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Abstract

Progress in mapping loci associated with common complex diseases or quantitative inher-

ited traits has been expedited by large-scale meta-analyses combining information across

multiple studies, assembled through collaborative networks of researchers. Participating

studies will usually have been independently designed and implemented in unique settings

that are potential sources of phenotype, ancestry or other variability that could introduce

between-study heterogeneity into a meta-analysis. Heterogeneity tests based on individual

genetic variants (e.g. Q, I2) are not suited to identifying locus-specific from more systematic

multi-locus or genome-wide patterns of heterogeneity. We have developed and evaluated

an aggregate heterogeneity M statistic that combines between-study heterogeneity informa-

tion across multiple genetic variants, to reveal systematic patterns of heterogeneity that

elude conventional single variant analysis. Application to a GWAS meta-analysis of coro-

nary disease with 48 contributing studies uncovered substantial systematic between-study

heterogeneity, which could be partly explained by age-of-disease onset, family-history of

disease and ancestry. Future meta-analyses of diseases and traits with multiple known

genetic associations can use this approach to identify outlier studies and thereby optimize

power to detect novel genetic associations.

Author summary

Meta-analysis of genome-wide association studies (GWAS) is a valuable tool for the dis-

covery of genes that protect or predispose individuals to common complex diseases. It can

though be hampered by excessive heterogeneity among its participating studies. To date,

the impact of heterogeneity is assessed locally on an individual SNP basis using Q, I2 and

τ2 statistics. Here, we present a new heterogeneity statistic,M that assesses genomic

(multi-SNP) patterns of heterogeneity in GWAS meta-analysis with enhanced power

compared to conventional methods. When applied to a recent GWAS meta-analysis of

coronary artery disease, the new statistic revealed substantial patterns of systematic
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heterogeneity, much of which was attributed to differences in ancestry, age-of—disease

onset and family history of disease. The new method can dissect genomic heterogeneity

patterns to flag underperforming studies that could comprise the power of the meta-anal-

ysis as well as identify influential studies with advantageous design features to inform

future meta-analyses of multifactorial disease.

Introduction

The common disease—common variant (CD-CV) hypothesis has been confirmed by the dis-

covery of thousands of robustly associated loci for a wide variety of complex diseases and

quantitative inherited traits [1]. The genetic effects conferred by common susceptibility loci

tend to be small (per-allele disease odds ratios< 1.2 or trait variance< 0.2%) [2] with the con-

sequence that they are frequently only reliably detected in association studies based on

upwards of tens of thousands of individuals. Such large sample sizes require considerable

resources to complete the necessary participant recruitment, phenotyping and genotyping,

resources that are unlikely to be available to individual research groups.

In response, collaborative networks of researchers have formed consortia in order to assem-

ble large collections of genome-wide association data [3]. Participating studies that were inde-

pendently commissioned are likely to include specific and varied design features, for instance

the precise specification of the phenotype or ascertainment criterion, environmental risk factor

profiles or genetic ancestry. These sources of variation could influence the meta-analysis and

introduce genetic heterogeneity of effect sizes between participating studies, which would

reduce power to detect an overall genetic association. Heterogeneity analysis is currently per-

formed on a variant-by-variant basis, which is potentially sensitive to locus-specific effects, for

example specific gene-environment interactions that affect a minority of contributing studies.

Furthermore, as the true effect sizes of genetic associations tend to be small with relatively

large variances at the individual study level, single variants contain modest information on sys-

tematic between-study heterogeneity. Together, these features might mask outlier studies in a

meta-analysis that show systematic patterns of heterogeneity due to design features that affect

the majority of the associated variants. For example, many diseases have a variety of clinical

presentations that could affect the case-mix under alternative recruitment frameworks. In

multi-ethnic stroke meta-analysis, the distribution of ischaemic and haemorrhagic cases might

differ among populations [4]. Furthermore, sub-phenotypes of disease might have larger or

smaller genetic components. For example, although the majority of coronary artery disease

(CAD) associated loci showed similar effect sizes in analyses based on the subset of cases with

myocardial infarction alone versus a broader CAD phenotype (coronary stenosis >50%, acute

coronary syndrome and chronic stable angina), discrepant effect sizes were evident at the

HDAC9 and ABO loci [3]. Moreover, sampling patients with younger or older age-of-onset of

disease or with or without a family-history of disease could affect genetic risk profiles accord-

ing to the multifactorial liability threshold model [5].

We have therefore developed an analytic approach to search for systematic between-study

heterogeneity patterns in genetic association meta-analysis projects. Our approach builds

upon the established random-effects meta-analysis method [6], to combine information from

multiple genetic variants into an integrated heterogeneity statistic. We first assess the analytic

power of the new method to compare its performance with a conventional method to detect

heterogeneity and then confirm the size and further explore the power of the new method in
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computer simulation exercises. Finally, we apply the method to a recent GWAS meta-analysis

of CAD [3].

