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Abstract

Human cytomegalovirus (CMV) infection is a substantial cause of morbidity and mortality in

immunocompromised hosts and globally is one of the most important congenital infections.

The nucleoside analogue ganciclovir (GCV), which requires initial phosphorylation by the

viral UL97 kinase, is the mainstay for treatment. To date, CMV decay kinetics during GCV

therapy have not been extensively investigated and its clinical implications not fully appreci-

ated. We measured CMV DNA levels in the blood of 92 solid organ transplant recipients with

CMV disease over the initial 21 days of ganciclovir therapy and identified four distinct decay

patterns, including a new pattern exhibiting a transient viral rebound (Hump) following initial

decline. Since current viral dynamics models were unable to account for this Hump profile,

we developed a novel multi-level model, which includes the intracellular role of UL97 in the

continued activation of ganciclovir, that successfully described all the decline patterns

observed. Fitting the data allowed us to estimate ganciclovir effectiveness in vivo (mean

92%), infected cell half-life (mean 0.7 days), and other viral dynamics parameters that deter-

mine which of the four kinetic patterns will ensue. An important clinical implication of our

results is that the virological efficacy of GCV operates over a broad dose range. The model

also raises the possibility that GCV can drive replication to a new lower steady state but ulti-

mately cannot fully eradicate it. This model is likely to be generalizable to other anti-CMV

nucleoside analogs that require activation by viral enzymes such as UL97 or its

homologues.
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Author summary

Cytomegalovirus (CMV) remains a cause of disease in individuals with weakened

immune systems such as patients undergoing organ transplantation. The mainstay of

treatment for CMV is ganciclovir: a CMV-specific drug that looks like a building block of

the viral DNA and which requires activation by a protein contained within CMV. Under-

standing how patients respond to treatment can lead to a better understanding of the

basic biology of CMV in the human and also help to optimize treatment regimens. In this

study we observed that following treatment of CMV disease in organ transplant patients,

CMV viral loads decay according to four distinct patterns. We have developed a novel

mathematical model that is able to describe each of these decay patterns. The model could

potentially be used to assess how different patients respond to treatment in clinical set-

tings and also to design better drug regimens as per patient. These results have striking

implications in terms of how long patients should remain on treatment and provide new

insight into CMV infection in the human host.

Introduction

Human cytomegalovirus (CMV), a member of the beta herpesvirus sub-family, has co-evolved

with humans over many millennia and usually does not cause disease in the immunocompe-

tent host [1,2]. However, in a variety of immune deficient/immature hosts including the neo-

nate, organ transplant recipients, patients with common variable immune deficiency (CVID)

and Human Immunodeficiency Virus (HIV)-infected patients, the virus can cause life-threat-

ening pathologies [3,4]. Thus, CMV has a significant economic impact on general healthcare

costs, especially in the transplant setting [5]. Despite recent encouraging results, there is no

licensed vaccine against CMV[6–8]. Consequently, antiviral chemotherapy using ganciclovir

(GCV) or its valine ester valganciclovir (VGCV) is currently the major clinical management

tool. The drug can be given prophylactically, pre-emptively or for therapy of overt CMV syn-

drome and disease [9] although questions related to dosing and duration of treatment remain

open [10,11].

Ganciclovir (GCV) belongs to a family of acyclic nucleoside analogues that includes aciclo-

vir/valaciclovir (used for the clinical management of alpha herpesvirus infections such as Her-

pes Simplex Virus (HSV) and Varicella Zoster Virus (VZV)), which require a viral kinase

(UL97 for CMV and thymidine kinase for HSV and VZV) for their initial phosphorylation

step en route to the biologically active triphosphate form of the drug [12–15]. This mode of

drug activation is important for the selectivity of the drug in infected cells but may also poten-

tially result in a complex interplay between virus inhibition and drug effectiveness. Thus,

understanding the interaction between CMV, expression of UL97 and GCV phosphorylation

may have broader implications for herpesvirus treatment in general.

Mathematical models of viral dynamics [16] have been of immense use for our understand-

ing of virus-drug interactions and optimization of therapy, particularly in HIV [17,18], Hepati-

tis C Virus (HCV) [19–22] and Hepatitis B Virus (HBV) [23,24]. However, with the exception

of basic analyses of CMV kinetics during therapy [25–28], no detailed mathematical model of

the dynamics of CMV, or other herpes viruses, is currently available. Consequently, we have

utilized frequent viral load measurements over the first 21 days of therapy with GCV in solid

organ transplant patients with CMV disease (the “VICTOR” trial [29]) to develop a compre-

hensive model of CMV dynamics that reveals the unique interplay between virus replication,

drug activation and control of replication.
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Results

Post-therapy CMV kinetic patterns

Analysis of individual viral kinetic patterns in 92 patients from the VICTOR study [29] with

single CMV genotype infection (see methods for full patient information) revealed a number

of kinetic patterns with distinct phases during the first month of treatment (Fig 1). In the first

phase (days 0–3) most, but not all, patients showed a rapid decline in viral load. Following this

decline was an intermediate phase (days 3–7 or 3–14), in which in some of the patients’ viral

loads continued to decline (albeit slower), but a large fraction of patients exhibited a shoulder

or transient rebound (Hump) in viral load. Lastly, almost all patients had a slow decline in

CMV load on days 7–21 or 14–21. Consequently, we were able to classify all patients into 4 dis-

tinct viral kinetic patterns (see Fig 1 and Table 1; the full definition of the classification criteria

is given in the methods section): Biphasic (BP, 21% of patients) where a rapid first phase

decline (days 0–3) was followed by a slower second phase decline (days 3–21); Hump (HM,

60%) where an intermediate shoulder or transient rebound was observed (days 3–7, 7–14 or

3–14) between the first and second decline phases; Delay (DL, 15%) where a slow first phase

decline occurred (days 0–3 or 0–7) followed by a slow, albeit faster than the first phase, second

phase decline; Rebound (RB, 4%) where a rapid first phase decline was followed by a rebound

between days 7–21.

