, as airway epithelial 

cells were recently shown to migrate distally in response to influenza H1N1 infection 

of mice, thereby acquiring fibroblast phenotypes [133]. Unpublished observations 

from our laboratories indicate that similar processes occur both after tobacco smoke-
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contained carcinogen exposure, and after bleomycin-induced lung injury and fibrosis 

[133, 134]. In bleomycin-induced lung fibrosis it was shown that pleural mesothelial 

cells (PMC) start expressing an EMT phenotype with increased mesenchymal 

phenotypic markers and decreased epithelial phenotypic markers, as well as higher 

collagen-I synthesis, cell migration and activated TGF-ß1-Smad2/3 signalling 

pathway [135]. EMT in AECs was already proven over 10 years ago in primary cell 

culture, tissue samples of IPF patients, as well as mouse models. A main driving 

power and mediator thereby was TGF-ß. Multiple researchers could show the cell 

type transition by increases of typical mesenchymal markers like alpha-smooth 

muscle actin (alpha-SMA) or vimentin and decreases in epithelial markers thyroid 

transcription factor (TTF)-, e-cadherin and pro-surfactant protein-B (pro-Sp-B) in 

these samples [136-138]. Even so EMT is a common event in both IPF and cancer. In 

IPF, mesothelial cells can also undergo transition to mesenchymal cells, a process 

called mesothelial-to mesenchymal transition (MMT). After breakdown of healthy 

repair and regulatory pathways, mesothelial cells can in this way contribute to the 

development of tissue fibrosis. By lineage tracing of mesothelial cells in mice the 

EMT process was observed during development and was then named MMT. Later 

MMT was observed in mesothelial cells after exposure to different kinds of toxic 

agents, as well as TGF-ß. The TGF-ß treated mouse models underwent MMT and a 

transition from mesothelial cells to myofibroblasts resulting in fibrosis [139]. 

Principal in both cancer and IPF, the typical process of EMT with loss of cellular 

contacts, epithelial cell morphology and polarity, has a net negative outcome in 

disease progression. 
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Stem cells 

A cancer stem cell (CSC) is defined as that part of tumor which can constantly 

provide new cancer cells and also mobilize non-cancer cells, such as mesenchymal 

and vascular cells. This group of cells show increased telomere length controlled by 

highly active telomerase,  have more active anti-apoptotic pathways, and a high 

activity of membrane transporters like ABC transporters, which can pump given drugs 

out of the cell [140-142]. The ABCG2 gene for instance is overexpressed in lung 

cancer stem cells and serves as a typical marker for this cell type [143]. In IPF similar 

mechanisms are involved. The ABCA3 gene, another member of the ABC transporter 

superfamily, is widely mutated in lung diseases and responsible for an abnormal 

surfactant metabolism and maybe a risk factor for IPF [144]. Taken together, in both 

lung diseases the typical features of stem cell-like behaviour play a major role in the 

pathogenesis, but instead of overlapping mechanisms they have a more opposite 

outcome. Having this in mind it is not surprising that the therapeutic approaches are 

different. It is clear that cancer stem cells have a negative impact in cancer 

progression and drug resistance and need to be targeted. In IPF, drug development 

focuses on mesenchymal stem cells (MSCS), a side population of stem cells 

originated from non-haematopoietic cells. These cells play significant roles in 

inhibition of T-cell proliferation and in secreting anti-inflammatory cytokines and 

growth factors, thus becoming a potential therapeutic target. Instead of the idea to 

inhibit the stem cell-like cell population in cancer therapy, researchers try to use the 

protective and repairative effects of the MSCs to treat IPF. After positive results in 

mouse experiments, several clinical trials with MSCs in the treatment of IPF are 

ongoing [145].  
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IPF signaling pathways promoting cancer 

Several studies demonstrate different signalling pathways that are strictly associated 

to fibroblasts and also play key roles in tumorigenesis. For instance, PI3K–Akt 

signaling substrate Girdin, an actin-binding protein that regulates cell migration, is 

expressed and activated by Akt phosphorylation in cancer-associated fibroblasts, thus 

promoting lung tumor progression [146]. Furthermore, the tumour microenvironment 

expresses survival and progression factors, that undergo a regulatory mechanism by 

the action of the mitogen-activated protein kinase 38 (p38MAPK) [147]. p38MAPK–

leads in an hyaluronan-dependent reprogramming of the tumor microenvironment that 

promotes lung cancer growth [148]. Interestingly, STAT3 phosphorylation and 

induction of anti-apoptotic protein Bcl-2 and Survivin in lung cancer cells was found 

after cisplatin fibroblast stimulation and up regulation of interleukin-11 (IL-11). This 

effect confers lung cancer cells the advantage of chemoresistance [149]. S100A4, a 

fibroblast marker and activator of fibroblast-specific transcriptional programmes, has 

been shown to be expressed in IPF and to protect from metastasis [150]. FGF and 

TGF signalling in lung tumour cells, or mutations in their receptors, have been shown 

to be essential for lung adenocarcinoma development [151-153]. It is obvious that 

signalling pathways that are critical for fibrosis progression are also sensibly 

promoting tumor expansion and migration.  

Conclusion 

In conclusion, cancer and fibrosis are two discernible lung diseases that are 

impressively characterised and driven by similar biological pathways. Although their 

specific genetic and cellular mechanisms are not yet fully defined, several signalling 



MS - 14 
 

pathways, anatomical compartments, and the microenvironmental behaviour corrupt 

tissue architecture and lead to its dysfunction [154, 155]. However, it is clear that lung 

tumorigenesis and fibrosis display a highly heterogeneous behaviour, which raises the 

need for a more personalised therapeutic approach [156-159]. Attenuation of lung 

fibrosis can be served by focusing on and exploring these overlapping mechanisms.  

Key points 

 Mesenchymal properties of lung cancer cells are essential for lung tumor 

progression. 

 Common signalling pathways are activated in both lung cancer and pulmonary 

fibrosis. 

 The mechanistic overlap between lung fibrosis and cancer will hopefully lead 

to common therapies effective against both diseases. 
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