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BACKGROUND: Common diseases such as coronary heart disease 
(CHD) are complex in etiology. The interaction of genetic susceptibility 
with lifestyle factors may play a prominent role. However, gene-lifestyle 
interactions for CHD have been difficult to identify. Here, we investigate 
interaction of smoking behavior, a potent lifestyle factor, with genotypes 
that have been shown to associate with CHD risk.

METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls 
from 29 studies for gene-smoking interactions for genetic variants at 45 
loci previously reported to be associated with CHD risk. We also studied 
5 loci associated with smoking behavior. Study-specific gene-smoking 
interaction effects were calculated and pooled using fixed-effects meta-
analyses. Interaction analyses were declared to be significant at a P value 
of <1.0×10–3 (Bonferroni correction for 50 tests).

RESULTS: We identified novel gene-smoking interaction for a variant 
upstream of the ADAMTS7 gene. Every T allele of rs7178051 was 
associated with lower CHD risk by 12% in never-smokers (P=1.3×10–16) in 
comparison with 5% in ever-smokers (P=2.5×10–4), translating to a 60% 
loss of CHD protection conferred by this allelic variation in people who 
smoked tobacco (interaction P value=8.7×10–5). The protective T allele 
at rs7178051 was also associated with reduced ADAMTS7 expression in 
human aortic endothelial cells and lymphoblastoid cell lines. Exposure of 
human coronary artery smooth muscle cells to cigarette smoke extract led 
to induction of ADAMTS7.

CONCLUSIONS: Allelic variation at rs7178051 that associates with 
reduced ADAMTS7 expression confers stronger CHD protection in never-
smokers than in ever-smokers. Increased vascular ADAMTS7 expression 
may contribute to the loss of CHD protection in smokers.

Loss of Cardioprotective Effects at the ADAMTS7 
Locus as a Result of Gene-Smoking Interactions
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Coronary heart disease (CHD) is a complex disorder 
resulting from the interplay of lifestyle and genetic 
factors;1,2 yet, gene-lifestyle interactions for CHD 

have been difficult to identify. Cigarette smoking is one 
of the strongest lifestyle risk factors for CHD, but the un-
derlying molecular mechanisms of CHD in humans who 
smoke remain uncertain.3–5 Cigarette smoking accounts 
for one-fifth of all CHD events globally and is responsible 
for ≈1.6 million deaths attributable to CHD annually.6 
Genome-wide association studies (GWAS) have improved 
our understanding on the genetic predisposition to both 
CHD and smoking behavior.7–10 Joint or interactive ef-
fects of genetic variation and smoking behavior in the 
etiology of CHD, however, remain poorly understood. 
GWAS can provide new opportunities to investigate 
gene-smoking interactions.

We hypothesized that genetic predisposition to CHD 
is modified by cigarette smoking at loci discovered by 
GWAS to be associated with either CHD or smoking be-
havior. We conducted a focused experiment at 50 main-
effect loci (45 for CHD and 5 for smoking behavior) us-
ing genetic data and information on smoking behavior in 
60 919 CHD cases and 80 243 controls from 29 differ-

ent studies. We report novel findings on gene-smoking 
interactions in CHD.

METHODS
Summary of Study Design 
All studies participating in the CARDIoGRAMplusC4D consor-
tium (Coronary Artery Disease Genome-Wide Replication and 
Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease 
[C4D] Genetics) 7–9 that had information available on smoking 
status, CHD risk, and genotypes at the 50 CHD and smok-
ing behavior–associated loci were invited to participate. The 
current study had 5 interrelated components (online-only Data 
Supplement Figure I). First, as part of the quality control, we 
investigated the association of smoking status with CHD risk 
within each study. Second, we performed an updated analysis 
of all the single-nucleotide polymorphisms (SNPs) (±50 kb) at 
the 45 established CHD loci to identify the variant with the 
strongest CHD association in our study population at each 
established CHD locus. Effect estimates from each study in 
association with CHD risk were obtained and pooled to iden-
tify the strongest CHD-associated variant (lead variant), in our 
study population. Third, we investigated gene-smoking interac-
tions at these 45 CHD loci and at 5 loci related to smoking 
behavior. Fourth, for loci demonstrating differential CHD asso-
ciations by smoking status, we mapped the interaction region, 
examined linkage disequilibrium (LD) across the region, and 
performed conditional analyses to identify independent genetic 
signals. Last, for loci exhibiting gene-smoking interaction in 
CHD, we assessed expression quantitative trait loci (eQTL) 
data for association of variants with expression of local genes 
in available data sets and examined expression of these genes 
in multiple cell types that play prominent roles in smoking-CHD 
pathobiology.

Harmonization of Phenotypes and Genotypes 
Summary-level estimates for each study were shared via a 
secure FTP site. We used ever-smoking as a primary expo-
sure, and data were harmonized by uniformly characterizing 
participants in each study into 2 categories, ever-smokers 
and never-smokers. Ever-smokers were defined as those who 
had smoked >100 cigarettes in a lifetime. For case-control 
studies, information on ever-smoking status collected at the 
time of enrollment was used for the current analyses; whereas 
for prospective cohort studies, information on smoking status 
obtained at the baseline visit was used for the current investi-
gation. CHD was defined based on evidence from angiography 
or history of verified myocardial infarction (MI), percutaneous 
coronary interventions, or coronary artery bypass grafting as 
published in CARDIoGRAMplusC4D projects.7–9 Genotype data 
generated through GWAS (directly genotyped or imputed) 
or cardio-metabochip (directly genotyped only) arrays were 
obtained from each study, and all genetic data were aligned 
using the build-37 reference panel. Imputed SNPs were 
removed if they had any of the following: (i) a minor allele 
frequency of <1%; (ii) info score of <0.90; or (iii) confidence 
score of <0.90. For each study, GWAS data were imputed 
using the Phase II CEU HapMap reference population.11 
Standard quality control criteria were applied by each partici-
pating study, as described previously.7 All participating studies 

Clinical Perspective

What Is New?
•	 Using data on 60 919 coronary heart disease (CHD) 

cases and 80 243 controls, this study conducted 
gene-lifestyle interaction analyses to investigate 
effect modification by smoking behavior at estab-
lished CHD- and smoking-related loci.

•	 Cardioprotective effects associated with allelic 
variation at the ADAMTS7 locus were attenuated by 
60% in people who smoked tobacco in comparison 
with those who did not smoke.

•	 Allelic variation at ADAMTS7 associated with 
reduced CHD risk was associated with reduced 
ADAMTS7 expression in human aortic endothelial 
cells and lymphoblastoid cell lines.

•	 Exposure of human coronary artery smooth muscle 
cells to cigarette smoke extract led to induction of 
ADAMTS7.

What Are the Clinical Implications?
•	 These human genomic data provide new insights 

into potential mechanisms of CHD in cigarette 
smokers.