Such a diverse kinetic response of the same virus to the same therapy has not been observed

for other viruses such as HIV and HCV. In particular, the HM pattern with a transient

rebound, but nevertheless a good endpoint response, is a unique pattern not observed before in

patients with consistent drug exposure. Interestingly, the mean baseline CMV load in the DL

profile was significantly (p<0.001) lower than in the HM and BP profiles, while the baseline

viral load in the RB group was not significantly higher (p<0.02) (Table 1 and Fig 1). The first

phase decline in viral load was comparable in the BP, HM and RB groups and by definition

lower in the DL patients. The second phase decline was similar in the BP, HM and DL groups.

The endpoint viral loads for the HM, BP and DL profiles were similar, but not significantly

higher for the RB profile as compared to the HM, BP and DL profiles (p<0.008). Moreover, we

observed correlations between the baseline viral loads and the endpoint viral loads in the HM

profile (R = 0.64, p<0.001), the BP profile (R = 0.74, p<0.001) and the DL profile (R = 0.63;

p = 0.016), and between second phase decline and total magnitude of the viral load decline in

the HM, BP and DL groups (R = 0.79, p<0.001; R = 0.82, p<0.001; R = 0.71, p = 0.004; respec-

tively). Interestingly, we saw a trend for difference in the pattern distribution between the vari-

ous CMV genotypes (Table 2), with the HM pattern more frequently observed in patients with

genotype gB1 infection (69% of gB1 have HM) compared to the other genotypes (52%).

Validation of the CMV kinetic pattern classification

In order to validate our classification system, we further analyzed 89 patients with a mixed

CMV genotype infection. We focused on analyzing the kinetics of the CMV gB1 genotype (the

most common and most dominant genotype in our data set), which was available for 72

patients. Using the same set of classification criteria developed in the initial study, we were

able to classify the viral kinetic pattern in 94% of the patients (in 4 patients the classification

was not conclusive due to missing data). The HM pattern was found in 49% of the gB1 profiles

in mixed-genotype infected patients, while 31% had a BP profile, 10% a DL profile and 6% a

RB profile. Thus, these results validate the robustness of the classification criteria we developed

previously and also show a distribution of kinetic profiles very similar to that found in the

patients infected with single gB genotype infections. Interestingly, different genotypes within

CMV dynamics

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006299 April 13, 2017 3 / 19

https://doi.org/10.1371/journal.ppat.1006299


the same patient exhibited different kinetic patterns in 51% of the patients. We did not proceed

with a full classification of the different genotypes in all patients since there are 11 different

combinations of genotypes (2–4 genotypes per patient) making the sub-sets too small for a

robust analysis.

Fig 1. Different kinetic patterns of viral decay observed after the initiation of ganciclovir therapy (Hump (HM; panel A), Biphasic (BP; panel

B), Delay (DL; panel C) and Rebound (RB; panel D). Data are shown for the mean (in black) and for four randomly-selected patients per profile (red,

purple, blue and green connected points) illustrating the four profiles.

https://doi.org/10.1371/journal.ppat.1006299.g001
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Modeling CMV viral dynamics

The standard model of viral dynamics (Fig 2a) used for analyzing HIV, HCV and HBV kinet-

ics [16,19,23] yields a biphasic viral decline pattern if the drug is assumed to block viral pro-

duction and/or secretion, or a monophasic decline if the drug is assumed to block de-novo

infection. However, it cannot fit the complete data set observed here with four distinct viral

decline patterns, and in particular, it is unable to model the HM pattern observed for the

majority of the patients. The only way to force the standard model to give rise to a transient

rebound is through a pharmacokinetic effect where drug levels are assumed to decrease at day

3 and then increase again at day 7. However, this is very unlikely in this clinical study since all

patients received equal doses of drug twice a day (adjusted for renal function to maintain drug

levels) throughout the 21 days of full dose medication [29,30]. Moreover, we had analyzed data

for GCV dose and drug levels in the blood that were available for a subset of the patients and

had not found any indication for such changes in drug levels that would account for the HM

pattern. The inclusion of a transitory change in the immune response could give rise to a

shoulder phase [31], if one assumes that a weaker immune response is occurring at the initia-

tion of therapy followed by a stronger immune response after a few days or weeks of therapy.

However, such a model based on changes in the immune response (affecting the loss of

infected cells and or viral clearance) cannot give rise to a transitory rebound (Hump) as

observed here in the majority of the patients. Evolution of resistance could explain the RB pat-

tern but not the HM pattern, but we have verified that the HM and RB patterns were not

Table 1. Summary of CMV kinetic properties per kinetic pattern group.

Viral Kinetic (VK) Property Viral Kinetic Pattern

(mean± StDev) Hump (HM) Biphasic (BP) Delayed (DL) Rebound (RB)

Patients per VK pattern (%) 55 (60%) 19 (21%) 14 (15%) 4 (4%)

Baseline CMV load (log ge/ml) 5.2 ± 0.7 5.3 ± 0.9 4.3 ± 0.6 *1 6.1 ± 0.5 *2

1st phase slope (log ge/ml/week) -3.2 ± 0.2 -2.3 ± 0.1 -0.5 ± 0.1 -3.5 ± 0.1

1st phase decline magnitude (log ge/ml) -1.4 ± 0.5 -1.0 ± 0.3 -0.2 ± 0.2 *3 -1.5 ± 0.3

Hump magnitude (log ge/ml) +0.2 ±0.2 *4 -0.3 ± 0.2 -0.3 ± 0.4 -0.8 ± 0.4

2nd phase slope (log ge/ml /week -0.8 ± 0.1 -0.7 ± 0.1 -0.5 ± 0.1 +0.3 ± 0.1 *5

Endpoint CMV load (log ge/ml) 2.8 ± 0.8 2.6 ± 0.8 2.7 ± 0.8 4.4 ± 0.1 *6

*1) Baseline CMV load in patients with DL is significantly (p<0.001) lower than that of HM, BP and RB.