Results

Size and power of the aggregate heterogeneity statistics

To empirically assess the theoretical distributions ofM, SPRE statistics for 2, 10, 25 or 50 vari-

ants were randomly sampled from a F(0, 1) distribution in 10,000 replicates to approximate

the null hypothesis of no systematic heterogeneity. The empirical and theoretical distributions

ofMmatch very closely irrespective of the number of variants (S1 Fig and S1 Table).

The analytic power ofM to detect heterogeneity was compared with Cochran’s Q statistic

[7, 8], a method that is routinely used to detect heterogeneity in meta-analyses and also under-

pins the I2 inconsistency index [9]. Multiple testing of V variants (for Q) and S studies (forM)

was allowed for by applying Bonferroni’s adjustment to ensure that the family-wise error rates

(FWER) for each method were equally controlled. Fig 1 shows the comparative power for 10,

25 and 50 variants in 10, 15 and 30 studies; the effect sizes for the S-1 “non-outlier” studies

were held constant (loge(odds ratio) = 0.182 i.e. odds ratio = 1.2) to model homogeneous

effects. The effect sizes for the variants in the outlier study were the product of the “non-out-

lier” effect size (i.e. loge(odds ratio) = 0.182) and a parameter (fold-change) to model a contin-

uous series of systematic heterogeneity patterns. All studies were equally weighted (standard

error of loge(odds ratio) = 0.1). It is clear that under all scenarios examined (Fig 1), thatM had

greater power than Q to detect systematic heterogeneity patterns. The power ofM to detect

systematic heterogeneity increased as the fold-change parameter differed from 1 as well as

with larger numbers of variants but was slightly attenuated as the number of studies (and mul-

tiple testing burden) increased.

We then used Monte-Carlo computer simulations to empirically assess the type 1 and 2

error rates in a more complex series of “real world” meta-analysis scenarios for differing

numbers of variants and studies. Variants were modelled to confer disease risks of varying

magnitudes (S2 Table); the effect size distribution across the variants was inspired by an over-

view of GWAS findings [10], which documented the well-established pattern of a progres-

sively larger number of variants with smaller effect sizes. Random variation in effect sizes for

the variants in different studies was included by sampling the effect sizes (i.e. β coefficients

scaled as loge(odds ratio)) from a F(β, σ = 0.10) distribution; this induces a background ran-

dom heterogeneity pattern that affects all studies upon which we attempt to detect an overly-

ing systematic heterogeneity pattern that only affects a single outlier study. Studies were

assigned equal weights in the meta-analysis by fixing the standard errors of the simulated

effect sizes based on the median value of standard errors for variants in a recent GWAS

meta-analysis [3] (i.e. SE(β) = 0.08). Thus each variant was modelled with a background het-

erogeneity inconsistency index [11] I2 = 100 × 0.102 / (0.102 + 0.082) = 60.5%. Table 1 pres-

ents empirical type 1 error rates derived from 1,000 replicates to compare with Bonferroni

corrected asymptotic p-values < 0.05. The type 1 errors for theM statistics were mostly con-

servatively controlled in these simulation scenarios.

Simulations were then performed to further assess the power of theM statistic to detect

outlier studies included in a meta-analysis on a background of random heterogeneity. Table 1

shows the results from simulations where a single outlier study was included in the meta-anal-

ysis that showed a random pattern of association (i.e. the β coefficients for the V variants in the

outlier study were sampled from a F(β = 0, σ = 0.10) distribution i.e. fold-change = zero). The

power ofM to identify the “null” outlier study increased with the number of variants but there

was little impact on power varying the number of studies in the meta-analysis. We then

Heterogeneity patterns in GWAS meta-analysis
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Fig 1. A comparative power analysis of M and Cochran’s Q to detect systematic heterogeneity. The

nine panels show (from left to right) simulations for 10, 15 and 30 studies, examined at 50, 25 and l0 variants;

Data points for the M statistic are represented by filled circles whilst those for Cochran’s Q are denoted by

filled triangles. Each data point represents a meta-analysis scenario where effect sizes for the non-outlier

studies were held constant (loge(odds ratio) = 0.182 i.e. odds ratio = 1.2) to model homogeneous effects. The

effect sizes of variants in the outlier study were the product of the non-outlier effect size (i.e. loge(odds ratio) =

0.182) and a parameter (fold-change) to model a continuous series of systematic heterogeneity patterns. All

studies were equally weighted (standard error of loge(odds ratio) = 0.1).

https://doi.org/10.1371/journal.pgen.1006755.g001
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examined scenarios where an outlier study in a meta-analysis was selected to show systemati-

cally stronger effects than the other participating studies (Fig 2). Again the power ofM statistic

to detect the outlier study increased with the number of variants included in the meta-analysis.