•	 Findings from this study also point toward the direc-
tional impact of the ADAMTS7 locus on CHD.

•	 ADAMTS7 and its substrates have a specific role in 
cigarette smoking–related CHD.

•	 Inhibition of ADAMTS7 is a novel potential therapeu-
tic strategy for CHD that may have particular ben-
efits in individuals who smoke cigarettes. by guest on July 14, 2017
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in the CARDIoGRAMplusC4D consortium were approved by 
their locally relevant institutional review boards, and all partici-
pants gave written informed consent before their enrollment 
in each study.7–9

Statistical Analysis
Gene-Smoking Interaction Analyses
Initial quality control and association of established CHD  
loci with CHD risk
As part of an initial quality control, effect estimates from each 
study were obtained for ever-smoking status and CHD risk by 
using a case-control logistic regression model adjusted for 
age and sex. Each participating study also assessed and, if 
needed, controlled for population stratification by including 
principal components as covariates in the regression model 
as described earlier.7–9 To identify variant(s) with the most 
significant association with CHD risk at established CHD loci 
in our study population, logistic regression analyses were 
conducted by each participating study for all the SNPs flank-
ing (±50 kb) the lead variant previously reported at each CHD 
locus. Effect estimates and standard errors were obtained 
and meta-analyzed using a fixed-effects inverse variance 
approach. All lead variants identified through these analy-
ses were further investigated for gene-smoking interactions 
in CHD. One lead variant per locus was selected for primary 
gene-smoking interaction analyses.

Investigation of the APOE locus 
Although APOE has been recently established as a GWAS 
locus,7 previous studies before GWAS suggested that CHD risk 
is higher among carriers of the ε4 allele at the APOE locus in 
smokers than in nonsmokers.12–14 Because the ε2, ε3, and ε4 
alleles at the APOE locus are not captured perfectly by the 
GWAS platform, we specifically conducted genotyping for 
rs429358 and rs7412 variants to capture the three epsilon 
(ε) alleles in 13 822 participants (including 7286 first-onset 
MI cases) in the PROMIS study (Pakistan Risk of Myocardial 
Infarction Study).15

Gene-smoking interaction analyses at CHD and smoking loci 
To assess gene-smoking interactions, analyses were con-
ducted within each study, adjusted for age, sex, and other 
study specific covariates (eg, principal components), and 
variants were analyzed in association with CHD separately in 
ever-smokers and never-smokers. Results from the 2 groups 
were then used to test for interaction within each study. For 
the 50 variants, an interaction test statistic was calculated 
within each study using the following equation as adapted 
from Teslovich et al16

( )β βn e−
+SEn SEe2 2

where βn and βe are the β-coefficients for the SNP in never-
smokers and ever-smokers, respectively, SEn and SEe are 
the standard errors for the log-odds ratios (ORs) estimated for 
never-smokers and ever-smokers, respectively. Study-specific 
interaction β(s) and standard error(s) were calculated within 
each study and were pooled across studies using a fixed-
effects meta-analysis. Interaction analyses were declared to 

be significant at a P value of <1.0×10–3 (Bonferroni correction 
for 50 tests).

Conditional analyses on chr.15q25.1 
At chr.15q25.1, we observed 2 variants exhibiting gene-
smoking interactions for CHD. The proximity of these 2 sig-
nals raised the possibility that the observed interactions may 
represent a single interaction locus across the entire region. 
To investigate this possibility, we undertook conditional anal-
yses using an approximate conditional and joint analyses 
approach, also known as Genome-wide Complex Trait Analysis, 
as described previously.17–22 In brief, this method leverages 
summary-level statistics from a meta-analysis and uses LD cor-
rections between SNPs estimated from a reference sample. 
Such an approach has been shown to yield results similar to 
those obtained from conditional analyses conducted on individ-
ual participant data and has been successfully implemented in 
several other studies that have fine-mapped loci for other com-
plex traits.17–22 Using this approach, we first conducted sepa-
rate conditional analyses at the chr.15q25.1 locus to identify 
main-effect variant(s) independently associated with CHD and 
smoking behavior, respectively. We used the meta-analyzed 
data for CHD main effects in the CARDIoGRAMplus4D consor-
tium to identify SNPs independently associated with CHD risk, 
and we used the genetic meta-analysis data from the Tobacco 
and Genetics Consortium in 140 000 participants to identify 
variants independently associated with smoking behavior. We 
then estimated the effects of these independent variants on 
CHD risk stratified by smoking status and mutually adjusted the 
effects of these variants for each other.

Analysis of eQTLs and Regulatory Features at the 
chr15q25.1 Gene-Smoking Interaction Locus
eQTL analyses 
We mined publicly available databases to identify genotype-
related expression differences (eQTLs) in ADAMTS7 and the 
CHRNB4-A3-A5 gene cluster to understand the directionality of 
the association of these genes with CHD and smoking behav-
ior. Specifically, we investigated data available from the GTEx 
consortium,23 the HapMap consortium (restricted to European 
populations),` and the Multiple Tissue Human Expression 
Resource (MuTHER).24 We also analyzed expression data in 
147 donor human aortic endothelial cell (HAoEC) lines.25 We 
used a nominal P value of 0.002 to account for multiple testing 
involved in the eQTL analyses.

Regulatory features of the chr. 15q25.1 region
Data from ENCODE (Encyclopedia of DNA Elements)26 
were explored as described in online-only Data Supplement 
Methods. Chromatin immunoprecipitation sequencing (ChIP-
seq) experiments were performed on confluent cultured 
human coronary artery smooth muscle cells (HCASMC) 
(Cell Applications 350-05a and Lonza CC-2583; cultured 
in SmGM-2 BulletKit media; Lonza) as described.27 TCF21 
(Abcam ab49475), Jun (Santa Cruz Biotechnology sc-1694), 
JunD (Santa Cruz Biotechnology sc-74), and CEBP (Santa 
Cruz Biotechnology sc-150) transcription factor binding 
was interrogated, and H3K27ac data were acquired using 
the same ChIP protocol with an anti-H3K27ac antibody 
(Abcam; ab4729). Reads were aligned to the human genome 
(GRCh37p13) using STAR.28
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Analyses of ADAMTS7 and CHRNB4-A3-A5 Gene 
Expression in Vascular Cells and Tissues
ADAMTS7 and CHRNB4-A3-A5 Gene Expression  
in Vascular Cells
ADAMTS7 and CHRNB4-A3-A5 mRNA levels were measured 
in HCASMC (Lonza CC-2583, Lonza), human coronary artery 
endothelial cells (Lonza CC-2585), human aortic smooth mus-
cle cells (Lonza CC-2571), HAoEC (Lonza CC-2535), human 
aortic adventitial fibroblasts (Lonza CC-7014), and human acute 
monocytic leukemia cell line (THP-1, ATCC TIB-202). Please see 
the online-only Data Supplement Methods and Figures.