*2) Baseline CMV load in patients with RB is higher (p<0.02) than that of HM, BP and DL.

*3) 1st phase decline in patients with DL is significantly (p<0.001) lower than that of HM, BP and RB (by definition).

*4) Slope at days 3–7 in patients with HM is significantly (p<0.001) different than that of BP and DL (by definition).

*5) 2nd phase slope at days 7–21 in patients with RB is significantly (p<0.001) different than that of HM, BP and DL (by definition).

*6) Total CMV magnitude of decline at day 21 in patients with RB is higher (p = 0.008) than that of HM, BP and DL.

https://doi.org/10.1371/journal.ppat.1006299.t001

Table 2. Distribution of the viral kinetics patterns per CMV genotype.

Genotype N (% of profile/genotype HM BP DL RB

gB1 42 (46%) 29 (69.0%) 6 (14.3%) 7 (16.7%) 0 (0.0%)

gB2 16 (17%) 7 (48.3%) 6 (37.5%) 2 (12.5%) 1 (6.3%)

gB3 22 (24%) 13 (59.1%) 4 (18.2%) 3 (13.6%) 2 (9.1%)

gB4 12 (13%) 6 (50.0%) 3 (25.0%) 2 (16.7%) 1 (8.3%)

All 92 55 19 14 4

https://doi.org/10.1371/journal.ppat.1006299.t002

CMV dynamics

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006299 April 13, 2017 5 / 19

https://doi.org/10.1371/journal.ppat.1006299.t001
https://doi.org/10.1371/journal.ppat.1006299.t002
https://doi.org/10.1371/journal.ppat.1006299


associated with genotypic resistance to GCV (UL97 or UL54) since these patients were

excluded from this analysis [32]. A number of other modifications to the standard model were

tested including using a number of different infected cell populations, physiological compart-

ments and intracellular compartments. However, none of these modifications to the model

reproduced the complete set of observations, including the HM and DL patterns and the corre-

lations mentioned above.

Thus, we developed a novel mathematical model that specifically incorporates the intracel-

lular dynamics of the interaction between CMV and GCV (Fig 2b; see full description of the

ordinary differential equation (ODE) set of equations in the methods section). A characteristic

of GCV is its dependence on the UL97 viral kinase (U), transcribed from viral DNA (D1) and

produced as an early/late protein whose synthesis depends on viral DNA replication, in order

to be intracellularly phosphorylated from its nucleoside form (G0) en route to its tri-phosphate

active form (G3). In the model, viral DNA (D1) replication is inhibited by the activated GCV

form of ganciclovir (G3) with effectiveness epsilon (ε). The decline in DNA levels leads to a

reduction in UL97 levels and accordingly, less GCV activation. As a consequence, DNA repli-

cation increases again, producing more UL97, activating more GCV, and again inhibiting

DNA replication. This cycle continues until a new equilibrium, with lower CMV DNA levels

than baseline, is reached between CMV DNA replication, UL97 levels and GCV activation. By

incorporating these intracellular dynamics into the infected cells variable (I) in the standard

viral kinetics model, where part of the CMV DNA (D1) is assembled into virions (D2) and

exported into circulation, we obtain a specific CMV-GCV viral dynamics model. Although a

small amount of GCV mono-phosphorylation occurs in the absence of UL97, we have

assumed this leads to a low level of activated drug compared to a CMV infected cell and is con-

sistent across all patients.

Fig 2. Panel A: The basic viral dynamics model, in which therapy blocks the production of virus, yields a biphasic viral decline pattern, but is not able to

reproduce the complete set of kinetic patterns observed here for the effect of ganciclovir on CMV. Panel B: The novel viral dynamics model developed

here for ganciclovir’s effect on CMV replication. In this model the intracellular negative feedback loop between UL97 and ganciclovir is explicitly modeled.

Variable key (full description in the Methods section): T = target cells, I = infected cells, V = free virus, U = intracellular UL97 enzyme concentration, Go =

intracellular ganciclovir concentration, G3 = intracellular concentration of the active tri-phosphorylated form of ganciclovir, D1 = intracellular linear/circular/

concatemeric forms of viral DNA, D2 = intracellular cleaved/packaged viral DNA, WB = whole blood viral load, ε = drug efficacy.

https://doi.org/10.1371/journal.ppat.1006299.g002
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Strikingly, this new model was able to account for all the viral kinetic patterns observed in

the data (Fig 3, and see simulation of the kinetics of more variables of the model in S1 Fig).

When the intracellular dynamics are slow, the GCV-CMV interaction has no significant

impact on the blocking effectiveness of GCV, which remains approximately constant

Fig 3. Fitting of the new GCV-CMV model to the viral decline data observed after the initiation of ganciclovir therapy per the four kinetic

profiles (Hump (HM; panel A), Biphasic (BP; panel B), Delay (DL; panel C) and Rebound (RB; panel D). Data are shown for four single randomly-

selected patients (red, purple, blue and green connected data points) illustrating the four profiles in tandem. The means per profile are shown in black.

https://doi.org/10.1371/journal.ppat.1006299.g003
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throughout therapy and hence viral decline is biphasic (BP pattern) as in the standard model.