Varying the number of studies in the meta-analysis had relatively little impact on the power to

detect systematic outliers. Similarly, the power ofM statistic to diagnose an outlier study show-

ing systematically weaker effects than other participating studies increased with the number of

variants interrogated in the meta-analysis. We also studied the impact of the background level

of heterogeneity on power; this showed that it is easier to identify outlier studies with theM
statistic if the average level of heterogeneity is low (S2 Fig).

Detecting systematic between-study heterogeneity in a meta-analysis of

coronary artery disease

The CARDIoGRAMplusC4D consortium has recently reported a GWAS meta-analysis of

60,801 CAD cases and 123,504 controls assembled from 48 studies [3]. Participants had been

recruited from several ancestry groups (African American, Hispanic American, East Asian,

South Asian, Middle Eastern and European). The CAD cases included patients with clinical

diagnoses of myocardial infarction with or without ST-elevation, other acute coronary syn-

dromes or chronic stable angina, as well as patients who had undergone a revascularization

procedure or had angiographic evidence of stenosis (>50%) in at least 1 coronary vessel. The

majority of the studies recruited CAD cases retrospectively (i.e. prevalent cases), the other

prospective studies included a mixture of incident and prevalent disease. The controls

included population samples who were unscreened for CAD (e.g. the UK 1958 Birth Cohort

and National Blood Service controls genotyped as part of the Welcome Trust Case Control

Consortium [12]) in addition to samples from volunteers with no personal history of coronary

disease or individuals who had undergone coronary angiography but had no radiological evi-

dence of vessel stenosis. Various GWAS SNP arrays had been genotyped by the studies so

genotype imputation to the 1000 genomes phase 1, version 3 haplotype training set was used

to facilitate the meta-analysis by maximizing the available mapping information.

Table 1. Empirical type- 1 error rates and power to detect an outlier study for M at threshold α = 0.05.

# Studies # Variants Type- 1 error Power

30 50 0.050 98.9

25 0.054 98.1

10 0.056 39.9

15 50 0.033 99.2

25 0.034 97.6

10 0.039 40.3

10 50 0.024 98.7

25 0.033 96.7

10 0.025 35.7

GWAS meta-analysis simulation experiments each based on 1000 replicates. Studies were equally

weighted (i.e. SE(β coefficients) = 0.08). Variant effect sizes for studies in the type-1 error analysis were

sourced from an L-shaped distribution (S2 Table). In the power analysis, variant effect sizes for studies

showing typical effects were sourced from S2 Table whilst effect sizes for variants in the outlier study were

calculated as a multiple of the typical effect size. For example, effect sizes for variants in an outlier study

2-fold-stronger than studies showing typical effects would be computed as (2 x ({0.04, 0.12, 0.2, 0.28, 0.4}, σ
= 0.10).

https://doi.org/10.1371/journal.pgen.1006755.t001
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In an additive-effects-only association analysis, 46 discrete CAD loci surpassed the conven-

tional genome-wide significance threshold (i.e. P< 5 × 10−8). Variants within the 46 loci were

mostly well imputed with 82% of the variants having an imputation quality score > 0.9. A lead

variant (i.e. the variant with the smallest p-value) for each of these loci was selected for aggre-

gate heterogeneity analysis, 35 of these variants showed some degree of between-study effect

size heterogeneity (i.e. I2> 0) (S3 Table). The 46 lead variants were in linkage equilibrium

with each other.

Inspection of theM statistics for the 48 studies suggested that some studies showed system-

atic differences from the average genetic effect (Fig 3 and S4 Table). Notably, studies 9, 38 and

48 showed significantly stronger effects than average (Bonferroni corrected p-values < 0.05)

while studies 10, 19, 24 and 28 showed significantly weaker effects (Bonferroni corrected p-

values< 0.05). An inverse-variance weighted meta-analysis of theM statistics revealed sub-

stantial variability in the average effect across studies (I2 = 85.9%) (Fig 3). In an attempt to

resolve underlying design factors that contributed to this systematic between-study heteroge-

neity pattern, we applied a random-effects meta-regression method [13] to theM statistics. We

examined three potential sources of systematic heterogeneity that might have influenced the

CARDIoGRAMplusC4D meta-analysis 1) ancestry, 2) family-history and 3) age-of-onset of

disease (S5 Table). The participating studies had been independently commissioned and

designed with overlapping disease case ascertainment criteria; accordingly we assigned the