ADAMTS7 and CHRNB4-A3-A5 Gene Expression in 
Response to Cigarette Smoke Extract
HCASMCs were grown to confluence, and cigarette smoke 
extract experiments were performed at passage 7. Cigarette 
smoke extract was custom prepared by Arista Laboratories. 
In brief, the condensate was generated by smoking 
Marlboro Red King Size Hard Pack cigarettes on an ana-
lytic smoke machine under International Organization for 
Standardization smoking conditions. The smoke condensate 
was collected on 92-mm filter pads and extracted from each 
pad in dimethyl sulfoxide by shaking to obtain a solution of 
≈20 mg/mL final concentration of the total particulate mat-
ter. Serum-starved (24 hours) HCASMC were treated with 
0.5% or 1.0% cigarette smoke extract (v/v) for 4, 12, and 
24 hours in serum-reduced conditions (0.5% fetal bovine 
serum in Dulbecco modified Eagle medium). Details on RNA 
preparation and quantitative polymerase chain reaction are 
provided in online-only Data Supplement Methods.

RESULTS
Description of the Participating Studies 
Of the 37 studies participating in the CARDIoGRAM-
plusC4D consortium, information on ever-smoking was 
available in 30 studies, yielding a total sample size of 
60 919 CHD cases and 80 243 controls. All studies re-
cruited participants of European ancestry, except PROMIS 
(South Asian),15 LOLIPOP (South Asian)29 and FGENTCARD 
(Lebanese).30 Number of CHD cases and controls and per-
centages that were ever-smokers are provided in online-
only Data Supplement Table I. As expected, in all the par-
ticipating studies, association of ever-smoking status with 
CHD risk was directionally consistent with an increased 
risk of CHD (online-only Data Supplement Figure II).

New Variants Associated With CHD at 
Established Loci
Online-only Data Supplement Figure III and online-only Data 
Supplement Table II present effect estimates for the asso-
ciation with CHD for (i) the most significant variant that we 
identified at known CHD loci in the current CARDIoGRAM-
plusC4D consortium analysis, and for (ii) the top SNP previ-
ously reported at each of these established CHD loci, as 

well. Of the 45 established CHD loci, we identified 32 for 
which we discovered a more statistically significant SNP in 
association with CHD risk in our data set than the previously 
reported top variant. All of these 32 SNPs were in moderate 
to high LD (r2>0.6) with the previously published variants.7–9 
In our primary gene-smoking interaction analyses, at each 
of the CHD loci, therefore, we used the SNP with the most 
significant CHD association (online-only Data Supplement 
Figure III and online-only Data Supplement Table II). Because 
the smoking behavior phenotype (captured as cigarettes 
per day [CPD]) was not available in all CARDIoGRAMplusC4D 
studies, we used the top variant previously reported for 
CPD10 at each locus (online-only Data Supplement Figure IV).

Analyses of the APOE Locus
The effect of rs6857, the lead CHD variant at the 
APOE locus, was similar in ever-smokers in compari-
son with never-smokers (online-only Data Supplement 
Table III). Specifically, the CHD OR for the T allele at 
rs6857 was found to be 1.10 (P=7.93×10–4) in nev-
er-smokers (12 159 CHD cases and 22 932 controls) 
which was quantitatively similar to the CHD OR of 1.09 
(P=8.68×10–5) observed in ever-smokers (23 753 CHD 
cases and 24 019 controls) (interaction P value=0.76) 
(online-only Data Supplement Figure VA). Investigation 
in the PROMIS study of the APOE ε genotypes yielded 
consistent findings; the OR for CHD among ε4 carri-
ers in never-smokers was 1.13 in comparison with the 
CHD OR of 1.07 observed in ever-smokers (interaction 
P value=0.82) (online-only Data Supplement Figure VA).

Novel Gene-Smoking Interaction Effects on CHD 
at Chromosome 15q25.1
Of the 50 loci, we identified effect-modification by ever-
smoking status on CHD risk for the lead variants at 2 
distinct loci, rs7178051, in proximity of ADAMTS7 (an 
established CHD locus), and rs1051730, in proximity of 
CHRNB4-A3-A5 (an established smoking behavior locus) 
(online-only Data Supplement Table III). Although associ-
ated with different traits and located in distinct LD blocks, 
these 2 variants reside ≈224 kb apart on chr.15q25.1 
and are in weak LD (r2=0.22), raising the question of 
whether these 2 variants exhibiting gene-smoking inter-
actions on CHD are independent of each other.

At the ADAMTS7 CHD locus, the T allele at the 
rs7178051 variant was found to be more strongly and 
inversely associated with CHD risk in never-smokers 
(OR, 0.88; P=7.02×10–16) in comparison with a much 
weaker effect in ever-smokers (OR, 0.95; P=8.64×10 4)  
(P value of interaction=8.57×10–5) (Table). Thus, the 
protective impact of the rs7178051 T allele observed 
in never-smokers was halved in people who smoked (Fig-
ure 1). This difference is not related to power differences 
within strata because, for this variant, there were fewer 
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data available in the never-smoking group (21 232 CHD 
cases and 38 713 controls) than in the ever-smoking 
group (39 585 CHD cases and 40 749 controls). There 
was no substantial evidence of heterogeneity for the in-
teraction β across the participating studies (P value for 
the χ2 test of heterogeneity=0.06; I2=31.0%; τ-squared 
[τ2=0]). We further conducted sensitivity analyses using 
a random-effects model; the results remained unchanged 
and the interaction β remained significant (online-only 
Data Supplement Figure VB). Although the frequency of 
rs7178051 was 39% in Europeans in comparison with 
28% in South Asians, further analyses stratified by ances-
try (ie, European versus non-Europeans) showed similar 
results (online-only Data Supplement Figure VC). Other 
variants discovered through prior CHD GWAS at the AD-
AMTS7 locus (eg, rs7173743, rs4380028, rs3825807) 
were in moderate to high LD (r2>0.50) with rs7178051 
and were also found to display a similar pattern of gene-
smoking interaction effects (Table).

At the CHRNB4-A3-A5 smoking locus, the A al-
lele at the rs1051730 variant had an inverse trend 
(not significant after adjustment) of association with 

CHD in never-smokers (OR, 0.96; P=1.56×10–2) and 
a positive trend (not significant after adjustment) in 
ever-smokers (OR, 1.03; P=1.53×10–2) (P value of 
interaction=2.37×10–4) (Table and online-only Data 
Supplement Table III). For this variant, data on 20 559 
CHD cases and 38 198 controls were available in the 
never-smoking group, whereas 38 923 CHD cases 
and 40 371 controls were available in the ever-smok-
ing group. Similar gene-smoking interaction patterns 
were observed for other variants (eg, rs2036527 and 
rs8034191) that had been previously reported for CPD 
behavior at the CHRNB4-A3-A5 gene cluster (Table).