The magnitude of the first phase depicts the blocking effectiveness (ε) and the second phase

decline slope is related to the loss rate of infected cells. However, when the dynamics of intra-

cellular DNA, UL97 and activated GCV is fast, the blocking effectiveness is more sensitive to

changes in GCV levels (Fig 3), consequently oscillations occur in the blocking effectiveness

and viral DNA levels rebound more rapidly intracellularly. When this is combined with the

decline of infected cells, a transient rebound in the whole blood viral load manifests (HM pat-

tern). If the decline in infected cells is slow (a small δ) then a longer and more pronounced

rebound is observed in the whole blood viral load time series curve (RB pattern). On the other

hand, if both intracellular dynamics and intracellular DNA replication rates are slower, then

UL97 levels are lower and GCV activation is reduced, with a slower effect on DNA levels, and

the ensuing whole blood viral load decline is delayed (DL pattern).

How the model explains the different CMV kinetic patterns

Of specific interest is the understanding of the differences in the model parameter values that

yield each kinetic profile pattern. We found that ε was 8% lower on day 7 than it was on day 3

and we did not observe this difference in the other categories. This is further strong evidence

that the hump occurs due to the decrease in the amount of phosphorylated GCV: the lack of

available active drug resulting in a decrease in viral blocking and a subsequent increase in cell-

associated viral load. We also observed a subsequent increase in ε by day 14 in the HM cate-

gory: the value continues to decline in all other categories following day 7. We also found this

pattern in G3: there was 68% less ganciclovir triphosphate (GCVTP; G3) on day 7 than on day

3 in the HM profile, and 8% more on day 14 than on day 7. This modulation in GCVTP levels

does not occur in any other group. D1 and D2 decline rapidly due to the effects of ε and subse-

quently transiently increase on or around day 3 in the HM profile until both reach a new

steady state.

The only qualitative or quantitative differences between the HM and BP profiles are the

slopes between days 3 and 7 and the 1st slope. Furthermore, since the viral load at day 0 (VL0),

the endpoint viral load (VL21) and 2nd slopes are almost identical between the HM and BP

profiles, (Table 1) we used these two profiles as a comparative means to reveal the exact differ-

ences in parameters that yield these particular profiles. If our hypothesis is correct, then the

difference in profiles should be inducible by simply modifying the intracellular parameter val-

ues associated with U and G3. The value for du, the decay rate for UL97 (U), is highly influential

with respect to the feedback loop between U and G3 and in fact, by simply modifying this and

one other parameter associated with treatment efficacy (ε), the HM profile can be generated.

Indeed ε is the effectiveness of the drug at blocking viral replication and in our model; ε is a

dynamical variable and is a function of time. This is the strength of our model: ε depends on

the negative feedback loop between the drug and UL97 and thus depending on the particular

feedback, the model is capable of simulating different viral kinetic patterns. In order to exam-

ine modifications of ε, we need to change the parameters that affect ε. The Hill parameter, h, is

one of these parameters and represents the steepness of the Hill saturation function and

defines the sensitivity of the blocking effectiveness to changes in drug level via cooperativity of

drug binding. In addition to h, θ and G3 also affect ε where θ represents the apparent dissocia-

tion constant derived from the law of mass action and G3 is the ligand and is related to drug

dose rather than blocking efficacy.

Interestingly, the value of du in the HM profile is higher than for the other profiles, which

means that UL97 is cleared from the system more rapidly and thus less available for phosphor-

ylating G0. This would set the stage for higher viral loads in the context of high treatment

CMV dynamics
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efficacy and perhaps temporarily offsets the ‘decay balance’ of the system inducing a transient

rise in viral load. The value of the du parameter is almost completely responsible for the HM

profile. The parameter du was found to be statistically-significantly different between the HM

and BP profiles (p<0.001). Another parameter that differs between the HM and BP profiles is

the Hill parameter, h, whose value partially determines the efficacy of ε. The value of h in fact

dictates a change in the profile pattern. The parameter h was found to be significantly higher

in the HM profile as compared to the BP profile (p<0.001). Ultimately, the inter-relationship

between du and the treatment parameter can wholly define the HM, BP and RB kinetic profile

patterns in viral load as seen by fitting their decline data (Fig 3). Interestingly, this is not case

for the DL profile. Fits of individual patient data revealed that all individuals could be defined

per profile exclusively by modifying h and du except for individuals with DL profile. These indi-

vidual fits required more precision.

We used a parameter-fit scenario that corresponded to our biological assumptions and

found that when we allowed the modification of three additional parameters: ρ1, ρ2 and δ, we

could fit each patient using the model. The parameter ρ1 is the rate at which U enters the sys-

tem (the conversion rate from D1 to D2) and ρ2 is dependent on ρ1 (the conversion rate from

D2 to V) and thus both, like du, are influential with respect to the feedback loop between U and

G3. Specifically, these parameters have a very pronounced impact on the 1st slope. The loss rate

of infected cells δ, albeit not influential in the feedback loop, is highly influential with respect

to the 2nd slope thus relevant to achieve individual fit precision, especially for the DL and RB

profiles.

A complete analysis of the distribution of these 5 parameters for all patients showed a

multi-modal distribution as a function of the four kinetic profiles, as shown in Supplementary

Figure 2 (S2 Fig). Taking into account the differences in the numbers of patients per profile,

we found that ρ1 was significantly different between the DL profile and all the HM, BP and RB

profiles (p<0.001, p<0.001, p = 0.002; respectively). We also found no significant difference in

ρ1 between the BP and RB profiles. ρ2 was significantly different between the DL profile and

the HM, BP and RB profiles (p<0.001, p<0.001, p<0.001; respectively). The parameter δ was

found to be significantly different between the RB profile and the HM and BP profiles

(p<0.001, p<0.001; respectively) and between the BP and the HM, DL and RB profiles

(p = 0.01, p<0.001, p<0.001, respectively). Lastly, du was found to be significantly different in

the HM profile from the BP, DL and RB profiles (p<0.001, p<0.001, p<0.001; respectively).