Fig 2. The power of the M statistic to detect systematic outlier studies. A power analysis of the M statistics for meta-analysis scenarios with varying

numbers of studies and variants. The three panels show (from left to right) simulations for 10, 15 and 30 studies; 50, 25 and 10 variant simulations are

shown by filled diamonds, filled circles, or open squares respectively. Each data point represents a meta-analysis simulation with 1,000 replicates, where

an outlier study was assigned genetic effects that are x-fold stronger than the effects assigned to the remaining studies showing typical effects. Effect

sizes for variants in the studies showing typical effects were allocated from an L—shaped distribution (S2 Table) whilst effect sizes for variants in the

outlier study were calculated as a multiple of the typical effect size. For example, effect sizes for variants in an outlier study 2-fold-stronger than studies

showing typical effects would be computed as (2 x ({0.04, 0.12, 0.2, 0.28, 0.4}, σ = 0.10).

https://doi.org/10.1371/journal.pgen.1006755.g002
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studies into earlier-onset (� 55 years) and later-onset of disease groups and flagged studies

that ascertained cases with a positive family-history of disease (S5 Table).

A meta-regression of theM statistics with ancestry coded into 6 groups (African and His-

panic American, South and East Asian, Middle Eastern and European) suggested that some of

the variability in average effect size could be explained by ancestry (F5, 42 = 2.52, P = 0.044)

(Fig 4A). The 3 East Asian studies collectively appear to show stronger than average effects

Fig 3. Forest plot of M statistics summarizing systematic patterns of heterogeneity among studies in the CARDIOGRAMplusC4D

GWAS meta-analysis. Sorted M statistics are presented for individual studies represented by filled squares with their 95% confidence

intervals shown by horizontal lines; the sizes of the squares are proportional to each studies’ inverse-variance weighting. Studies showing

weaker (M < 0) than average genetic effects can be distinguished from those showing stronger (M > 0) than average effects.

https://doi.org/10.1371/journal.pgen.1006755.g003
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when compared with all other ancestry groups (F1, 46 = 4.75, P = 0.034). There was no evidence

that the average effects for the 38 European studies (F1, 46 = 1.24, P = 0.271) or the 4 South

Asian studies (F1, 46 = 2.99, P = 0.090) were systematically different.

Meta-regressions of theM statistics suggested that studies that included early-onset cases of

disease (F1, 46 = 20.65, P = 0.00004) or included a family-history of CAD in the ascertainment

scheme (F1, 46 = 29.49, P = 2.0 × 10−6) showed systematically stronger than average effects (Fig

4B–4D). Finally, a multiple meta-regression analysis of East Asian ancestry, early-onset and

family-history of disease showed that these factors jointly explained a significant proportion of

the systematic between-study variation of average effect size (F3, 44 = 13.91, P = 1.6 × 10−6;

adjusted R2 = 53.2%) (Table 2). Additional factors examined as potential contributors to the

systematic between-study differences observed included: imputation quality, genotype call

Fig 4. Heterogeneity in the CARDIoGRAMplusC4D meta-analysis can be explained by differences in age of CAD onset, family history and

ancestry. M statistics for each study in the CARDIoGRAMplusC4D meta-analysis (Y- axis) are plotted against the average variant effect size (expressed

as odds ratios) (X-axis) in each study. Panel A shows the ancestry of each study, panel B distinguishes early-onset from late-onset studies and panel C

identifies studies ascertained with a positive family history of coronary artery disease. Panel D is a composite plot showing the degree of genetic

enrichment among the studies in the meta-analysis, which ranged from non-enriched (late-onset studies without a positive family history of coronary artery

disease) to doubly enriched (early-onset studies with a positive family history of coronary artery disease). The dashed lines indicate the Bonferroni

corrected 5% significance threshold (M = ±0.483) to allow for multiple testing of 48 studies.

https://doi.org/10.1371/journal.pgen.1006755.g004

Table 2. Meta-regression of M statistics in the CARDIoGRAMplusC4D GWAS meta-analysis.

Variable β SE(β) p-value

East Asian ancestry 0.348 0.172 0.049

early-onset 0.117 0.105 0.268

family history 0.409 0.111 0.001

https://doi.org/10.1371/journal.pgen.1006755.t002
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rate, Hardy Weinberg equilibrium thresholds, percentage of myocardial infarction cases and

case-control ratio. Their contribution to between-study variation of average effect size was

negligible.