Further interrogation of the chr15q21.1 region en-
compassing rs7178051 and rs1051730 across 3 
distinct LD blocks (Figure  1) revealed multiple addi-
tional variants for which we observed gene-smoking 
interactions in CHD (Table and Figure 1). Indeed, sev-
eral SNPs (eg, rs7178051, rs10083696, rs7176187, 
rs6495335, rs4887077) had genome-wide significant 
associations with CHD in never-smokers but had weaker 
and less significant associations with CHD in ever-smok-
ers (Figure 1). Alleles clustered specifically around AD-

(Continued )

Table.  Novel Genotype–Smoking Interaction Findings in Coronary Heart Disease at the Chromosome 15q25.1 Locus

Variant Association Allele
LD With 

rs7178051*
LD With 

rs1051730†

Never Smokers

β (SE) P Value

Ever Smokers P Value 
InteractionN Cases N Controls N Total N Cases N Controls N Total β (SE) P Value

rs71780514 * CHD (NPR) T/C – 0.22 21 232 38 713 59 945 –0.13 (0.01) 1.30E–16 39 585 40 749 80 334 –0.05 (0.01) 2.49E–04 8.57E–05

rs105173016 † SB (known) A/G 0.22 – 20 559 38 198 58 757 –0.04 (0.02) 0.02 38 923 40 371 79 294 0.03 (0.01) 0.02 2.37E–04

rs71737431 CHD (known) C/T 0.61 0.18 21 050 37 955 59 005 –0.11 (0.01) 2.73E–13 39 044 39 559 78 603 –0.04 (0.01) 8.60E–04 9.29E–05

rs100836962 CHD (novel) A/G 1.0 0.22 19 721 36 206 55 927 –0.11 (0.02) 1.60E–12 38 807 40 018 78 825 –0.05 (0.01) 2.72E–04 5.15E–05

rs71761873 CHD (novel) T/C 1.0 0.24 21 232 38 713 59 945 –0.12 (0.01) 7.02E–16 39 585 40 749 80 334 –0.04 (0.01) 8.64E–04 6.93E–05

rs64953355 CHD (novel) G/T 1.0 0.22 20 144 37 217 57 361 –0.13 (0.02) 2.39E–15 36 448 38 203 74 651 –0.04 (0.01) 1.69E–03 9.51E–04

rs43800286 CHD (known) T/C 1 0.22 21 232 38 713 59 945 –0.12 (0.01) 2.20E–15 39 585 40 749 80 334 –0.04 (0.01) 1.03E–03 5.44E–04

rs38258077 CHD (known) G/A 0.52 0.43 17 137 28 633 45 771 –0.09 (0.02) 2.82E–08 30 071 29 014 59 086 –0.03 (0.01) 0.04 2.6E–03

rs38135658 CHD (NPR) T/G 0.43 0.56 19 466 35 830 55 296 –0.08 (0.02) 5.08E–07 36 642 37 759 74 401 –0.01 (0.01) 0.42 3.05E–04

rs116384909 CHD (NPR) T/C 0.44 0.51 20 465 37 897 58 362 –0.08 (0.01) 6.90E–08 38 533 39 690 78 223 –0.01 (0.01) 0.28 2.25E–04

rs1107279111 CHD (NPR) A/C 0.44 0.51 19 289 35 944 55 233 –0.08 (0.02) 2.83E–07 35 245 36 635 71 880 –0.005 (0.01) 0.68 1.06E–04

rs92269212 CHD (NPR) A/C 0.44 0.50 20 559 38 198 58 757 –0.08 (0.01) 2.81E–07 38 923 40 371 79 294 –0.01 (0.01) 0.29 2.75E–04

rs1163837213 CHD (NPR) T/C 0.44 0.50 21 232 38 713 59 945 –0.08 (0.01) 6.92E–08 39 585 40 749 80 334 –0.01 (0.01) 0.23 3.16E–04

rs488707714 CHD (NPR) T/C 0.44 0.50 21 232 38 713 59 945 –0.08 (0.01) 4.71E–08 39 585 40 749 80 334 –0.02 (0.01) 0.20 3.92E–05

rs1289913515 CHD (NPR) G/A 0.39 0.56 20 377 37 440 57 817 –0.07 (0.02) 3.97E–06 38 382 39 181 77 563 –0.01 (0.01) 0.58 4.54E–04

rs68451318 SB (known) C/G 0.01 0.10 12 517 21 054 33 572 –0.01 (0.02) 0.67 24 641 24 487 49 129 0.03 (0.02) 0.18 0.08

rs203652719 SB (known) A/G 0.17 0.90 20 559 38 198 58 757 –0.04 (0.02) 0.02 38 923 40 371 79 294 0.03 (0.01) 0.02 2.14E–04

rs1051920320 CHD (NPR) G/A 0.19 0.93 21 232 38 713 59 945 –0.04 (0.01) 5.93E–03 39 585 40 749 80 334 0.03 (0.01) 0.03 1.27E–04

rs803419121 SB (known) C/T 0.19 1.0 19 251 32 131 51 382 –0.05 (0.02) 2.62E–03 34 925 34  047 68 972 0.02 (0.01) 0.06 3.91E–05

Each superscript number (1–21) refers to the physical location of the variant in Figure 1. CHD indicates coronary heart disease; LD, linkage disequilibrium; 
NPR, not a previously reported variant with disease risk; SB, smoking behavior; and SE, standard error.

*Lead variant in association with CHD in our data set.
†Lead variant in association with SB.
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AMTS7 rather than at the CHRNB4-A3-A5 genes appear 
to be protective of CHD in never-smokers, but have at-
tenuated protective effects in ever-smokers (Figure 2).

Conditional Analyses
To investigate the possibility that the 2 separate gene-
smoking interactions at chr.15q25.1 might represent 
a single interaction locus across the entire region, we 
undertook an approximate conditional and joint analy-
ses17–22 using summary data derived from CARDIoGRAM-
plus4D for CHD and from the Tobacco and Genetics Con-
sortium for smoking behavior. In addition to rs7178051, 
we identified 1 other variant, rs11072794 in low LD with 
rs7178051 (r2=0.20) that was associated independent-
ly with CHD (Figure 3A; red triangles) (Figure 3B and on-
line-only Data Supplement Figure VIB; red triangles). We 
also confirmed 2 variants (rs1051730 and rs684513) 
located in 2 different LD blocks that were independently 
associated with smoking behavior in the Tobacco and 
Genetics Consortium data10 (Figure 3D and online-only 
Data Supplement Figure VIB; gray circles).