Furthermore, the values for these five parameters were not dependent on other patient or virus

related co-factors. There were no significant differences in the distributions of these five

parameters as function of the four CMV gB genotypes.

As part of our mathematical simulations we assessed the effects of changing the value of the

decay rate for UL97 (du). When we increased the value of du, we saw the total amount of WB

virus rise and the shape of the trajectory change until eventually there was barely a hump. This

is because there was less U for consumption, and therefore less G3 and a lower value for ε.

Thus, we observed an increase in D1, D2 and V. When we decreased its value, we saw the viral

load decay more rapidly and the shape of the trajectory change until again, there was no appre-

ciable hump.

Upon further examination, we noticed that the RB profile closely resembled the HM profile,

albeit temporally delayed. We used the model to project the behavior of the WB viral load

beyond day 21 and noticed that at day 21 the viral load in the RB profile began to decline

anew. By day 90, the viral load was undetectable. Consistent with this explanation was the find-

ing that while plasma CMV loads at day 21 were detectable (>600 genomes/ml) in 100% of RB

patients it fell to 25% of RB patients by day 49. We assessed post-primary endpoint data in

plasma samples for the VICTOR study patients and noted that the viral load continued to
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decline to undetectable levels (2.77 log genomes/ml by day 49). This has significant clinical

implications in that these patients should not discontinue treatment in the face of increasing

viral loads at day 21 as might be advised by a health care practitioner but instead, stay on treat-

ment as eventually, the viral load will decline even to undetectable levels in some patients. This

provides confirmation that the viral load will continue to decline after day 21 in all patients

manifesting the RB profile.

Dose-dependent viral kinetics

Lastly, we investigated what effects, if any, a lower or higher treatment dose would have on the

trajectories for each kinetic profile. G0 represents the dose of the drug and its value also par-

tially determines the efficacy of ε. Thus, in order to appropriately model a dose change, rather

than viral/host properties (how the drug affects blocking), we used modifications in G0 to

mimic a change in drug dose. We modified the level of G0 to model drug efficacies that

equated to ε at 80%, 90% and 95% for each profile (S3 Fig). According to the simulated HM,

BP and RB kinetic patterns, a higher dose (in relation to the dose that yields the mean data)

leads to a more substantial reduction in the nadir of the first phase decline. In the case of the

HM and BP patterns, increasing the dose also results in a moderately faster second phase

decline meaning that both phases are sensitive to drug dose but the first phase is far more sen-

sitive. The DL pattern shows a dose-dependent difference in decline rates whereby the slope of

the decay trajectory is progressively steeper for higher doses.

An important observation for the patients with the RB profile is that, according to the

model simulations (S3 Fig), the WB ceases to increase post day 21 and actually starts to decline.

Thus, according to this prediction, in a clinical setting it might be advisable for patients with

the RB profile to continue treatment post day 21 in spite of the fact that it appears as though

the viral load is increasing. This prediction is corroborated by the observation of low plasma

viral load measurements in the VICTOR trial for the RB patients at day 49 and 84 [29].

Discussion

Understanding CMV replication in the human host and identifying predictors for the

response to therapy remains important for the clinical management of this infection in the

immunocompromised host. Until now, our understanding of CMV kinetics following therapy

has been limited to deploying basic models of viral dynamics. The availability of datasets from

large clinical trials of antiviral medication with frequent (in particular measurement as early as

day 3 of treatment) and precise (using an assay with less than 0.15 log variability) with viral

load measurements is invaluable to determine viral kinetics during therapy. Using data from a

clinical trial [29] comparing intravenous GCV with a valine ester pro-drug of GCV [3], we

were able to both identify and validate, in 2 separate groups of patients, four distinct kinetic

patterns of CMV decline during the first 21 days of therapy. While two profile patterns had

been previously observed (Biphasic and Delay) [25,27,32], two new profile patterns (Hump

and Rebound) were observed. The Hump (HM) profile, characterized by a rapid decline in

viral load followed by a transient increase and a subsequent second phase decline, occurred in

a significant proportion of the patients and was unexpected. Re-evaluation of other CMV viral

load decline data from previous studies [25] indeed clearly indicates the presence of a Hump

profile in some patients.

Since conventional viral dynamic models were unable to account for the four patterns

observed following therapy with GCV, particularly the Hump pattern, we turned our attention

to the biology of CMV-induced drug activation of GCV as a means to develop a novel multi-

level model which explicitly incorporated the intracellular interplay between UL97 levels,
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phosphorylated anti-virally active GCV triphosphate and levels of intracellular CMV DNA.

This new viral dynamic model for GCV-CMV interaction was able to account for all four

kinetic patterns observed in-vivo, including the Hump profile. Although UL97 is present in

the virion in small amounts, the model implies that this UL97 does not play a major role in the

activation of GCV but rather plays a role in the other functions of UL97.

Our model implies that drugs such as GCV that require viral enzymes (such as UL97) for

activation cannot, by themselves, eliminate viral replication from an infected cell population,

arguing that an effective cell-mediated immune response is also a critical component of clear-

ance. This has relevance in the context of recurrence of DNAemia following prophylaxis

where high-risk patients who developed a T-cell response against CMV were less likely to

experience late CMV infection [33] and in transplant patients treated pre-emptively where sec-

ond episodes of replication are common [34].

Using model simulations, the key parameters that change one kinetic profile into another

were identified as the loss rate of infected cells (δ) together with the parameters governing the

intra-cellular feedback loop between UL97 dynamics (du), DNA replication (ρ1, and ρ2) and

the GCV blocking effectiveness function (h). This provides further evidence that the success of

anti-herpesvirus treatment with drugs that require activation via viral proteins such as UL97

involves a complex interplay between viral replication, transcription and production of the

active kinase and appropriate intracellular levels of active drug. The HM pattern that we have

observed at high frequency for CMV during GCV therapy would be expected to occur with

other antiviral drugs that require UL97 for activation such as valaciclovir and cyclopropavir

[35]. Their efficacy at eliminating viral replication could be determined depending whether

the HM pattern is observed clinically for these drugs. Studies involving patients taking anti-

CMV drugs would also provide a test of our model.

