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Background: Phenotypes of childhood-onset asthma are
characterized by distinct trajectories and functional features.
For atopy, definition of phenotypes during childhood is less
clear.
Objective: We sought to define phenotypes of atopic
sensitization over the first 6 years of life using a latent class
analysis (LCA) integrating 3 dimensions of atopy: allergen
specificity, time course, and levels of specific IgE (sIgE).
Methods: Phenotypes were defined by means of LCA in 680
children of the Multizentrische Allergiestudie (MAS) and 766
children of the Protection against allergy: Study in Rural
Environments (PASTURE) birth cohorts and compared with
classical nondisjunctive definitions of seasonal, perennial, and
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IL-5/IFN-g ratio. A path analysis among sensitized children
revealed that among all features of severe atopy, only excessive
sIgE production early in life affected asthma risk.
Conclusions: LCA revealed a set of benign, symptomatic, and
severe atopy phenotypes. The severe phenotype emerged as a
latent condition with signs of a dysbalanced immune response. It
determined high asthma risk through excessive sIgE production
and directly affected impaired lung function. (J Allergy Clin
Immunol 2017;139:1935-45.)

Key words: Atopy, IgE, sensitization, asthma, lung function,
cytokines, severe atopy, atopic diseases, latent class analysis,
unsupervised clustering, path analysis, epidemiology

Asthma and atopy often manifest concomitantly before school
age, but the interrelation of both phenomena remains obscure,
possibly because both conditions can result from a multitude of
individual pathologies with complex interferences that blur the
entire picture. In the case of asthma, wheezing phenotypes
have been identified and consolidated by using data-driven
approaches.1-3 However, these approaches are currently only
emerging for atopy classification.
Because of cosensitizations, categorization by allergen

specificity or type of sensitization is ambiguous and leads to
overlapping groups, such as food, inhalant perennial, or inhalant
seasonal sensitization.4 Other approaches applying disjunctive
categories mainly rely on temporal patterns, focusing on age of
onset,5-9 longitudinal trends,10 persistence of IgE sensitiza-
tion,11,12 or refer to multiplicity of allergen specificities (ie,
monovalent vs polyvalent sensitization).13-18 However, it has
been pointed out that all the above approaches are susceptible to
investigator bias.19 This issue can be overcome by data-driven,
unsupervised statistical methods, such as latent class analysis
(LCA). Until now, these approaches focused on allergen
specificities at one20 or several19,21,22 time points but did not
consider the strength of sensitization as assessed by IgE levels.
We appraised this omission a shortcoming given the well-

known disease relevance of IgE levels23 and therefore included
this dimension in our analysis. We applied LCA to 2 rather
different birth cohorts: the urban Multizentrische Allergiestudie
(MAS) cohort and the rural Protection against allergy: Study in
Rural Environments (PASTURE) study. The aim of this analysis
was to compare LCA-derived classification with classical defini-
tions of atopy based on carrier polymer system (CAP) classes and
to relate both systems to manifestation of asthma, allergic dis-
eases, cytokine expression, and lung function. Finally, we sought
to integrate the various aspects of atopy in a pathmodel for asthma
and lung function.

METHODS

Study design and population
Both birth cohorts were set up to study the development of childhood

asthma and allergies. MAS recruited 1314 healthy mature infants born in

1990 in 5 German cities (Berlin, D€usseldorf, Freiburg, Mainz, and

Munich).24 Of those, 499 had risk factors for atopy (ie, increased cord blood

IgE levels [>_0.9 kU/L] or at least 2 atopic family members). PASTURE re-

cruited 1133 children in 2002 to 2005 from rural areas in 5 European coun-

tries: Austria, Finland, France, Germany, and Switzerland.25 Children of

mothers living on family-run livestock farms were assigned to the farm

study group. The reference study group comprised children of mothers

from the same rural areas but not living on a farm. Both studies were
approved by the ethics committees of the participating institutions, and

written informed consent was obtained from the children’s parents or

guardians.

Atopic sensitization (specific IgE in serum samples)
In the MAS cohort serum samples were obtained from the children at 1, 2,

3, 5, 6, and 7 years of age. Levels of specific IgE (sIgE) antibodies to food

allergens (cow’s milk, egg white, soy bean, and wheat) and inhalant allergens

(the house dust mite Dermatophagoides pteronyssinus, cat dander, mixed

grass, birch pollen, and dog dander from age 3 years on) were determined

with ImmunoCAP (Phadia, Freiburg, Germany). Soybean was excluded

from the analyses because it was not measured in PASTURE for all time

points, and dog dander was excluded because of the lack of measurements

at years 1 and 2.