In analyses of the CHD variants, both rs7178051 and 
rs11072794 remained strongly associated with CHD 
after adjusting for the top CPD variants (rs1051730 
and rs684513) (Figure 3D, red triangles), whereas their 
weak association with CPD was lost after adjusting for 
the top CPD variants (Figure 3D; gray circles); eg, the P 
value for rs7178051 association with CPD was 1×10–5 
in unadjusted analyses, but attenuated to 0.55 after 
adjusting for rs1051730 and rs684513. In analyses 
of the CPD variants, both rs1051730 and rs684513 
remained strongly associated with CPD after adjusting 
for the top CHD variants (rs7178051 and rs11072794) 
(Figure 3B, gray circles), whereas their weak association 
with CHD was lost after adjusting for the top CHD vari-
ants (Figure 3B, red triangles). As expected, conditional 
analyses that included all 4 of these variants resulted 
in a null association of the region with both CHD and 
CPD (online-only Data Supplement Figure VIB). To un-
derscore the validity of the conditional approach using 
summary data, we used individual participant data from 
an expanded PROMIS sample involving 9025 MI cases 
and 8506 controls. We found that the OR conferred by 

Table.  Novel Genotype–Smoking Interaction Findings in Coronary Heart Disease at the Chromosome 15q25.1 Locus

Variant Association Allele
LD With 

rs7178051*
LD With 

rs1051730†

Never Smokers

β (SE) P Value

Ever Smokers P Value 
InteractionN Cases N Controls N Total N Cases N Controls N Total β (SE) P Value

rs71780514 * CHD (NPR) T/C – 0.22 21 232 38 713 59 945 –0.13 (0.01) 1.30E–16 39 585 40 749 80 334 –0.05 (0.01) 2.49E–04 8.57E–05

rs105173016 † SB (known) A/G 0.22 – 20 559 38 198 58 757 –0.04 (0.02) 0.02 38 923 40 371 79 294 0.03 (0.01) 0.02 2.37E–04

rs71737431 CHD (known) C/T 0.61 0.18 21 050 37 955 59 005 –0.11 (0.01) 2.73E–13 39 044 39 559 78 603 –0.04 (0.01) 8.60E–04 9.29E–05

rs100836962 CHD (novel) A/G 1.0 0.22 19 721 36 206 55 927 –0.11 (0.02) 1.60E–12 38 807 40 018 78 825 –0.05 (0.01) 2.72E–04 5.15E–05

rs71761873 CHD (novel) T/C 1.0 0.24 21 232 38 713 59 945 –0.12 (0.01) 7.02E–16 39 585 40 749 80 334 –0.04 (0.01) 8.64E–04 6.93E–05

rs64953355 CHD (novel) G/T 1.0 0.22 20 144 37 217 57 361 –0.13 (0.02) 2.39E–15 36 448 38 203 74 651 –0.04 (0.01) 1.69E–03 9.51E–04

rs43800286 CHD (known) T/C 1 0.22 21 232 38 713 59 945 –0.12 (0.01) 2.20E–15 39 585 40 749 80 334 –0.04 (0.01) 1.03E–03 5.44E–04

rs38258077 CHD (known) G/A 0.52 0.43 17 137 28 633 45 771 –0.09 (0.02) 2.82E–08 30 071 29 014 59 086 –0.03 (0.01) 0.04 2.6E–03

rs38135658 CHD (NPR) T/G 0.43 0.56 19 466 35 830 55 296 –0.08 (0.02) 5.08E–07 36 642 37 759 74 401 –0.01 (0.01) 0.42 3.05E–04

rs116384909 CHD (NPR) T/C 0.44 0.51 20 465 37 897 58 362 –0.08 (0.01) 6.90E–08 38 533 39 690 78 223 –0.01 (0.01) 0.28 2.25E–04

rs1107279111 CHD (NPR) A/C 0.44 0.51 19 289 35 944 55 233 –0.08 (0.02) 2.83E–07 35 245 36 635 71 880 –0.005 (0.01) 0.68 1.06E–04

rs92269212 CHD (NPR) A/C 0.44 0.50 20 559 38 198 58 757 –0.08 (0.01) 2.81E–07 38 923 40 371 79 294 –0.01 (0.01) 0.29 2.75E–04

rs1163837213 CHD (NPR) T/C 0.44 0.50 21 232 38 713 59 945 –0.08 (0.01) 6.92E–08 39 585 40 749 80 334 –0.01 (0.01) 0.23 3.16E–04

rs488707714 CHD (NPR) T/C 0.44 0.50 21 232 38 713 59 945 –0.08 (0.01) 4.71E–08 39 585 40 749 80 334 –0.02 (0.01) 0.20 3.92E–05

rs1289913515 CHD (NPR) G/A 0.39 0.56 20 377 37 440 57 817 –0.07 (0.02) 3.97E–06 38 382 39 181 77 563 –0.01 (0.01) 0.58 4.54E–04

rs68451318 SB (known) C/G 0.01 0.10 12 517 21 054 33 572 –0.01 (0.02) 0.67 24 641 24 487 49 129 0.03 (0.02) 0.18 0.08

rs203652719 SB (known) A/G 0.17 0.90 20 559 38 198 58 757 –0.04 (0.02) 0.02 38 923 40 371 79 294 0.03 (0.01) 0.02 2.14E–04

rs1051920320 CHD (NPR) G/A 0.19 0.93 21 232 38 713 59 945 –0.04 (0.01) 5.93E–03 39 585 40 749 80 334 0.03 (0.01) 0.03 1.27E–04

rs803419121 SB (known) C/T 0.19 1.0 19 251 32 131 51 382 –0.05 (0.02) 2.62E–03 34 925 34  047 68 972 0.02 (0.01) 0.06 3.91E–05

Each superscript number (1–21) refers to the physical location of the variant in Figure 1. CHD indicates coronary heart disease; LD, linkage disequilibrium; 
NPR, not a previously reported variant with disease risk; SB, smoking behavior; and SE, standard error.

*Lead variant in association with CHD in our data set.
†Lead variant in association with SB.

Table.  Continued
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allelic variation at rs7178051 remained associated with 
MI risk independent of the 2 CPD variants (rs1051730 
and rs684513) and rs11072794 (the second CHD SNP) 
(online-only Data Supplement Figure VIC). Conversely, 
the apparent effect of allelic variation at rs1051730 (the 
top CPD variant) on CHD risk was lost when we adjusted 
for the other 3 variants, rs7178051, rs11072794, and 
rs684513 (online-only Data Supplement Figure VIC).

Next, using summary-level data, we examined the 
association of each of these 4 variants with CHD risk 
separately in ever-smokers and never-smokers while 
mutually adjusting for the other 3 variants (Figure  4 
and online-only Data Supplement Figure VII). In these 
analyses, only allelic variation at rs7178051 was 
found to have independent genome-wide significant ef-
fects on CHD in never-smokers. rs7178051 was also 
the only one of these 4 variants with significant dif-
ferences in the effect estimate for gene-CHD associa-
tions between the 2 smoking groups (P value for the χ2 
test of heterogeneity=5.4×10–5) after adjusting for the 
effects of other variants (rs11072794, rs1051730, 
and rs684513). These conditional analyses suggest 
that (a) variants located near the ADAMTS7 gene but 
not CHRNB4-A3-A5 genes have independent effects on 
CHD, (b) a single independent gene-smoking interaction 
signal for CHD exists on chr.15q.25.1 that is localized at 
the ADAMTS7 CHD locus (marked by rs7178051), and 
(c) an apparent interaction signal observed at the nearby 
CHRNB4-A3-A5 CPD locus (marked by rs1051730) is 
not independent of the ADAMTS7 (rs7178051) interac-
tion signal.