Of particular interest in this work is the effect of drug dose on the viral kinetics. From our

simulations, the dose of ganciclovir appears to only have a modest long-term influence on

patients exhibiting the Hump (HM), Biphasic (BP) or Rebound (RB) kinetic pattern. Patients

with a Delay (DL) kinetic pattern may benefit from a higher dose by exhibiting a larger decline

in viral load by day 21, but unfortunately, for the majority of these patients, an undetectable

viral load is hard to achieve even with higher doses. For drugs that do not require activation

through a viral kinase such as the lipid ester of cidofovir (CMX001) [36] and the terminase

inhibitor AIC246 (Letermovir) [37], the kinetic patterns post-therapy are likely to be predomi-

nately biphasic and not limited by the UL97 negative feedback loop. Therefore, we predict that

drug efficacy will make a marked difference in time to PCR-negative status with these other

drugs and thus appropriate viral kinetics based dose-ranging phase 2 studies are needed to

optimize these other drugs. Such an approach would have been valuable in the context of Mar-

ibavir [38].

Of clinical relevance are the Delay and Rebound patterns. Other studies have shown that

viral loads after the initiation of GCV therapy can remain static or even increase for a time

after initiation of therapy [39,40] and in one study this has been shown to be associated with

rapid replication kinetics prior to therapy [41]. In our analysis, patients with the Delay pattern

tended to have lower baseline viral loads, possibly indicating that these patients had intrinsi-

cally low CMV replication rates giving rise to low availability of UL97, thus limiting the quan-

tity of intracellular active GCV and giving rise to a delayed viral decline.

Many patients are deemed as non-responsive to GCV therapy if by day 21 the viral load is

not declining or has not declined to an undetectable level [29]. In light of this, drug resistance

may be suspected and in some patients switching to other drugs such as Foscarnet or Cidofovir

would be considered. However, our mathematical model predicts that at least in some of these

patients, specifically patients with no drug resistance mutations, the observed Rebound (RB)
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group is a ‘slowed down’ version of the Hump kinetic pattern. Thus, maintaining GCV therapy

at full dose in these RB patients may be warranted since CMV loads could start declining

again, perhaps even to undetectable levels over the following 28 days. This prediction is sup-

ported by the observation in the VICTOR study that patients who had not cleared CMV from

their blood by day 21 and who were in the RB kinetic profile became PCR-negative in plasma

by day 49 or 84 [29].

An important limitation of our study is the lack of pre-treatment viral load data and hence it

is not possible to verify that viremia was at steady state at the initiation of therapy, as assumed

in the model. Indeed it has been previously shown by us [41] in stem cell transplant patients

that in some patients, therapy is initiated when CMV is rapidly increasing thus potentially

altering the kinetic pattern after initiation of therapy. However, this occurred in patients being

treated pre-emptively with viral loads less than 10,000 genomes per ml of blood, while, in con-

trast, the patients in the VICTOR study had much higher viral loads when ganciclovir treat-

ment was initiated. Moreover, the stem cell transplant patients with a pre-treatment rapid viral

load increase showed a continued increase at the beginning of therapy [41], while here we did

not observe any patient in the present study with an increase in viral load between days 0 to 3.

At present, our modeling effort focused on patients with mono-genotypic infection (as

judged by glycoprotein B typing) however, we have validated our kinetic pattern classification

(and model) in patients with multi-genotypic infections [42,43] and again, observed all 4 viral

decay patterns. Unfortunately, because of the distribution of different combinations of gB

genotypes in the mixed-genotype infected patients, the sub-sets were too small for us to under-

take a full analysis.

In conclusion, the central tenet of our CMV-GCV model is the negative feedback loop

between CMV replication and GCV activation, which is mediated through the dynamics of

the UL97 kinase. This allows a more accurate description of CMV kinetics following antiviral

therapy. We expect these insights to contribute to understanding and optimizing the effective

clinical management of CMV with existing and new antiviral compounds in advanced clinical

development.

Materials and methods

Patients and viral load measurement

The VICTOR study included patients who were solid organ recipients with cytomegalovirus

(CMV) disease at the time of enrolment. It was a randomized, open-label, parallel-group,

active drug-controlled, multi-center non-inferiority trial in adult solid organ transplant recipi-

ents with CMV disease (ClinicalTrials.gov NCT00431353) and was conducted in accordance

with the Declaration of Helsinki, good clinical practice guidelines and applicable local regula-

tory requirements as previously reported [29]. This 2-arm study evaluated the efficacy and

safety of 2 forms of ganciclovir (GCV): oral valganciclovir (Valcyte) compared with intrave-

nous ganciclovir for the treatment of CMV disease. Eligible patients were randomized to

receive either 1) valganciclovir 900 mg po bid or 2) Ganciclovir 5mg/kg iv bid for 21 days, and

then both arms continued with maintenance valganciclovir [dose 900 mg/day until day 49]

with all dosages adjusted for renal function [29]. For the purposes of our kinetic analysis, we

included only the 113 patients in whom a single CMV gB genotype infection was present. As a

validation step we tested our classification criteria on an additional 89 patients with a mixed

CMV gB genotype infection. Patients with any genotypic mutations possibly associated with

resistance to GCV, as measured by a nested PCR assay covering (UL97 and UL54) all known

resistance mutations to GCV [44], tested at all visits during the study, were excluded from the

analysis.
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Whole blood (WB) CMV viral loads were measured at days 0, 3, 7, 14 and 21 by a CMV

genotype specific real-time PCR assay as previously described [45]. This in-house assay was

validated to have better inter-assay variability (0.1–0.15 log) than commercial assays for CMV

quantification and a high sensitivity (LLD = 50 copies/ml, LLQ = 500 copies/ml) [45]. Patients

that were missing viral load data between days 0 and 21 were omitted from the analysis. Conse-

quently, we analyzed viral kinetics in a total of 92 patients with a single genotype infection in

the initial analysis, and gB1 viral kinetics in an additional 72 patients a mixed-genotype infec-

tion in the validation step. There was no difference in viral kinetics between the 2 study arms

and thus we analyzed the cohort as a whole [29].