The CARDIoGRAMplusC4D consortium studied an extended list of independently associ-

ated variants that define additional discrete loci based upon false discovery rate (FDR) criteria

[3](S6 Table). These variants incremented the heritability explained over that conferred by

GWAS-significant loci and might offer greater insights into heterogeneity patterns in these

data. We therefore repeated theM statistic analysis with 214 variants (P< 0.00005, FDR <

5%), which confirmed the presence of systematic heterogeneity patterns in the 1000 genomes

meta-analysis (S3 Fig) as well as flagging individual outlier studies (S4 Fig). Four studies, that

showed insignificant outlier patterns with 46 GWAS-significant variants showed significant

evidence in this analysis of FDR variants (S7 Table) and three studies that were outliers in the

GWAS 46 are now insignificant. A meta-regression confirmed that East Asian ancestry, early-

onset and family-history showed systematically stronger than average effects (F3, 44 = 9.47,

P = 0.0001; adjusted R2 = 44.8%) with family-history as the most important predictor of sys-

tematic heterogeneity in this dataset (S8 Table).

To compare ourM analysis with a conventional single-variant strategy, we re-examined the

set of GWAS-significant variants in a series of meta-regressions of three joint predictors, East

Asian ancestry, early-onset and family-history. After correction for multiple testing of 46 vari-

ants, one variant (rs2891168) detected evidence of stronger associations with early-onset and

family-history (F3, 44 = 6.71, P = 0.0008; adjusted R2 = 44.3%) and another variant (rs6689306)

showed stronger associations with East Asian ancestry (F3, 44 = 7.69, P = 0.0003; adjusted

R2 = 71.5%) (S5 and S6 Figs, S9 Table).

Discussion

We present here a novel statistical approach that integrates information across multiple vari-

ants to explore background patterns of systematic between-study heterogeneity in genetic

association meta-analyses. Although we have focused on examples drawn from case-control

analysis where genetic association statistics have been computed by logistic regression, the

method is equally applicable to other normally distributed regression statistics e.g. linear

regression analysis of quantitative genetic associations. We hypothesised that design features

such as ascertainment criteria for disease cases or genetic ancestry might induce genetic het-

erogeneity in a meta-analysis. If these design features systematically reduce the average effect

size in some of the studies participating in the meta-analysis, then the overall power to detect

genetic signals will be reduced. This is an important consideration, since genetic effects for

CD-CV are typically small in magnitude requiring very large sample sizes for reliable detec-

tion; there is strong pressure to undertake increasingly large meta-analyses. As meta-analysis

consortia expand to attain larger sample sizes, the risk that they will become increasingly

diverse in terms of underlying design features must surely increase.

Analytic and Monte Carlo simulations demonstrate the potential of the proposedM statistic

to detect systematic patterns of between-study heterogeneity. These calculations were based on

a specified uniform level of heterogeneity for each variant and showed that the conventional

approach to detecting heterogeneity (e.g. Cochran’s Q statistic) is relatively underpowered to

detect systematic patterns. To maximize the power of detecting systematic heterogeneity pat-

terns, we recommend analysing as many independently (i.e. in linkage equilibrium) and

strongly associated variants as possible. In the future it would be interesting to extend theM
approach including variants in linkage disequilibrium (LD) as this development might further

enhance its power. It is anticipated that lead variants will show varying levels of heterogeneity,

Heterogeneity patterns in GWAS meta-analysis
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indeed several are likely to show little or no statistical evidence of heterogeneity (i.e. I2< 25%).

Such variants do though include some information relevant to detecting systematic weaker or

stronger effects than average so we recommend that all firmly associated lead variants are

included in the calculation ofM statistics. Our simulations also assumed equal weightings for

each contributing study, we anticipate that outlier studies with larger sample sizes (and thus

weightings) will be prominent and outliers with small weightings are likely to be obscure. We

also found that the background level of heterogeneity influences the power to detect outlier

studies, panels of strongly associated variants that individually show moderate levels of hetero-

geneity (25% < I2< 50%) are well suited to this approach.

We tested our new methods on data assembled for the CARDIoGRAMplusC4D GWAS

meta-analysis of CAD risk [3]. Although there was marked heterogeneity of effect sizes across

the participating studies (Fig 3), all studies showed positive associations with coronary disease

risk (Fig 4) and thus made useful contributions to the overall discovery GWAS objective.

Meta-regression of theM statistics revealed patterns of systematic heterogeneity that were

linked to specific design features, East Asian ancestry, age-of-onset of disease and family-his-

tory. The latter two features are predicted by the multifactorial threshold model [5] to induce

genetic enrichment [14]. Of note, 50 years ago the early-onset of coronary disease was recog-

nised as a potent risk factor increasing sibling recurrence risks six-fold [15]. Although the

magnitudes of the enrichment of average genetic effect size were quite modest (14% for East

Asian ancestry, 15% for family-history, 11% for early-onset), we estimate that this could reduce

the required sample size of cases and controls to detect an associated locus by up to 50%. Popu-

lation genetic diversity, differences in the underlying rates of CAD and the relative contribu-

tion of individual risk factors, as well as lower use of preventive therapies in East Asia versus

Europe (and other regions) may contribute to the enriched genetic signal observed in East