In the PASTURE cohort sIgE for 6 food and 13 common inhalant

allergens was assessed in cord blood samples and at the ages of 12, 54, and

72 months in peripheral blood by using the semiquantitative Allergy Screen

test panel for atopy (Mediwiss Analytic, Moers, Germany) in a central

laboratory.4 Because of common cross-reactivity and low frequencies of

some specificities, the original 19 specificities were combined into 9 cate-

gories finally entered into the LCA: grass pollen (rye pollen or grass pollen

mix), tree pollen (alder, birch pollen, or hazel pollen), cat, dog, mites (Der-

matophagoides pteronyssinus or D farinae), hen’s egg, cow’s milk, wheat

flour, and nuts (peanut or hazelnut). In the MAS cohort the categories of

nuts and dog were not available.
Questionnaires
In the MAS cohort, at each follow-up visit at the age of 1, 3, 6, 12, 18,

and 24 months and then yearly within 4 weeks of the child’s birthday up to

age 7 years, parents were interviewed for asthmatic and atopic symptoms

and disease, diet, development, and psychological aspects. From age 5 years

onward, questions relating to wheeze corresponded to the International

Study of Asthma and Allergies in Childhood core questions. In the

PASTURE cohort questionnaires were administered at the end of pregnancy

and when the children were 2, 12, 18, 24, 36, 48, 60, and 72 months of age

to obtain information on frequencies of wheeze, parental atopic status, and

environmental exposures with a focus on farming and nutrition.4 Variable

definitions were harmonized between both studies. Lifetime asthma was

defined as a physician’s diagnosis of asthma at least once per lifetime as re-

ported by the parents at age 6 years; children with no diagnosis of asthma

and no current wheeze in the last 12 months served as control subjects.

Hay fever was defined as parent-reported rhinitis symptoms ever or a phy-

sician’s diagnosis of hay fever or allergic rhinitis ever at age 6 years. Atopic

dermatitis was defined as a physician’s diagnosis of atopic eczema at least

once per lifetime, as reported by the parents at age 6 years; children with

no diagnosis of atopic eczema and no atopic eczema in the last 12 months

were the control subjects.
Lung function measurements
At age 7 years in the MAS cohort in 801 children6 and at age 6 years in the

PASTURE cohort in 799 children,3 FEV1 was measured and z-standardized.26



FIG 1. A and B, Selection of study populations.
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Cytokine assessment
In the PASTURE cohort whole-blood supernatants from 6-year-old

children were collected after 48 hours of stimulation with 5 ng/mL phorbol

12-myristate 13-acetate and 1 mg/mL ionomycin. IL-5 and IFN-g levels were

measured in supernatants by using the multiplexed Cytometric Bead Array

(BD Biosciences, San Jose, Calif) in Marburg, Germany. The detection limit

was 0.01 pg/mL, and values of less than were replaced by 0.001 pg/mL in 17

(IL-5) and 11 (IFN-g) subjects. Cytokine concentrations were standardized to

peripheral blood leukocyte counts (Sysmex KX-21N Blood Cell Analyzer;

Sysmex, Kobe, Japan) and z-transformed.
Statistical analysis
Children with missing sIgE data for at least 3 of 6 (MAS) or 2 of 4

(PASTURE) measurement time points were excluded. For all other

children, missing sIgE values were imputed by using multiple linear

imputation of the continuous sIgE values in 20 replicates. Categorical

variables were created from the imputed continuous variables for sIgE

levels with the following categories: sIgE levels of less than 0.35 kU/L,

0.35 kU/L or greater to 0.7 kU/L or less, 0.7 kU/L or greater to less than

3.5 kU/L, and 3.5 or greater corresponding to CAP classes. In the

PASTURE cohort the lowest category was again split at 0.2 kU/L because

of the comparably lower sIgE values and a lower detection limit of the

measurement method.

For each imputed data set, an LCA based on categorized sIgE values

between birth and year 6 was performed, assigning subjects to classes by their

highest posterior probabilities,27 and each subject was assigned to the latent

class (LC) in which it was classified in the majority of the 20 replications

(for further details, see the Methods section in this article’s Online Repository

at www.jacionline.org). The retrieved LCs were arbitrarily labeled according

to their key features to enhance recognition.