Ethical statement

The sub-study described in this paper was approved by the Norwegian Ethics Committee, Sec-

tion for Health Region South-East (IRB number: S-04011). All data was anonymized prior to

analysis. All patients had given written informed consent.

Viral kinetics pattern classification

The four kinetic profiles were assigned based upon the viral kinetic pattern during the first 21

days of therapy. A patient was classified as having a Biphasic (BP) profile if the first phase

(days 0–3) showed a rapid decline, larger than 0.5 log, and then a second phase (days 3–21)

with a slower continuous decline. A Hump (HM) profile was defined by a first phase (days

0–3) with a rapid decline, larger than 0.5 log, followed by an intermediate shoulder or hump

phase (at days 3–7, 7–14 or 3–14) with no viral decline (less than 0.15 log decline, where 0.15

log is the inter-assay variability of the assay used to quantify CMV load) or with a viral load

increase, but nevertheless a later second phase decline (days 7–21 or 14–21). A Rebound (RB)

profile was defined by a rapid viral load decline in the first phase (days 0–3), larger than 0.5

log, followed by a continuous increase in viral load at days 3–21 or 7–21, instead of a second

phase decline. A Delay (DL) profile was defined by a slow first phase decline (days 0–3) of less

than 0.5 logs, followed by a decline at days 3–21. It should be noted that we made no a priori
hypothesis related to the number or nature of the kinetic patterns, but rather selected the crite-

ria that minimized the number of kinetic patterns.

Statistical analysis

Statistical analyses were done using SPSS. Correlations were tested for statistical significance

using the non-parametric Spearman test. The Fischer exact test was used to test statistical sig-

nificance in differences of proportions between groups. The non-parametric Mann-Whitney

test was used to determine if differences in distribution of parameters between groups of

patients were statistically significant. The significance threshold was set at 0.05 except where

multiple comparisons were performed in which the threshold was reduced accordingly. In the

text, we have only highlighted significant differences where the p-values fall below a 0.0017

threshold.

Viral dynamics model of the GCV-CMV interaction

CMV transcription occurs in three stages: early, intermediate and late with DNA replication

occurring after early transcription and via the production of a concatemeric structure that is

then cleaved and packaged into new virions [3]. GCV triphosphate (GCVTP) interrupts this

process by inhibiting viral DNA replication. We assume that this occurs at the lengthening

stage: the drug inhibits lengthening of the viral DNA so that the precursor DNA for packaging
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is ultimately not produced. Studies have shown that GCV triphosphate levels are at least

100-fold greater in CMV-infected cells than in non-infected cells [13]. In order for GCV in the

cells to be transformed into GCVTP it has to be initially phosphorylated by the CMV kinase

UL97. Since UL97 is transcribed as an early-late gene, which likely requires DNA replication

for maximum expression, we hypothesized that UL97 levels change according to the change in

intracellular replication levels. Therefore, changing replication levels would result in changes

of GCVTP levels, which ultimately would change the blocking efficacy of ganciclovir.

Thus, based upon the above assumptions, we have developed a viral dynamic model that

combines the intracellular interaction between GCV and UL97 together with the blocking

effect of GCV on CMV. Briefly, G0 is the intracellular GCV drug concentration. D1 represents

the linear/circular/concatemeric forms of viral DNA, and D2 represents the cleaved and pack-

aged viral DNA. UL97 phosphorylates GCV (G0) to produce a mono-phosphorylated form of

the drug (G1) which is rapidly metabolized to the active tri-phosphorylated form of the drug

(G3) by cellular kinases. This active form of the drug then acts primarily on the replication of

D1 to inhibit the prolongation of the linear DNA, formation of circular DNA and subsequent

packaging of DNA for new virions. Since D1 is assumed to be the template for UL97 transcripts

and hence the UL97 protein, this produces a negative-feedback loop causing the eventual

reduction in both D1 and subsequently UL97 (Fig 2b).

In the absence of adequate quantities of UL97, the drug, which continues to enter the cell

(as patients are undergoing continued dosing twice a day) does not get phosphorylated effi-

ciently and so drug efficacy is reduced. This means that the viral content in the cell in the form

of D1 and D2 eventually begins to rise, peak and subsequently plateau at new steady state levels.

In addition, since V originates from D2, V also declines and then rises albeit, more slowly.

Once UL97 is restored to large enough quantities due to continued viral replication, the drug

is again phosphorylated, can act as an inhibitor of DNA synthesis, and the cycle continues.

This could manifest as a transient rise in intracellular (cell-associated) DNA content and gives

rise to oscillatory behavior.

The differential equations that follow from above assumptions (see schematic representa-

tion in Fig 2b) are as follows.

dT=dt ¼ s � dT � bTV

dI=dt ¼ bTV � dI

dU=dt ¼ gD1 � duU

dG3=dt ¼ kUG0 � dGG3

dD1=dt ¼ ð1 � εÞr1 � r1D1

dD2=dt ¼ r1D1 � r2D2

dV=dt ¼ Pfracr2D2I � cVV

where Pfrac = q.

