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Abstract— In the last few years, single-cell time-lapse fluore-
scence microscopy has emerged as a key technology in the toolbox
of experimental life science. Imaging fluorescently tagged proteins
allows to combine past and future information of cellular progeny
with time resolved protein dynamics. Whenever quantitative
data on the intensity of the fluorescence signal is required, a
careful image processing pipeline has to be applied to account
for uneven illumination, background signal, varying illumination
strength or photobleaching. Previous approaches commonly used
an additional calibration step to infer such image characteristics
by imaging fluorescent dilutions like fluorescein.

Here, we describe a method to infer a time-dependent back-
ground signal and the image gain without the use of additional
fluorescent substances – instead, we use the information contained
in the bleaching background of the fluorescence time-lapse movie
itself. First, we tile the full image into small sub-images and
determine background tiles by clustering the statistical moments
of the individual intensity distributions. For each image, we
interpolate the full background from the identified tiles and thus
reconstitute the time-dependent background image. Second, we
estimate the time-independent image gain from the background
tiles of all pixels and all time points. We are thus able to correct
for a bleaching background and an uneven illumination of the
experimental setup. We show the applicability of our method by
comparing the intensities of fluorescent beads derived from time-
lapse microscopy with intensities inferred from FACS analysis.

In summary, our normalization method accurately corrects
for fluorescence image issues and decreases the necessary exper-
imental work.

I. INTRODUCTION

In recent years, single-cell time-lapse fluorescence mi-
croscopy has emerged as a key technology in the toolbox
of biological research [1], [2], [3]. It allows to combine the
information of cellular progenies with quantitative protein
expression and has been used to address a wide spectrum
of biological questions, from cell-to-cell variability [4] over
drug response [5] to cell fate prediction [6] and cell cycle
analysis [7]. The general experimental approach is to (i) tag
the gene of interest with a fluorescent protein, (ii) culture the
genetically modified cells, (iii) excite the culture with light of
the respective wavelength and take microscopy pictures of the
emitted fluorescent light. Whenever quantitative results on the
intensity of the fluorescent signal are required, a careful image
processing pipeline has to be applied to the microscopy images
[8]. Combined with cell tracking and image segmentation, this
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Fig. 1. Properties of time-lapse fluorescence images. (a) A typical fluore-
scence image with space coordinates (x1, x2) and fluorescence intensity
plotted on the z-axis where peaks represent cellular signal. In long-term
time-lapse microscopy, one has to deal with the following issues: (i) An
inhomogeneous illumination due to the light source and camera lens, (ii)
a non-zero background signal due to autofluorescence of the medium, and
(iii) the effect of photo-bleaching (b). During an experiment the setup is
sequentially illuminated with light. This leads to a bleaching effect in the
medium where cells are cultured in and decreases the image intensity. The
black dashed line represents the mean image intensity while the colored lines
correspond to the colored dots in (a) (red: pixel in the upper left corner, green:
pixel in the middle left, blue: pixel in the image center).

data contains a wealth of information of cellular behavior and
protein dynamics [9].

Here, we focus on the normalization of microscopy im-
ages and propose an efficient and parsimonious technique
to estimate (i) the time-dependent background signal from
the medium where cells are cultured in and (ii) the time-
independent gain from the optical apparatus. We infer these
components from time-lapse microscopy data alone without
the need for additional substances like fluorescein.

II. METHODS

A. Definitions

A raw fluorescence image I(x, t) at time point t with space
coordinates x = (x1, x2) (see Fig. 1) can be decomposed into
the following elements:
• a cellular signal s(x, t), which changes over time.
• a homogeneous background signal b(t) (e.g. autofluores-

cence of the culture medium), that decreases over time
due to photo-bleaching.

• a coordinate-specific illumination function called gain
g(x) originating from the uneven illumination or the
light source and the lens. The gain is defined as signal
intensity per fluorescent molecule, which is assumed to
scale linearly.

• a camera offset o(x), which is constant over time.
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Additional technical noise appears in equal measure at every
position and time point. Since our normalization method uses
robust fitting methods noise only has a marginal influence and
is not discussed in the procedure presented here. Other means
to infer the nature and intensity of the noise have to be applied
separately.