Classical definitions of atopy were defined as being sensitized to a specific

allergen or groups of allergens (seasonal, perennial, or food allergens) at a

specific CAP class at a specific time point irrespective of sensitizations to other

allergens. The LCswere comparedwith these classical definitionswith respect

to true- and false-positive rates by using receiver operating characteristic

curves.

Associations of outcomes with potential determinants were calculated by

using linear or logistic regression. Effect estimates are presentedwith 95%CIs

as odds ratios (ORs) for dichotomous outcomes and b-estimates for linear

continuous outcomes, such as lung function parameters. All regression

analyses were adjusted for center and in the PASTURE cohort additionally

for study group. Control subjects used in the regression models for LCAwere

subjects assigned to the LC unsensitized, and for classical definitions, control

subjects were children without any sensitization at CAP class 1 at the
respective time point. Statistical analyses were performed with SAS 9.4

software (SAS Institute, Cary, NC) andMplus 7 software (Muth�en &Muth�en,

Los Angeles, Calif).
RESULTS
The analysis population consisted of 680 MAS cohort children

(52% of 1314 at recruitment; Fig 1, A) and 766 PASTURE cohort
children (68% of 1133; Fig 1, B) with complete or imputed sIgE
values, who did not differ from the excluded children with respect
to sensitization status at any age (see Table E1 in this article’s
Online Repository at www.jacionline.org). The LCA revealed
solutions with 3 to 6 classes, with the best Akaike information
criterion values for the 5-class solutions in both studies (see
Table E2 in this article’s Online Repository at www.jacionline.
org). The distribution of LCs across study centers was rather
homogenous in both studies (see Fig E1 in this article’s Online
Repository at www.jacionline.org).
As shown in Fig 2, the largest classes containing 71% (MAS)

and 54% (PASTURE) of all children were characterized by the
absence of sensitization and consequently labeled as unsensi-
tized. One MAS class and 2 PASTURE classes included mainly
children with sensitization to food allergens. The MAS cohort
children in the food class were predominantly monosensitized
to cow’s milk or hen’s egg; in the PASTURE cohort the larger
class was sensitized only to cow’s milk, and the other class was
sensitized to food allergens beyond cow’s milk. The remaining
classes represented mainly inhalant sensitization. In the
PASTURE cohort one class included children with sensitization
predominantly to either seasonal or perennial inhalant allergens.
The corresponding MAS cohort children were grouped into 2
classes with either sensitization to seasonal or mite allergens.
The smallest class within each study was termed severe atopy
for its specific features, as explained below.
A hallmark of the severe atopy class was sensitization

predominantly to seasonal allergens up to CAP class 3, with a
steep increase in the prevalence of sensitization before year 4 or 5.
Food cosensitization occurred in the majority of this LC (MAS,
88%; PASTURE, 67%) and mite cosensitization occurred in a
relevant proportion (MAS, 31%; PASTURE, 26%) at year 6 and
CAP class 2. In the severe atopy class of the MAS cohort, food

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 2. LCs of atopy as characterized by allergen specificity, time course, and sIgE levels.

J ALLERGY CLIN IMMUNOL

VOLUME 139, NUMBER 6

HOSE ET AL 1939
cosensitization was very common already at year 1 (81%, CAP
class 2). In the PASTURE cohort food sensitization at year 1
occurred in 22% when considering a cutoff level of 0.2 kU/L.
Taken together, LCA grouped mainly for allergen specificity
(food vs inhalant classes), for strength of sensitization, and
partially for temporal patterns.
LCs are mutually exclusive and integrate information across

CAP classes and over various time points, whereas classical
definitions of sensitization, such as sIgE to any inhalant or any
food allergens, can overlap and depend on the underlying CAP
class and time point ofmeasurement. Although both systemswere
comparable at the most suitable time points and CAP cutoff levels
as determined by receiver operating characteristic curves
(see Fig E2 and Table E3 in this article’s Online Repository at
www.jacionline.org), their associations with disease manifesta-
tions diverged in several instances (Fig 3 and see Fig E3 in this
article’s Online Repository at www.jacionline.org). In both
studies sIgE values to any food allergens overestimated associa-
tions with asthma- and health-related conditions when compared
with the food LCs. Conversely, LC severe atopy was associated
more with these conditions compared with sIgE against any
inhalant allergens, even at CAP class 3. The associations of
disease risk with the respective LCs were paralleled by those of
parental atopy (see Fig E4 in this article’s Online Repository at
www.jacionline.org). A sensitivity analysis (see Figs E5 and E6
in this article’s Online Repository at www.jacionline.org)

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 3. Associations of asthma-related conditions with LCs and classical definitions of atopic sensitization at

age 6 years. *Because there was no case of lifetime asthma in this LC, we calculated a conservative

estimation of the odds ratio (OR) based on one case of asthma in this LC, which was simulated at random.