The model contains seven variables that represent: uninfected cells (T), infected cells (I),
intracellular UL97 enzyme (U), the intracellular triphosphate form of GCV (G3), the linear form

of the viral DNA which becomes elongated for eventual cleavage into component viral parts,

(D1), assembled capsid forms in which the scaffolding has been removed and replaced with viral
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DNA (D2), and consequently released to the circulation as free virus (V). Uninfected cells are

produced at a rate s, die at a rate d, and become infected with rate constant β. Infected cells are

lost at a rate δ. UL97 is produced at rate g from the linear DNA form (D1) and is lost at rate du.

G3 is produces at rate k as a first order linear interaction of UL97 and the non-phosphorylated

form of GCV (G0) and lost at rate dG. The linear DNA form (D1) replicates at rate r1 and is trans-

formed at rate ρ1 to produce D2 that is lost at rate ρ2. A fraction Pfrac (q) (/ml) of this cleaved

virus (D2) becomes free virus with a clearance rate of cV. The variables in the model represent

populations expressed as concentration per milliliter of blood and specifically, the units for cell

populations are cells/ml while viral population units are virions/ml. Both the viral enzyme and

the drug population units are molecules/cell/ml. It is assumed that mixing in each compartment

is instantaneous—that is, intracellular and extracellular diffusion are assumed to be fast on the

scale of an individual cell. Parameter rate constants are summarized follows (Table 3).

To represent the antiviral effect of GCV we introduce a parameter, ε, to block the produc-

tion rate of D1 where the blocking effectiveness depends on the availability of GCV by:

ε ¼ G3
h=ðy

h
þ G3

hÞ:

This equation utilizes the Hill function: the Hill coefficient, h, represents the steepness of

the Hill saturation function and defines the sensitivity of the blocking effectiveness to changes

in drug level via cooperativity of drug binding.

The total whole blood viral load is then calculated as:

WB ¼ ðD1 þ D2ÞI þ V

and this variable is fitted to the measured viral load.

All modeling was performed with the Berkeley Madonna package and fitting performed

using the Runge-Kutta4 method.

Data fitting

Considering that our model is novel and has 7 variables (only one of which is measurable) and

15 parameters which are very difficult to measure experimentally in vivo (and outside of the

scope of this particular work), we explored different parameter sets or landscapes in order to

identify which of the parameters, or sets of parameters, were the most influential in giving rise

to one kinetic profile or another. We systematically examined the sensitivity of each parameter

Table 3. Units of variables and parameters.

Variable Units Parameters Units

T cells/ml s cells/ml/day

I cells/ml β ml/virion/day

U molecules/cell/ml D 1/day

G3 molecules/cell/ml δ 1/day

D1 virions/cell/ml g molecules/virion/day

D2 virions/cell/ml du 1/day

V virions/ml k (ml/molecule)*(cell/day)

dg 1/day

R1 virions/cell/ml/day

ρ1 1/day

ρ2 1/day

cV 1/day

https://doi.org/10.1371/journal.ppat.1006299.t003
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while keeping the rest constant to primarily assess the effect that each had on the system. This

was done by data fitting numerically using the Runge-Kutta iterative method. We also investi-

gated potential relationships between the parameters themselves. Once we had established

which parameters were most sensitive, we sought to minimize the number of free-fit parame-

ters in order to be more robust in our analysis. We subsequently investigated which parame-

ters must remain constant in order to obtain all 4 kinetic profiles. We set these selected

parameters at constant values that were based on a quasi steady state analysis and available bio-

logical information with previously generated estimates [46]. We used the relationships

observed between the parameters from the quasi steady state analysis to characterize each

parameter. By replacing each parameter with a scaled version, we figured out if each repre-

sented a combination of other parameters or non-observed variables. To try to understand

exactly why we see the unique profiles, we examined the effects of changing each parameter,

alone and in tandem with others for each profile. We found that some parameters dictate the

profile patterns while others simply promote them. Consequently, five parameters were identi-

fied that produce the differences between one kinetic profile and another: ρ1, ρ2, h, δ and du.

The values of the other parameters were fixed in the simulations and in the data fitting to:

s = 106; d = 0.1; k = 105; g = 0.01; G0 = 0.06; dG = 1; θ = 103; r1 = 1000, c = 0.26; Pfrac = 0.09. We

tested a large range of other values for the fixed parameters and the qualitative results reported

here, in relation to the free parameter values, did not change.

Supporting information

S1 Fig. Simulations of the GCV-CMV model showing the kinetics of cellular level variables:

Whole blood viral load (WB, black curves) and infected cells (I, green dashed curves), and

intracellular level variables: UL97 kinase (U, blue curves), active tri-phosphorylated form

of ganciclovir (G3, red dots) and linear/circular/concatemeric forms of viral DNA (D1, blue

dashed curves). Each simulation is fitted to viral load data (blue triangles) from a representa-

tive patient from each kinetic profile, thus depicting the differences in the behavior of these

variables between the four kinetic profiles (HM (panel A), BP (panel B), DL (panel C) and RB

(panel D)).

(TIF)

S2 Fig. A histogram of the distribution of the five parameters (ρ1, ρ2, h, δ and du) that were

free to vary in the fitting of the viral kinetic data of all patients across the different kinetic

profiles (HM (panel A), BP (panel B), DL (panel C) and RB (panel D)).

(TIF)

S3 Fig. Effect of dose changes in GCV is simulated for each kinetic profile (HM, BP, DL

and RB) by changes in the drug effectiveness, ε, in blocking CMV DNA replication. G0 was

modified to mimic a change in drug dose that mimicked drug efficacies that equated to ε at

80% (black solid line), 90% (mean—dashed black line) and 95% (dotted black line) for each

profile. The mean data is also shown for each profile. The limit of detection (LOD) of the viral

load (400 copies/ml) is shown by the horizontal green line.

(TIF)
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