To assess the robustness of conditional analysis 
methodology that uses summary-level data (ie, Ge-
nome-wide Complex Trait Analysis),17–22 we conducted 
sensitivity analyses in the PROMIS data set (9025 MI 
cases and 8506 controls). We assessed the associa-
tion of rs7178051 (top CHD SNP) and rs1051730 (top 
CPD SNP) after mutually adjusting for each other by 
conducting (i) standard logistic regression using indi-
vidual participant data and (ii) summary-level data in 
PROMIS using the Genome-wide Complex Trait Analy-
sis method (online-only Data Supplement Table IV). The 
top CHD SNP was found associated with CHD risk in 
PROMIS independent of the top CPD variant using both 
the methods, in contrast, the effect on CHD of the top 
CPD SNP attenuated sharply when adjusted for the top 
CHD SNP; the effect estimates obtained using the 2 
methods were very similar (online-only Data Supple-
ment Table IV).

Last, to further demonstrate that the gene-smoking 
interaction effect in CHD at rs7178051 is indepen-
dent of the CHRNB4-A3-A5 CPD locus, we conducted 
sensitivity analyses in the PROMIS study by restrict-
ing our gene-lifestyle interaction analysis to subjects 
who do not carry the minor alleles of rs1051730 and 
rs684513 (the 2 SNPs associated with CPD) at the 

CHRNB4-A3-A5 locus. The T allele at the rs7178051 
variant was associated with CHD only in never-smokers 
(OR, 0.88; P=0.01) in comparison with a weaker and 
nonsignificant association in ever-smokers (OR, 0.94; 
P=0.21) (online-only Data Supplement Table V). The ef-
fect estimates obtained in each of the categories de-
fined by smoking status in PROMIS were similar to the 
effect estimates obtained in our overall meta-analyses 
that used data in all participants (online-only Data Sup-
plement Table V).

Analysis of eQTLs and Regulatory Features at the 
chr15q25.1 Gene-Smoking Interaction Locus
We mined publicly available eQTL data from the HapMap 
consortium,11 GTEx consortium,23 and the MuTHER con-
sortium,24 and data from 147 HAoEC lines,25 as well, 
to examine the association between mRNA expression 
of ADAMTS7 and CHRN genes with CHD, CPD, and 
gene-smoking interaction SNPs at the chr15q25.1 lo-
cus. SNP-mRNA associations with P<0.002 (correction 
for 20 tests) are presented (Figure 5). The top 2 CHD 
variants (rs7178051, rs11072794) are associated 
with reduced ADAMTS7 expression (eg, rs11072794 
P=6.01×10–21 in MuTHER LCL, n=850; and rs7178051 
P=0.0029 in HAoEC, n=147) but have no association 
with expression of CHRN genes in any cell or tissue ex-
amined. In contrast, the top 2 CPD variants (rs1051730 
and rs684513) were associated with CHRN gene expres-
sion (eg, rs1051730 P=6.9×10–7 for CHRNA5 in GTEx 
skeletal muscle and nerve tissue) but have no associa-
tion with ADAMTS7 in these cells or tissues. These find-
ings complement conditional analyses suggesting that 
gene-CHD and gene-smoking interaction effects on CHD 
are likely mediated by ADAMTS7, whereas the smok-
ing behavior effect appears to be mediated through the 
CHRNA3-5 gene cluster.

In analysis of data from the ENCODE project26 and for 
human aortic tissue in NIH Roadmap Epigenomics proj-
ect, ADAMTS7 was associated with RNAseq reads and 
an active transcription mark, H3K36me3, whereas CHRN 
genes had low/absent RNAseq reads and were positive 
for repressive marks, H3K27me3 and H3K9me3 (online-
only Data Supplement Figure VIII). In HCASMC ChIPseq 
data, rs7178051, the top CHD and gene-smoking CHD 
interacting SNP, is located in a region with active regula-
tory marks H3K4me1 and H3K4me3, and a transcrip-
tion factor binding site for TCF21, an important HCASMC 
transcription factor also associated with coronary artery 
disease, as well. This ChIPseq pattern was observed 
also in human aortic tissue (Figure 6). These regulatory 
data suggest active transcription of ADAMTS7, but not 
CHRN genes, in vascular cells and aortic tissue and 
reveal that rs7178051, the lead gene-smoking CHD in-
teraction SNP, overlaps active transcription marks and 
transcription factor binding regions in HCASMC.
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ADAMTS7 and CHRNB4-A3-A5 Expression in 
Vascular Cells and Their Response to Cigarette 
Smoke Extract
To explore which genes at the chr15q25.1 locus are ex-
pressed in CHD-relevant vascular cells, we performed 

quantitative polymerase chain reaction of ADAMTS7 
and the CHRNB4-A3-A5 genes in primary human vas-
cular cells and in the THP1 human monocyte cell line 
(online-only Data Supplement Figure IX and Figure 5). 
Although ADAMTS7 mRNA was expressed abundantly in 
all vascular cell types, mRNA was below detection or 

A

B

C

D

1-rs7173743; 2-rs10083696; 3-rs7176187; 4-rs7178051; 5-rs6495335; 6-rs4380028; 7-rs3825807; 8-
rs3813565; 9-rs11638490; 10-rs11072794; 11-rs11072791; 12-rs922692; 13-rs11638372; 14-rs4887077; 15-
rs12899135; 16-rs17487514; 17-rs1051730; 18-rs637137; 19-rs2036527; 20-rs10519203; 21-rs8034191. LD
1-3 indicate three separate linkage disequilibrium blocks in European ancestry at the chromosome 15q25.1
locus.

Figure 1. A, Regional association analyses at the chromosome 15q25.1 locus in association with CHD risk 
stratified by smoking status.  
Association P values for genetic variants with CHD risk in never-smokers (green squares) and ever-smokers (red triangles). B, 
Longitudinal bars represent gene-smoking CHD interaction P values at the chromosome 15q25.1 locus; bars in blue are P values 
for variants listed in the Table and each variant has been assigned a unique identification number based on its physical location. 
C, LD blocks at the 15q25.1 locus visualized through HAPLOVIEW using LD estimates in the HapMAP-2 CEU reference popula-
tion. CHD indicates coronary heart disease; and LD, linkage disequilibrium.
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expressed at a very low level for each of the genes in the 
CHRNB4-A3-A5 cluster in any of these cell types (online-
only Data Supplement Figure IX). Next, we explored the 
effect of cigarette smoke extract on gene expression in 
HCASMC, a cell type of particular relevance to vascular 
responses to cigarette smoke products,31,32 and to AD-
AMTS7 vascular functions in atherosclerosis and CHD, 
as well.33 In primary HCASMC, cigarette smoke extract 
exposure increased ADAMTS7 mRNA levels by >2-fold 
(Figure 5), but did not affect expression of the CHRN 
genes (not shown). Thus, in contrast to CHRN genes, 
ADAMTS7 is both expressed and modulated by cigarette 
smoke extract in CHD-relevant vascular cells providing 
biological support for ADAMTS7, but not CHRN genes, 
in the gene-smoking interaction effect at chr15q25.1.