Black point estimates with error bars mark the LCs as reference, red marks the classical definitions as a

comparison.
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revealed that each of the 3 dimensions of allergen specificity, sIgE
levels, and time course contributed importantly to the composi-
tion and disease relevance of the respective LCs.
Based on disease relevance, the LCs were grouped within 3
atopy phenotypes (Fig 4): LCs related to food sensitization repre-
sented a benign phenotype without any disease relevance, and



FIG 4. Atopy phenotypes in relation to the distribution of LCs in both populations.

FIG 5. Absolute sIgE levels (A) and ratio of IL-5 to IFN-g expression (B) at age 6 years.
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LCs related to inhalant sensitization corresponded to a symptom-
atic phenotype with risk of asthma yet normal lung function. In
contrast, the LC severe atopy was characterized by impaired
lung function and a much higher propensity for atopic disease.
To better understand the singular phenomenon of severe atopy

and to contrast it with benign and symptomatic sensitized
children, we assessed the biologically relevant features of atopy.
Although the LCA discriminated well between oligovalent and
polyvalent sensitization, polyvalence was not specific for severe
atopy but also characterized food sensitization in the PASTURE
cohort (see Fig E7 in this article’s Online Repository at www.
jacionline.org). However, a unique feature of severe atopy con-
sisted in high levels of sIgE to inhalant, particularly seasonal, al-
lergens (P <.0001, Fig 5, A, and see Fig E8 in this article’s Online
Repository at www.jacionline.org). This resulted from an
excessive increment in sIgE levels in the first 3 to 4 years (and
a milder trend in subsequent years) compared with the weak in-
crease in symptomatic and benign atopy, particularly for seasonal
and food sIgE (P <.0001, Table I). Similarly, severe atopy differed
from the other LCs with respect to the ratio of IL-5 over IFN-g
expression, thereby reflecting the activation of TH2 rather than
TH1 subsets (P < .01; Fig 5, B).

To elucidate the mutual relation between severe atopy and the
various features differentiating it from the benign and symptom-
atic phenotypes, we performed a path analysis (Fig 6). In both
studies asthma was determined by severe atopy through an exces-
sive increment in sIgE to seasonal allergens during the first 6 years
and high sIgE levels at 6 years. Although including only 5% of all
children, severe atopy explained 20% of all sensitized asthma
cases. Early sensitization to food allergens, TH2/TH1 ratio, and

http://www.jacionline.org
http://www.jacionline.org
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TABLE I. Increment in sIgE production comparing severe atopy with the other atopy phenotypes

Time period Study

Seasonal sIgE Food sIgE Perennial sIgE

b (95% CI) P value b (95% CI) P value b (95% CI) P value

Early increase

Year 0 to year 1 PASTURE 0.05 (20.28 to 0.39) .7491 0.69 (0.12 to 1.25) .0175 0.30 (20.50 to 1.09) .4653

Year 1 to year 3 MAS 4.28 (2.97 to 5.60) <.0001 3.29 (1.93 to 4.66) <.0001 0.62 (20.78 to 2.02) .3843

Year 1 to year 4 PASTURE 7.25 (6.32 to 8.18) <.0001 2.45 (1.55 to 3.35) <.0001 1.29 (0.22 to 2.37) .0187

Late increase

Year 3 to year 6 MAS 2.47 (0.84 to 4.10) .0030 3.78 (2.47 to 5.09) <.0001 1.44 (0.01 to 2.87) .0483

Year 4 to year 6 PASTURE 1.21 (20.01 to 2.43) .0524 20.27 (21.09 to 0.55) .5193 1.06 (0.11 to 2.00) .0290

Overall increase

Year 1 to year 6 MAS 5.01 (3.33 to 6.68) <.0001 4.65 (3.23 to 6.07) <.0001 2.03 (0.09 to 3.97) .0404

Year 1 to year 6 PASTURE 6.13 (4.99 to 7.27) <.0001 1.17 (0.21 to 2.12) .0163 1.79 (0.66 to 2.92) .0018

The b estimates result from linear regression of the log-transformed sIgE values on severe atopy versus the other 2 atopy phenotypes within the respective time period adjusted for

baseline sIgE values. Estimates remained stable after mutual adjustment for incremental increase of the other specificities. Values in boldface indicate statistical significance.