Asian studies [16, 17]. A follow-up meta-regression analysis of individual variants confirmed

the role of ancestry, age—of-onset and family-history as significant predictors of systematic

heterogeneity. Meta-regression of multiple potential explanatory factors inevitably carries a

multiple statistical testing burden, and our present results should be interpreted as an explora-

tion of the substantial systematic heterogeneity patterning evident in Fig 4. TheM statistic

approach is advantaged over conventional single-variant methods in that information across

multiple variants is aggregated reducing the dimensionality of the multiple comparison prob-

lem. Finally, we were unable to detect any systematic heterogeneity patterning attributable to

the proportion of CAD cases suffering a myocardial infarction confirming the findings of the

CARDIoGRAMplusC4D consortium [3].

There are several potential sources of heterogeneity that might affect genetic association

meta-analysis studies. Controls for a common disease might be drawn from unscreened popu-

lation samples in some studies or screened for the disease and filtered in other studies, this is

predicted to dilute genetic signals in studies using population controls [18]. Environmental

risk factor profiles might vary from study to study so disease cases sampled from a relatively

low risk population would tend to be genetically enriched. Varying levels of LD can also induce

heterogeneity [19], a situation that is particularly important for meta-analyses involving multi-

ple ancestry groups where the lead variant is a tagging rather than the causal variant. For exam-

ple, African ancestry populations typically show more haplotype diversity and lower levels of

LD across the genome than European or in turn East Asian populations [20]. Thus in a multi-

ethnic meta-analysis, signals detected by tagging SNPs could show systematic weaker (in low

LD populations) or stronger (in high LD populations) effects that could be detected by theM
statistic approach.

Given the momentum of the GWAS approach to identify more and more loci with

improved genotype imputation training sets [21], it is inevitable that increasingly large and
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potentially diverse meta-analysis projects will be conceived. For diseases and traits with multi-

ple known genetic signals, there is now an opportunity to assess the respective contributions of

participating studies in newly commissioned meta-analyses. Outlier studies flagged with dis-

crepantM statistics, particularly those with weaker than average effects, can be reviewed as

part of the routine quality control of GWAS meta-analysis in case there are design or analytic

issues that need attention to maximize power. For design issues that might be difficult to

resolve, it would be useful to assess the power of performing meta-analysis in the presence and

absence of the studies with discrepantM statistics. Following the final meta-analysis, meta-

regression ofM statistics including variants tagging previously known as well as newly discov-

ered loci can be used to explore potential design features that might show systematic aggregate

effects that are obscured in heterogeneity analyses of individual loci, and influence future

study design.

Materials and methods

Background

Random-effects meta-analysis is a statistical procedure originally devised by epidemiologists

to integrate summary information from multiple independent yet related interventional stud-

ies to estimate two parameters, Θ, the average treatment effect across the contributing studies

and τ2, the extent of inter-study variability (or heterogeneity) in the treatment effects [22]. The

effects evident in each study are assumed to be have been sampled from a normal distribution

with two additive variance components, random within-study error σ2 and between-study var-

iation (i.e. heterogeneity) τ2, so that ys, the measured effect in the sth study, can be modeled by:

ys = Θ + εs + u where εs ~ F(0, σ2
s), u ~ F(0, τ2) and F denotes the cumulative probability dis-

tribution function of a normal random variable.

The first step in the analysis is to estimate the magnitude of τ2, which can be undertaken by

several algorithms [22]. This is followed by an inverse-variance weighted (i.e. 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt̂2 þ s2

s Þ
p

),

least squares estimation of the average treatment effect (Θ) (which ignores the study-specific

random effects) and its associated standard error (E, the “standard error of the prediction”).

Standardized predicted random effects (SPRE) can then be calculated for each of the studies

as SPRE ¼ ðys � yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̂2 þ s2

s � E2
p

; these are precision-weighted, standard normally distrib-

uted statistics (i.e. SPRE ~ N(0, 1)) that summarize the extent and the direction that individual

studies differ from the average treatment effect. If there is no evidence of heterogeneity of

effects (i.e. τ2 = 0), then the SPREs are identical to standardized predicted fixed effects derived

from a fixed-effects meta-analysis. A normal probability plot of the SPRE statistics provides a

convenient visual way to detect outlier studies that might be unduly influencing the estimate

of the average treatment effect that complements inspection of a Forest plot.