We summarize all contributions in the following equation:

I(x, t) = s(x, t) · g(x) + b(t) · g(x) + o(x). (1)

By rearranging the formula we get the cellular signal by

s(x, t) =
I(x, t)− b(t) · g(x)− o(x)

g(x)
. (2)

All contributions on the right hand side of equation (2) are
derived with the following approach.

B. Time-dependent background estimation

We estimate the illuminated background signal including the
offset, denoted as B(x, t) = b(t) · g(x) + o(x). By estimating
B(x, t) on each image separately we account for bleaching
of the medium. First, our method divides the image I(x, t)
into small overlapping sub-images, called tiles (see Fig. 2).
The distribution of intensities from tiles with cellular signal
considerably differs from tiles without cellular signal and
can be distinguished by the moments of the distribution. The
appropriate selection of moments depends on the properties of
the background image: for flat images, the first two moments
(mean and variance) provide the most powerful means to dis-
criminate background from cell signal, for more complicated
illumination shapes with varying gradients (as shown in Fig.
2), additional higher moments will be more appropriate.

For the following steps, we represent each individual tile
as a point in the multi-dimensional space of distribution
moments. The datapoints of distributions of background tiles
have almost equal features and will accumulate in a small
dense volume. Therefore, we use a density-based clustering
approach, called DBSCAN [10], which returns two clusters
(see Fig. 2): One very dense cluster referring to background
tiles, and a dispersed cluster from tiles containing cellular
signal.

The median of each tile from the first cluster is used to
reconstruct an initial background grid. Finally, a two dimen-
sional natural neighbor inter- and extrapolation is applied,
which results in an estimation of B(x, t). This procedure is
applied to every image independently.

C. Fitting the time-independent gain

The bleaching of each pixel is position-dependent due to the
uneven illumination of the experimental setup. A pixel in the
center will experience a high irradiation and therefore bleach
at a faster rate (Fig. 3b). Plotting the absolute background
pixel intensity against the mean background intensity for
every time point reveals a linear correlation (see Fig. 3c).
Every pixel behaves linearly with respect to the overall mean
intensity but with different slopes. A linear regression for every
pixel x yields the slope, which represents the relative gain
g′(x) = c · g(x) (see Fig. 3d) while the ordinate-intercept

represents the offset o(x). The relative gain g′(x) defined
as intensity per mean background signal represents the real
gain g(x) multiplied by a factor c. Since we correlate every
pixel with the mean background intensity instead of known
fluorescent molecule concentrations we can only determine
this relative gain. The factor c cannot be further determined
without additional experiments. However, since it is a constant
factor, it does not alter the signal fold changes within the
fluorescence images. It is also independent of time t and
space x. To determine the factor c and finally infer protein
abundances, a further calibration step must be applied. This
can be done experimentally by comparing known concentra-
tions in normalized time-lapse images or computationally with
additional tracking methods as described in [11].

D. Final correction

The final relative cellular signal can be derived by

s′(x, t) =
I(x, t)−B(x, t)

g′(x)
, (3)

with
s′(x, t) = s(x, t) · c−1, (4)

illustrated in Fig. 4. After this normalization step all cellular
signals are on a comparable intensity level. Ratios of the
relative cellular signal are identical to ratios of real cell signal.

III. APPLICATION

We applied our method to a time-lapse microscopy exper-
iment of fluorescent beads, which are commonly used for
calibration in flow cytometry. Here, we used unbleached and
bleached beads as a representative for two different intensities
of fluorophores in a cell matrix. The bleaching itself is of no
importance to our test. Thus, we were able to validate our
normalization method in a maximally clean and controllable
setup and compare it to the published normalization method
of [12], which relies on additional imaging of a fluorescein
solution and a background image.