FIG 6. Path diagram comparing severe atopy with the other atopy phenotypes, including its features, lung

function, and asthma in both populations. Excessive sIgE production is defined as incremental increase of

seasonal sIgE production during the first 6 years. High sIgE levels are determined at age 6 years. Significant

associations are shown by solid arrows. Absent associations are represented by interrupted dotted arrows.
Values represent association estimates from the final model, including significant paths only.

J ALLERGY CLIN IMMUNOL

JUNE 2017

1942 HOSE ET AL
polysensitization were similarly determined directly or indirectly
by severe atopy but not related to asthma.
Similarly, as in atopic subjects also in the entire population of

both cohorts, the inverse association of sIgE levels and FEV1 was
completely explained by severe atopy (change in estimate,
104%), as held partially true for the association of asthma and
FEV1 (change in estimate, 38%). This was not unexpected
because the severe atopy class contained also a substantial propor-
tion of children without current wheeze or an established asthma
diagnosis but with FEV1 values within the lowest decile (Fig 7).
DISCUSSION
Using LCA, we classified preschool children for sensitization

patterns considering the 3 dimensions of allergen specificity, time
course, and strength of sensitization. The resulting LCs were
related to manifested atopic disease with higher sensitivity and
specificity compared with classical definitions of sensitization.
The food LCs of both cohorts emerged as a benign atopy
phenotype without individual risk and family history of asthma.
A symptomatic phenotype was found in the inhalant LCs with
substantial risk of atopic diseases but without impaired lung
function. The severe atopy phenotype represented by the LC of
severe atopy comprised children with high sIgE levels to seasonal
allergens, much stronger associations with atopic disease, and low
FEV1 values, even in those without an established asthma
diagnosis.
A major advantage of this analysis was the comprehensive

approach covering the first 6 years of life, with detailed informa-
tion on various major allergen specificities at different levels.
Missing values were successfully imputed, thereby providing a
complete data set for 1446 children without observable selection



FIG 7. Proportion of nonasthmatic children with reduced lung function by LCs. Reduced lung function was

defined as values in the lowest decile of the FEV1 distribution.
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from the originally recruited populations. A further strength was
the replication of the main findings in 2 rather different birth
cohorts.
Admittedly, not all LCs were fully congruent between the

studies: the LC with monosensitization to cow’s milk at low sIgE
levels was specific for the PASTURE cohort and might be
explained by the rather common consumption of cow’s milk in
this rural population. Correspondingly, in the MAS cohort a
specific mite class emerged, reflecting the relevance of this
allergen in an urban cohort. An additional characteristic of the
MAS cohort was the higher proportion of early sensitization to
food allergens in the LC of severe atopy, possibly resulting from
the recruitment focus on children with increased sIgE levels in
cord blood. Nevertheless, these peculiarities do not interfere with
the core results of this analysis.
The role of sIgE in themanifestation of atopic diseases has long

been discussed controversially. In 1989, Burrows et al23 sug-
gested a linear relation between total IgE levels and asthma
risk. Ten years later, the question arose whether increases in total
IgE levels were to some extent determined by specific wheeze
phenotypes.8 Soon thereafter, Illi et al11 hypothesized that ‘‘an un-
derlying condition drives both a certain pattern of sensitization
and the development of childhood asthma.’’ Later, the concept
of multiplicity of sensitizations was introduced as a genuine
risk factor for respiratory allergy.13-19,28