A novel multi-variant heterogeneity statistic

Consider now a genetic association meta-analysis project comprising S studies with summary-

level results for V genetic variants. Genetic effect-sizes (and their standard errors) have been

estimated in each study by regression modelling to substitute for the treatment effects

described above. Assume that the variants selected for heterogeneity analysis are truly associ-

ated with the disease or quantitative trait and are in linkage equilibrium (i.e. uncorrelated)

with each other. Informative variants could include 1) published variants that have previously

shown strong evidence of association or 2) the lead variants at GWAS-significant loci in a

post-hoc heterogeneity analysis. The genetic effects need to be synchronized so that the
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average Θ estimates for each variant are positive (i.e. all average effects are “in the same direc-

tion” consistent with higher disease risks or levels of a quantitative trait); this can be achieved

by judicious “flipping” of the regression coefficients submitted by participating studies.

For each of V variants, estimate τ2, Θ and E using the random-effects procedure detailed

above and calculate and store SPRE statistics for each of S studies in a regular array SPREsv (S1

Methods).

Subsequently, a “mean” aggregate statistic can be calculated that summarizes between-

study heterogeneity across multiple genetic variants:

Ms ¼
1

V

XV

v¼1

SPREsv:

Under the assumption thatMs is a linear combination of Vmutually independent, standard

normal random variables, thenMs will be normally distributed with expectation (i.e. mean) 0

and variance 1/V (S2 Methods). Positive or negative values ofMs indicate that the study shows

systematically larger or smaller genetic effects than the average effect, statistically significant

deviations are found where |Ms| exceeds an appropriate threshold; we corrected for multiple

testing of S studies by applying the Bonferroni procedure to control the family-wise error rate

(FWER) < 0.05. We developed a Stata script (getmstatistic) based on themetareg programme

[23] to calculateMs statistics using τ2 estimates derived from the restricted maximum log-like-

lihood (REML) method. Additionally, an R package (Rgetmstatistic) for getmstatistic has been

developed.

Power calculations

To support the use of this newly proposed statistic, we examined the impact of several system-

atic heterogeneity scenarios by means of analytic and Monte-Carlo simulation-based power

analyses. We first compared our new method with Cochran’s Q statistic, a widely used and

computationally simple method to screen for between-study heterogeneity [7, 8]. Q statistics

approximate a chi-squared distribution in large samples [24], for each scenario non-centrality

parameters were equated with calculated Q statistics (i.e. treatingQ as a log likelihood ratio sta-

tistic [25]; [26]). The non-centrality parameter was then used in standard chi-squared power

calculations ([26]), with an allowance for multiple testing of V variants by applying Bonferro-

ni’s correction to control the family-wide error rate (FWER) to 5%. Denote the power to detect

heterogeneity in a meta-analysis of the vth variant by ωv, then the overall power to detect at

least one heterogeneous variant is

o ¼ 1 �
YV

1

1 � ov

To calculate the analytic power ofM, it is convenient to introduce a Wald statistic (M2), the

squared-standardizedM statistic i.e.M2 ¼ M
SEM

� �2

where SEM ¼ 1

V

� �1
2=
, which is approximately

chi-squared distributed on 1 degree of freedom.M2 can then be substitute for the non-central-

ity parameter in standard chi-squared power calculations [26] allowing for multiple testing of

S studies by applying Bonferroni’s correction to control the family-wide error rate (FWER) to

5%. Denote the power (ω) to detect heterogeneity in a meta-analysis for the sth study by ωs,
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then the overall power to detect at least one heterogeneous variant is

o ¼ 1 �
YS

1

1 � os

The above analytic power calculations were performed using scripts and in-built proce-

dures in Stata 10.1.

We also carried out Monte-Carlo simulations for scenarios where a systematic heterogene-

ity pattern is superimposed on a background random heterogeneity pattern, this allows for the

possibility that real world heterogeneity patterns have multiple sources and complexity. These

simulations allowed the comparison of the distributions of empirical with asymptotic p-values,

with empirical p-values calculated using the (r+1)/(n+1) estimator [27] where r represents the

rank of the simulated statistic and n the total number of replicates in the simulation exercise.

Meta-regression of M statistics

To explore the impact of design features on the magnitude ofM that vary between individual

studies participating in a meta-analysis, we apply a random-effects meta-regression procedure

(metareg) in Stata 10.1 to regress towards the average deviation of the observed effects of stud-

ies. This analysis is based upon study-specificM statistics to summarize the studies’ overall

deviation from the average effect with precision weighting (i.e. 1=SEMs for the sth study—see S2

Methods) to allow for differing sample sizes in different studies.

Ethics statement

The studies contributing to the CARDIoGRAMplusC4D study were approved by the ethics

committees of the respective medical faculties, and informed consent was obtained from all

participants. Summary genetic association data were anonymously meta-analysed and

reported here.

Web resources

Software to calculateM statistics is available at the following url: getmstatistic, https://

magosil86.github.io/getmstatistic

Supplemental data

Supplemental data includes the membership of the CARDIoGRAMplusC4D Consortium, six

figures and nine tables.