DISCUSSION
We conducted a gene-lifestyle interaction study at 50 
loci associated with either CHD or smoking behavior and 

found evidence of effect modification of genotype-relat-
ed CHD risk by smoking behavior at the chr.15q21.1 
CHD locus. Specifically, we observed highly significant 
attenuation of the cardioprotective effects associated 
with alleles at this locus in people who smoked ciga-
rettes. Conditional analyses identified an LD block lo-
cated at the ADAMTS7 gene that accounted for both the 
main effect on CHD, and the gene-smoking interactions 
in CHD, as well. Data from expression and cell studies 
support our genetic analysis, suggesting that the under-
lying mechanism relates to genotype differences in the 
effect of smoking on expression of ADAMTS7 in vascular 
tissue.

Our findings have novel mechanistic and clinical impli-
cations. These human genomic data provide new insights 
into the mechanism of CHD in cigarette smokers. Identi-
fication of gene-smoking interaction at the chr15q21.1 
locus suggests a specific role in smoking-related CHD 
for ADAMTS7 and its substrates, vascular matrix and 
vascular smooth muscle cell biology more broadly. Such 

Figure 2. Several variants at chromosome 15q21.1 have stronger effects on CHD risk in never-smokers than in 
ever-smokers.  
Variants with the strongest interaction P values are displayed. CHD indicates coronary heart disease; and LD, linkage disequilibrium.
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insights can help to prioritize translational strategies 
for smoking-related CHD and present opportunities to 
study lifestyle interventions and pharmacological strate-
gies to lower CHD in individuals who smoke cigarettes. 
Thus, inhibition of ADAMTS7 represents a novel potential 
therapeutic strategy for CHD that may have particular 
benefits in individuals who smoke cigarettes. All smok-
ers should receive counseling for smoking cessation, yet 
such broad public health strategies have failed to reach 
or impact smoking behavior in a large portion of nicotine-
addicted individuals. Our data provide a human genomic 
context for consideration of targeting specific genetically 
at-risk individuals via intensified preventive strategies and 
development of novel pharmacological treatments.

Our study also represents a realistic strategy for per-
forming gene-lifestyle interaction studies using contem-
porary genetic data. We illustrate that identifying joint 
effects of genetic and lifestyle factors in CHD requires 
very large sample sizes, yet such analyses are biologi-
cally informative when studies are adequately powered. 
In this context, an important observation in our large 
sample is the lack of effect modification by smoking be-
havior on CHD at the APOE locus, a previously reported 

smoking interaction locus.12–14 This finding is consistent 
with a recent meta-analysis that found no evidence of 
effect modification by smoking for APOE genotypes 
and CHD risk.34 These studies raise concerns that most 
prior gene-lifestyle interaction studies in CHD have been 
prone to the same biases (ie, limited statistical power 
and false-positive associations) as candidate gene stud-
ies investigating main effects in the pre-GWAS era. The 
present study differs from previous studies by being 
much larger, and, more important, it includes genomic 
and functional follow-up data supporting the plausibility 
of the observed gene-lifestyle interaction.

ADAMTS7 (or the A disintegrin and metalloprotein-
ase with thrombospondin motifs-7) is a member of the 
ADAMTS family of secreted zinc metalloproteases.35,36 
We previously discovered and replicated genetic varia-
tion at the ADAMTS7 locus in association with coronary 
atherosclerosis and MI.7–9 Both in vivo and in vitro stud-
ies suggest that ADAMTS7 modulates vascular smooth 
muscle cell phenotype switching and migration and that 
this may be mediated via cartilage oligomeric matrix 
protein or thrombospondin-1,32,33 ie, putative ADAMTS7 
substrates expressed in vascular tissue. Genetic varia-

Figure 3. Stepwise conditional analysis of genetic variation at the chromosome 15q21.1 locus with CHD (red 
triangles) and smoking behavior (cigarettes per day, CPD; gray circles).  
At the chromosome 15q21.1 locus, analyses adjusted for rs7178051 and rs11072794 completely attenuated the gene-CHD 
associations, whereas gene-smoking remained unchanged. Analyses adjusted for rs1051730 and rs684513 completely attenu-
ated the gene-smoking associations, whereas gene-CHD effect remained unchanged. CHD indicates coronary heart disease.
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tion at ADAMTS7, however, has no relationship with tra-
ditional risk factors or mechanistic biomarkers; hence, 
the directional impact of ADAMTS7 expression on CHD 
risk and the underlying biological mechanisms have 
been unclear.32

Our gene-smoking interaction analyses provide novel 
insights into the directional impact of the ADAMTS7 
locus on CHD, the underlying mechanisms of CHD 
in smokers, and how such findings ultimately might 
translate toward achieving health benefits in society. 
Our human eQTL interrogations reveal that common 
alleles that relate to lower CHD risk at the ADAMTS7 
locus are also associated with reduced ADAMTS7 ex-
pression, implying an atherogenic role of the gene. This 
is supported by our recent in vivo experimental stud-
ies; Adamts7 deficiency protected against diet-induced 
atherosclerosis in both the Ldlr–/– and ApoE–/– mouse 
models, reduced neointima formation following arte-
rial injury, and decreased vascular smooth muscle cell 
migration in vitro.33 In our smoking-stratified analyses, 
we observed the CHD protective effect that was attenu-
ated in smokers. Thus, smoking exposure may over-
come the genetic effect of protective alleles that act 

by reducing ADAMTS7 expression. Such a possibility is 
supported by our HCASMC data that reveal increased 
ADAMTS7 expression in HCASMC exposed to cigarette 
smoke extract. These human genome-smoking studies 
are the first to implicate a specific locus as causal in 
mediating increased risk of CHD in smokers. Additional 
translational studies are needed to establish the pre-
cise mechanisms of atheroprotection for alleles at the 
ADAMTS7 locus, how cigarette smoking impacts these 
genetic effects, and whether deletion or inhibition of AD-
AMTS7 in vivo attenuates the specific acceleration of 
atherosclerosis conferred by cigarette smoking.