Against this background of conflicting hypotheses, we sought a
unifying concept. Without providing any information on atopic
disease, an LCA based on time course and levels of sIgE against
food and inhalant allergens yielded a clear trichotomy with
respect to manifestation, severity, and family history of atopic
disease in both cohorts. Using classical definitions of atopy, such
as sIgE levels to any food or any seasonal allergens, the respective
associations were overestimated or underestimated, and the
signals were diluted.
The detection of an innocent or benign atopy phenotype

predominantly related to food sIgE is clinically relevant and
suggests that children with asthma allocated to one of the benign
food LCs should not be considered atopic asthma in epidemio-
logic studies. Rather, these children might experience nonatopic
asthma and concomitantly happen to produce irrelevant food
sIgE, as do many children without asthma.
Also, the distinction between symptomatic and severe atopy

has vast implications: children with symptomatic atopy have a
lower risk of asthma, hay fever, and eczema, and a less severe
phenotype, as suggested by rather normal lung function
parameters.
Severe atopy was characterized by specific and also unspecific

features. With the LC of food in the PASTURE cohort, severe
atopy shared polyvalent sensitization with 5 or more allergens
(see Fig E7). Children with early food sensitization were allo-
cated to both the severe atopy and food LCs with similar absolute
counts, although at different proportions. Although early food
sensitization can be seen as the first raised flag of severe atopy,
it cannot serve as a specific predictor of this condition among
sensitized children. However, a unique hallmark of severe atopy
was the increased TH2/TH1 cytokine ratio at age 6 years (Fig 5,
B). This emerging dysbalance might result from an initial TH2
cell activation without subsequent resolution into ‘‘protective
immunologic tolerance,’’ as suggested by Rowe et al.29 In addi-
tion to the specifically strong association with impaired lung func-
tion, severe atopy harbored a relevant proportion of children with
FEV1 values in the lowest decile but without an established
asthma diagnosis. In practical terms this group of children might
benefit from further clinical work-up and careful monitoring of
sIgE increments within the first 3 to 4 years.
A further exclusive feature of severe atopy consisted in high

sIgE levels, which followed a steep increase in seasonal
sensitization particularly before age 3 to 4 years. This sharp
increase was the only relevant longitudinal variation among the
LCs and distinguished the current LCA for atopy from an earlier
LCA for wheeze.3 This earlier LCA was entirely determined by
the time course of symptoms and produced a late-onset wheeze
phenotype emerging only beyond age 3 to 4 years with strong as-
sociations with atopic sensitization, particularly severe atopy (see
Fig E3). In this context it is noteworthy that the steep increase in
sIgE levels within the severe atopy class preceded the first symp-
toms of the atopic late-onset wheeze phenotype. This temporal
relationship in combination with the strength and specificity of
the association of severe atopy with asthma and impaired lung
function and the consistency of the findings between both studies
argues in favor of a causal relationship.
To corroborate this assumption, we performed a path analysis

contrasting severe atopy with benign and symptomatic atopy in
regard to the above features. According to this analysis, the effect
of severe atopy on asthma was completely mediated through the
steep increase in sIgE levels and the resulting high sIgE levels.
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Because this steep increase was seen for all sIgE specificities in
severe atopy (Table I), one might hypothesize that excessive sIgE
production is a generic phenomenon beyond any specific allergen.
This crucial role of uncontrolled sIgE production is indirectly

supported by evidence from clinical studies showing an alleviating
effect on childhood asthma symptoms by neutralizing sIgE with an
anti-IgE antibody.30,31Viceversa, the pathwaymodelmight provide
a suitable explanation for the efficacy of anti-IgE treatment. Addi-
tionally, severe atopy, or in practical terms a steep increase in sIgE
levels until age 3 to 4 years, might serve as a selection criterion
for children susceptible to anti-IgE therapy. Because severe atopy
explains at least every fifth case of atopic asthma, a relevant share
of children might profit from this therapeutic approach.
Moreover, severe atopy directly determined low FEV1 values

and explained the inverse association of FEV1 and asthma, ulti-
mately implying that poor lung function at age 6 years is not a
feature of asthma unless it is related to severe atopy. In other
words, poor lung function and excessive production of sIgEmight
result from the same latent phenomenon. This shared pathogen-
esis might point toward a local process of uncontrolled production
of sIgE in the bronchial mucosa,32 which againmight be the target
of future interventions.
The other features of severe atopy (ie, early food sensitization,

an increased TH2/TH1 ratio, and polysensitization) emerged from
the path analysis as epiphenomena without any proper effects on
asthma risk. Rather, they might hint at an authentic latent phe-
nomenon, which manifests with many faces.
Integrating temporal patterns, allergen specificity, and strength of

sensitization in a data-driven approach, we found 3 phenotypes of
atopy with respect to disease relevance. In contrast to benign and
symptomatic atopy, severe atopy identified a circumscribedgroupof
children with high sIgE values, pronounced disease risk, and poor
lung function. Thus severe atopy as a latent phenomenon might
correspond to the condition underlying both childhood asthma and
sensitization patterns, as previously postulated by Illi et al.11 The
path analysis performed in atopic subjects now suggests a link be-
tween severe atopy and asthma through excessive sIgE production,
particularly to seasonal allergens early in life, and might direct
further research into the biologic fundamentals of atopy.