Supporting information

S1 Fig. Empirical and theoretical distributions of the M statistic. Monte—Carlo simulations

comparing the empirical (histograms) and theoretical frequency distributions (density plots)

ofM statistics. The four panels show (from A to D) simulations for 2, 10, 25 and 50 variants

over 10,000 replicates.

(TIF)

S2 Fig. Power to detect systematic outlier studies in the presence of variable background

heterogeneity. A power analysis ofM involving Monte-Carlo GWAS meta-analysis scenarios

varying the level of background heterogeneity (I2 from 8.89% to 86.2%). Each data point repre-

sents a simulation based on 15 studies and 50 variants. All studies were equally weighted (i.e.

SE = 0.08). Effect sizes for variants in the studies showing typical effects were allocated from an
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L—shaped distribution (S2 Table) whilst effect sizes for variants in the outlier study were cal-

culated as a multiple of the typical effect size (i.e. 1.80 x ({0.04, 0.12, 0.2, 0.28, 0.4}, σ = 0.10) to

model a 1.8-fold stronger-than-typical outlier study.

(TIF)

S3 Fig. Forest plot of M statistics computed across 214 loci (FDR < 5%) summarizing sys-

tematic patterns of heterogeneity among studies in the CARDIOGRAMplusC4D GWAS

meta-analysis. SortedM statistics are presented for individual studies represented by filled

squares with their 95% confidence intervals shown by horizontal lines; the sizes of the squares

are proportional to each studies’ inverse-variance weighting. Studies showing weaker (M< 0)

than average genetic effects can be distinguished from those showing stronger (M> 0) than

average effects.

(TIF)

S4 Fig. A scatterplot of M statistics computed across 214 loci (FDR < 5%).M statistics for

each study in the CARDIoGRAMplusC4D meta-analysis (Y- axis) are plotted against the aver-

age variant effect size (expressed as odds ratios) (X-axis) in each study. A colour gradient was

employed to highlight the distribution ofM statistics. The dashed lines indicate the Bonferroni

corrected 5% significance threshold (M = ±0.224) to allow for multiple testing of 48 studies.

(TIF)

S5 Fig. Forest plot of effect-sizes (log odds ratios) at rs2891168 (chromosome 9) highlight-

ing locus specific heterogeneity among studies in the CARDIOGRAMplusC4D GWAS

meta-analysis (I2 = 57.69%). Sorted odds ratios are presented for individual studies repre-

sented by filled squares with their 95% confidence intervals shown by horizontal lines; the

sizes of the squares are proportional to each studies’ inverse-variance weighting. A filled dia-

mond represents the summary effect-size.

(TIF)

S6 Fig. Forest plot of effect-sizes (log odds ratios) at rs6689306 (chromosome 1) highlight-

ing locus specific heterogeneity among studies in the CARDIOGRAMplusC4D GWAS

meta-analysis (I2 = 40.57%). Sorted odds ratios are presented for individual studies repre-

sented by filled squares with their 95% confidence intervals shown by horizontal lines; the

sizes of the squares are proportional to each studies’ inverse-variance weighting. A filled dia-

mond represents the summary effect-size.

(TIF)

S1 Text. Membership, affiliation and supporting references for the CARDIoGRAM-

plusC4D Consortium.

(DOCX)

S1 Methods. Computing SPREs.
(DOCX)

S2 Methods. Computing M statistics.

(DOCX)

S1 Table. A comparison of the theoretical and empirical null distributions for M.

(XLSX)

S2 Table. Number of variants included in each effect size bin for 3 simulation scenarios.

(XLSX)
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S3 Table. Lead variants at 46 loci selected for computation of M in the CARDIoGRAM-

plusC4D GWAS meta-analysis.

(XLSX)

S4 Table. Studies showing substantial systematic patterns of heterogeneity in the CARDIo-

GRAMplusC4D GWAS meta-analysis at threshold, alpha = 0.05.

(XLSX)

S5 Table. Ancestry, age-of-disease onset and family-history of disease grouping for CAR-

DIoGRAMplusC4D studies.

(XLSX)

S6 Table. Dataset employed in computing M statistics for 214 FDR� 5% lead variants in

the CARDIoGRAMplusC4D GWAS meta-analysis.

(XLSX)

S7 Table. Studies showing systematic heterogeneity patterns across 214 FDR� 5% lead

variants in the CARDIoGRAMplusC4D GWAS meta-analysis at threshold alpha = 0.05.

(XLSX)

S8 Table. Meta-regression of M statistics computed across 214 FDR� 5% lead variants in

the CARDIoGRAMplusC4D GWAS meta-analysis.

(XLSX)

S9 Table. Meta-regression of effect-sizes in rs2891168 and rs6689306 employing East

Asian ancestry, early-age-of-disease onset and family history of CAD as covariates.

(XLSX)
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