FITC-Beads (Becton Dickinson, Heidelberg, Germany)
were quantified and sorted by flow cytometry on a FACSAriaI
(Becton Dickinson, Heidelberg, Germany). We included only
single-bead events according to the FSC/SSC Plot and further
gated the beads for high FITC fluorescence. Beads were
thereby quantified and subsequently sorted. Furthermore, they
were washed and plated at a density of 2700 per 0.6 cm2 on
a µ-slide VI0.4 (IBIDI, Martinsried, Germany) in StemSpan
Serum-Free Expansion Medium (StemCell Technologies, Van-
couver, Canada). In different compartments StemSpan Serum-
Free Expansion Medium or a 100nM fluorescein-solution
in PBS (Invitrogen, Karlsruhe, Germany) were plated. Tiff-
Images were acquired on a CellObserver system (Zeiss,
Hallbergmoos, Germany) with a 10x Fluar objective (Zeiss)
and an AxioCamHRm camera (Zeiss) at 1388x1040 pixel
resolution over 17 hours at a 5 min interval with Zeiss
Software AxioVision 4.7 (as described in [13]). A mercury
lamp (HBO 103W/2, Osram, Augsburg, Germany) was used
for fluorescence illumination at an exposure time of 500 ms
with a 46 HE Filter (Zeiss). Afterwards, the FITC-Beads were
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Fig. 2. Time-dependent background estimation B(x, t). Each fluorescence image I(x, t) is tiled into small overlapping sub-images. For each tile, the
moments of the intensity distribution are calculated. A density-based clustering on the moments of the distributions splits the tiles into two clusters. The
tiles containing only background are kept and their median intensity is used to construct a grid which serves as a basis for a two dimensional inter- and
extrapolation to estimate the full background B(x, t) of the image. This procedure is applied to every fluorescence image of the time-lapse movie.
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Fig. 3. Fitting the time-independent gain g(x). (a) Monitoring each pixel as well as the mean in every background image B(x, t) over time shows (b) the
bleaching behavior of the medium. For demonstration we picked three pixels from the upper left corner (red), the left edge (green) and the center of the image
(blue). The black dashed line indicates the mean background intensity. (c) A scatter plot of the mean vs. each pixel intensity reveals a linear dependence.
From the ordinate intercept and the slope of the linear regression, we infer the offset o(x) and the relative gain g′(x) (d).
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Fig. 4. Final correction (I(x, t)−B(x, t))÷ g′(x) = s′(x, t). The illuminated background and the offset, B(x, t), derived by the tiling method described
in Fig. 2 are subtracted from the fluorescence image. The resulting image is then divided by the time-independent gain g′(x), calculated from the linear
regression as shown in Fig. 3. The final image contains normalized cell signal and a homogeneous background around 0.

harvested, washed and reanalyzed on a FACSAriaI using the
exact same FSC/SSC gates as before.

For segmentation, we used the published tool ilastik [14]
to detect bead outlines on the brightfield images, resulting in
binary images. The same bead detections were used through-
out all following quantifications with different normalization
methods.

For our method, we used tiles of 30x30 pixels overlapping
by 15 pixel and clustered on skewness, kurtosis and the

fano factor (i.e. the normalized variance). For DBSCAN we
set minimal number of objects considered as a cluster to 4
(number of dimensions+1) and used an adhoc value for the
neighborhood radius. Following the protocol described in [12],
we subtracted the background from the original image and
divided it by the background-subtracted fluorescein images.

To test the applicability of this approach, we compared
the intensity fold change between unbleached (at the start
of the movie) and bleached (at the end of the movie) beads
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Fig. 5. Application of the method. We compare the intensity fold change
between unbleached and bleached beads derived from FACS analysis and
time-lapse microscopy imaging. Our normalization method (yellow) yields
ratios comparable to the FACS data (blue). Additionally, the null hypothesis
of equal distributions cannot be rejected by a Wilcoxon rank-sum test (p-value
= 0.5531). The raw data (cyan) and the fluorescein normalized data following
[12] deviate substantially (p-value of Wilcoxon rank-sum test < 4 · 10−8).

with FACS analysis and time-lapse fluorescence microscopy
imaging (see Fig. 5). From FACS analysis, we inferred a 8.5
fold change between unbleached and bleached beads. This
is in accordance with a 8.0 fold change, derived with our
normalization method. In contrast, the raw, unnormalized data
yields a fold change of 4.0, while the fluorescein normalized
method described in [12] yields negative intensity values for
the bleached beads (see Fig. 5).