MAS: We thank all MAS contributors, especially the principal investigators

of the study centres Carl Peter Bauer (Technische Universit€at M€unchen), Jo-
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Kamin, Fred Zepp (Mainz University Medical Center), Volker Wahn, Antje

Schuster (D€usseldorf University Hospital), the coinitiators Karl Bergmann

and Renate Bergmann, and Bodo Niggemann, Petra Wagner, and Gabi Schulz

(Charit�e–Universit€atsmedizin Berlin).

Clinical implications: Atopic sensitization was classified into
benign, symptomatic, and severe phenotypes. Severe atopic
children were characterized by a strong propensity for atopic
diseases mediated by excessive sIgE production early in life,
and poor lung function, even in those without an established
asthma diagnosis.
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Statistical analysis
Multiple imputation was based on continuous sIgE levels from at least 4 of

6 time points in the MAS cohort (age, 1-7 years) and 3 of 4 time points in the

PASTURE cohort (age, 0-6 years). Multiple linear imputation was performed

in 20 runs, resulting in 20 data sets for each cohort, and then the continuous

values for each data set were transformed into 4 ordinal CAP classes for the

MAS cohort (<0.35, <0.7, <3.5, or >_3.5 kU/L) and 5 ordinal CAP classes for

the PASTURE cohort (1 additional CAP class <0.2 kU/L). At this step, data up
to age 6 years were used in both studies for comparability. Finally, in theMAS

cohort 35 four-stage variables representing 7 allergen specificities at 5 time

points and in the PASTURE cohort 36 five-stage variables representing 9

allergen specificities at 4 time points were entered in the LCAs, which were

performed for each of the 20 imputed data sets per cohort. For each LCA,

subjects were assigned to classes based on their highest posterior probabilities.

Each subject was assigned to its definite LC by the majority of the class

memberships in 20 repeats. In addition, class membership was confirmed by

visualizing sIgE prevalences in analogy to Fig 2.



FIG E1. Distribution of LCs across study centers.

J ALLERGY CLIN IMMUNOL

VOLUME 139, NUMBER 6

HOSE ET AL 1945.e2



FIG E2. Prediction of LCs by classical definitions of sensitization at age 6 years. Dots mark the sensitization

status (from right to left: unsensitized and CAP classes 1-3).
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FIG E3. Associations of health conditions with LCs and classical definitions of atopic sensitization at age

6 years. *Because there was no case of late-onset wheeze in this LC, we calculated a conservative estimation

of the OR based on 1 case of late-onset wheeze in this LC, which was simulated at random. Black point es-
timates with error bars mark the LCs as reference, and red marks the classical definitions as comparison.

Late-onset wheeze was defined as described by Depner et al.3
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FIG E4. Associations of LCs with parental atopy.
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FIG E5. Sensitivity analyses omitting single dimensions of LCA.
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FIG E6. Comparing disease associations across all sensitivity analyses. *Because there was no case of

lifetime asthma in this LC, we calculated a conservative estimation of the odds ratio (OR) based on 1 case of

asthma in this LC, which was simulated at random. Black point estimates with error bars mark the LCs as

reference, and red marks the classical definitions as a comparison.
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FIG E7. Number of sensitizations to different allergen specificities across LCs (CAP classes 1-3).
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FIG E8. Absolute sIgE levels at age 6 years.
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TABLE E1. Selection of study population

Variable

MAS cohort PASTURE cohort

Not included Included

P value

Not included Included

P valueNo. Percent No. Percent No. Percent No. Percent

Center 1 Berlin 316 49.84 278 40.88 .0011 Austria 94 25.61 126 16.45 .0003

Center 2 D€usseldorf 52 8.20 109 16.03 .0000 Switzerland 84 22.89 158 20.63 .3847

Center 3 Mainz 101 15.93 111 16.32 .8466 France 46 12.53 157 20.50 .0011

Center 4 Freiburg 100 15.77 108 15.88 .9567 Germany 94 25.61 160 20.89 .0743

Center 5 Munich 65 10.25 74 10.88 .7106 Finland 49 13.35 165 21.54 .0010

High-risk group 229 37.06 253 37.76 .7936 — — — — —

Farming — — — — — 153 41.69 377 49.22 .0175

Sex (female) 303 47.79 327 48.09 .9144 161 49.39 369 48.30 .7421

Family history of allergic disease 309 50.08 345 50.88 .7726 174 51.63 417 54.72 .3431

Maternal history of allergic disease 207 33.33 226 33.28 .9850 110 30.05 261 34.07 .1779

High parental education 362 88.08 531 87.05 .6264 307 87.46 701 91.87 .0198

At least 2 older siblings 76 11.99 89 13.11 .5406 112 30.52 267 34.86 .1475

Breast-feeding ever (in first year) 547 88.37 612 90.94 .1292 256 89.20 689 90.90 .4048

Environmental tobacco smoke 201 58.94 315 53.48 .1062 32 17.88 56 8.20 .0001

Doctor-diagnosed asthma at age 6 y 13 4.48 28 4.61 .9305 4 2.27 36 5.28 .0917

Sensitized to any allergen at birth

(CAP class 1)

— — — — — 31 12.20 81 11.91 .9024

Sensitized to any allergen at age 1 y

(CAP class 1)

28 13.66 90 16.70 .3107 60 28.17 204 28.10 .9841

Sensitized to any allergen at age 2 y

(CAP class 1)

36 24.49 131 25.49 .8063 — — — — —

Sensitized to any allergen at age 3 y

(CAP class 1)

29 24.79 133 26.71 .6713 — — — — —

Sensitized to any allergen at age 4 y

(CAP class 1)

— — — — — 19 59.38 396 57.81 .8609

Sensitized to any allergen at age 5 y

(CAP class 1)

48 40.34 180 34.16 .2026 — — — — —

Sensitized to any allergen at age 6 y

(CAP class 1)

42 42.42 160 37.74 .3883 25 54.35 376 53.79 .9415

Absolute numbers and percentages (in parentheses) are shown. P values are derived from x2 tests. The 2 columns represent the excluded part of the entire population without

complete sIgE data and the analysis population with complete sIgE data after imputation for the selected time points. Values in boldface indicate statistical significance.
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TABLE E2. Model parameters of LCA

No. of classes AIC Entropy

MAS

3 7,384 (7,361-7,406) 0.96 (0.95-0.96)

4 7,172 (7,151-7,192) 0.95 (0.95-0.96)

5 7,064 (7,044-7,084) 0.97 (0.97-0.97)

6 7,067 (7,047-7,088) 0.96 (0.96-0.97)

PASTURE

3 14,632 (14,474-14,791) 0.95 (0.94-0.96)

4 14,444 (14,290-14,597) 0.92 (0.91-0.94)

5 14,357 (14,202-14,511) 0.93 (0.92-0.94)

6 14,382 (14,234-14,530) 0.93 (0.91-0.95)

Mean values of AIC and entropy are given with 95% CIs for 20 imputed data sets.

Values in boldface indicate for the AIC the minimum value as indicator for the best

model fit, and for the entropy the maximum value as indicator for the best model

usefulness.

AIC, Akaike information criterion.
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TABLE E3. Prediction of LCs by classical definitions of

sensitization at age 6 years: AUC of receiver operating

characteristic analyses with 95% CIs

LCs

Any inhalant

sensitization Any food sensitization

MAS

LC food 49.52 (44.34-54.69) 74.13 (68.58-79.68)

LC seasonal 90.10 (86.74-93.45) 65.48 (58.92-72.04)

LC mite 93.22 (91.55-94.89) 54.87 (47.00-62.73)

LC severe atopy 90.70 (86.20-95.20) 94.89 (90.56-99.23)

PASTURE

LC cow’s milk 53.92 (49.40-58.43) 81.78 (78.74-84.82)

LC food 57.85 (50.26-65.44) 91.98 (89.72-94.25)

LC inhalant 77.49 (72.87-82.11) 55.45 (50.75-60.15)

LC severe atopy 90.67 (87.17-94.16) 76.08 (68.24-83.91)

AUC, Area under the receiver operating characteristic curve.
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