IV. DISCUSSION

Our approach can be well compared to already published
methods. The simplest thing to solely estimate the background
in real data images is to take the original image and apply
a 2D median filtering step with a large window size [15].
This method is a quick and easy way as long as there are
no colony forming cells and the background does not have a
complex illumination pattern. Moreover, it is only appropriate
for images where the median of a window always corresponds
to the background. A more sophisticated way of classifying
intensities has been described in [16]. The authors iteratively
fit a two dimensional cubic spline surface to a grid which
is based on estimated background pixels. With this fit they
are able to redefine the first poor estimation of pixels corre-
sponding to background and achieve an approximation for the
true background after the algorithm reaches the convergence
criteria. We used the MATLAB code provided on the author’s
homepage (http://www.cb.uu.se/˜joakim/software/) to compare
it with our method. It turned out that the difference for both
methods is minute regarding accuracy as well as computational
performance.

Previous approaches to estimate both background and gain
commonly used a calibration step to infer the space-dependent
gain by imaging fluorescent dilutions like fluorescein [12].
The background or camera offset was determined by imaging

empty bins or non-fluorescent dilutions. These images were
taken at different spots of the experiment and did thus not
reflect the exact illumination and background at positions
where the actual cell images were taken. To countervail this
spatial inconsistency, it is also possible to directly include
fluorescein in the cell culture and capture the illumination
image in a different wavelength than the signal of interest.
However, the gain detection is then flawed by cells and
other contaminants in the fluid which will lead to deviations
from the exact illumination pattern. Our approach uses the
bleaching medium and does not rely on additional dilutions.
First, we computationally estimate the time-dependent illumi-
nated background from each cell image itself. The gain is
calculated by a linear regression for each pixel against the
estimated mean background intensities. This is similar to the
approach described in [17], where different dilutions of GFP
are used to infer the pixel gain. In this respect, the different
levels of bleached medium resemble different fluorescein or
GFP concentrations. Second, we have no need for further
chemicals like fluorescein in the cell culture which reduces
the experimental work.

Since the availability of background tiles can indeed become
crucial for our method we tested the performance of our
tiling method by randomly adding bright spots of 10x10 pixel,
representing cellular signal within a perfect background. For
each iteration we added one hundred of these spots, estimated
the background with our method using 30x30 pixel tiles and
calculated the root mean square difference. It turned out that
our method is applicable for up to 1500 bright spots, which
means that about 13% of the image is full of cells. After
setting the tile size to 20x20 pixel we could still get accurate
background estimations for higher cell densities. We require
about 10% of all possible grid points to get an accurate
background estimation. However, this threshold also depends
on the performance of the used inter- and extrapolation step.
Especially the extrapolation step can introduce crucial devia-
tions from the real background.

Concerning computational needs, a two core processor, each
2.80GHz, takes about 15 seconds per single image background
estimation and about one hour per gain calculation with MAT-
LAB written software. If computational power is a limiting
factor we propose a more parsimonious version of the method:
It would suffice to apply the computationally expensive linear
regression only to datapoints of the initial background grid
instead of all points including interpolated pixel. After that,
the inter- and extrapolation is used for the sparse gain-grid.

As a future improvement other density based cluster al-
gorithms such as OPTICS which are parameter free can
be incorporated. The choice of features for clustering (i.e.
the moments of the tile distributions) still remains to the
user and has to be done carefully depending on the image
characteristics.

V. CONCLUSION

Fluorescence images have general issues like uneven illumi-
nation or a background signal which can also vary over time.
To achieve a normalized cellular signal one has to estimate
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the background level and determine the gain and camera
offset. Typically, autofluorescence in the medium culture is
regarded as a disturbing element in image processing. Here,
we presented a method which exploits this effect to estimate
the autofluorescent background, gain, and offset.

With fluorescent beads as a representative for cellular signal,
we here validated our normalization method against an accu-
rate FACS analysis. We showed that correct fold changes are
only preserved if an accurate normalization method is applied.
In summary, we provide a powerful method to normalize
long-term time-lapse fluorescence microscopy movies. This is
crucial for obtaining accurate protein expression patterns to ad-
dress quantitative aspects of differentiation, cellular response,
or biomolecular mechanisms in the future.
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