Strengths and limitations of our study merit consider-
ation. This is a large study that conducted gene-smok-
ing interaction analyses in CHD by using GWAS data. 
We observed substantial heterogeneity across study 
samples in our initial quality control analyses of ever-
smoking status with CHD risk. This is similar, however, 
to the heterogeneity reported in a recent meta-analysis 
that pooled risk ratios from all the past prospective stud-
ies with information on association of ever-smoking with 
incident CHD events.5 We recognize that other smoking-
related phenotypes are important, eg, current smoking 

Figure 4. Analyses mutually adjusted for rs7178051, rs11072794, rs1051730, and rs684513 at 15q21.1 on CHD 
and smoking behavior; gene-CHD interaction analyses were only found significant for rs7178051.  
Left, Analyses show associations of rs7178051, rs11072794, rs1051730, and rs684513 with CHD risk mutually adjusted for 
each other. Right, Analyses show associations of rs7178051, rs11072794, rs1051730, and rs684513 with smoking behavior 
mutually adjusted for each other. CHD indicates coronary heart disease.
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may have a more pronounced role than ever-smoking in 
plaque rupture and thrombosis in patients with MI. How-
ever, we were unable to distinguish between former ver-
sus current smokers within ever-smokers in our current 
analyses; furthermore, we were not able to analyze grad-
ed exposure to cigarette smoking such as pack-years. 
Given the use of multiple studies and meta-analyses of 
data, we used only 1 analytic approach to investigate 
gene-smoking interactions. This approach, however, 
was feasible and powerful in this large-scale consortium 
setting. Although we used a fixed-effects approach in our 
meta-analyses, a random-effects meta-analysis yielded 
qualitatively similar results. The lack of replication is par-
tially offset by a large sample size, consistency across 

study cohorts and racial groups, and supplemental ge-
nomic and experimental evidence supporting biological 
plausibility. This approach is also consistent with recent 
recommendations37 that favor use of a powerful dis-
covery experiment using all data rather than reducing 
power by splitting an available data set for discovery and 
validation. Although our in vitro studies support a role 
for ADAMTS7 in the gene-smoking interaction, it will be 
important to confirm that Adamts7 deficiency protects 
against cigarette-smoke acceleration of atherosclerosis 
in rodent models.

Our interaction analyses, conditional analyses, eQTL 
interrogations, and cell studies suggest that ADAMTS7, 
but not the CHRNB4-A3-A5 gene cluster, is likely causal 

4.3

12.4 12.4

A

C

B

#Direction of association for the effect allele on CHD; NS: Not significant (P-value < 0.002; Bonferroni correction for 20 tests); HAEC: 
Human Aortic Endothelial Cells; LCL: lymphoblastoid cell lines; 1 Association with CHRNA5 expression;

LCL in the MuTHER 
consortium (n=850)

HAEC (n=147) HapMap CEU LCL 
(n=109)

GTEx Skeletal muscle 
(n= 142)

GTEx Nerve Tibial
(n=101)

Variant Type CHD 
direct.#

ADAMTS7 CHRNA3-5 ADAMTS7 CHRNA3-5 ADAMTS7 CHRNA3-5 ADAMTS7 CHRNA3-5 ADAMTS7 CHRNA3-5

rs7178051 Top CHD 
signal

- 4.1e-4 (-) NS 0.0029 (-) NS NS NS NS NS NS NS

rs11072794 Second CHD 
signal

- 6.0E-21 (-) NS NA NS 0.0013 (-) NS NS NS NS NS

rs1051730 Top CPD 
signal

- NS NS NS NS NS NS NS 6.9E-7 (-)1 NS 6.9E-71

rs684513 Second CPD 
signal

- NS NS NS NS NS NS NS 2.4E-7 (-)1 NS NS

Figure 5. A, ADAMTS7 and CHRNB4-A3-A5 mRNA levels were measured in HCASMC.  
Cells were cultured to confluence, total RNA was extracted and cDNA generated. q-PCR was performed for ACTB, GAPDH, 
TBP, ADAMTS7, CHRNB4, CHRNA3, CHRNA5 (95°C 15 s, 60°C 1 min). Delta Cts were calculated as follows: (CtACTB + CtGAPDH + 
CtTBP)/3 – CtTARGET GENE). Fold changes are derived from delta Ct (dCt) based on formula fold change=2–dCt. B, Confluent HCASMC 
were exposed to cigarette smoke extract. Serum-starved (for 24 hours) confluent HCASMC were treated with 0.5% or 1.0% 
cigarette smoke extract (v/v) for 4, 12, and 24 hours in serum-reduced conditions (0.5% FBS in DMEM). Total RNA was ex-
tracted, cDNA generated preparation and q-PCR performed for ADAMTS7 by Taqman and normalized to GAPDH. The average Ct 
for ADAMTS7 at baseline was 28.25. Results were presented as means±SEM, and data were analyzed using Student t test. C, 
Expression and eQTL data from the GTEx consortium, the HapMap consortium (restricted to European populations), the Multiple 
Tissue Human Expression Resource (MuTHER), and in 147 donor HAoEC lines. Association of the independent lead variants 
identified in our conditional analyses with expression of ADAMTS7 and genes in the CHRNB4-A3-A5 cluster. A P value threshold of 
0.002 was set to account for multiple testing involved in the eQTL analyses. DMEM indicates Dulbecco modified Eagle medium; 
FBS, fetal bovine serum; HAoEC, human aortic endothelial cells; HCASMC, human coronary artery smooth muscle cells; q-PCR, 
quantitative polymerase chain reaction; and SEM, standard error of the mean. 
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at 15q21.1 for gene-smoking interaction effects in CHD. 
Yet, these analyses are not definitive. Although top in-
teracting SNPs and CHD SNPs (eg, rs7178051) were 
associated with ADAMTS7, but not CHRNB4-A3-A5, ex-
pression in LCLs, large-scale eQTL data, and allele-spe-
cific expression data (eg, via RNA sequencing) are not 
available for vascular tissues, limiting causal inference. 
In our small human coronary artery endothelial cell data 
sets, however, we did find that alleles at rs7178051 
associate with ADAMTS7 expression but not with any 
CHRNB4-A3-A5 genes, suggesting, at least in 1 vascular 
cell type, that the gene-smoking interaction is mediated 
via ADAMTS7.

CONCLUSIONS
We provide novel evidence for allelic variation exhibiting 
gene-smoking interaction in CHD at the chr.15q21.1 lo-

cus. The protective effect conferred by variation at this 
locus in never-smokers is markedly attenuated in people 
who are ever-smokers. Stepwise conditional analyses, 
gene expression data in vascular cells, eQTL interroga-
tion, and cigarette smoke extract exposure in HCASMC 
suggest that ADAMTS7 accounts for both the gene-
smoking interaction in CHD and the CHD main effect on 
chr.15q21.1. Our findings reveal interactions of genetic 
variants and a key lifestyle determinant in the etiology of 
CHD, provide new insights into the potential mechanisms 
of CHD in cigarette smokers, and facilitate advances in 
precision medicine in relation to cigarette smoking–relat-
ed CHD. Our work motivates future large-scale studies 
investigating joint effects of genes and lifestyle exopo-
sures in CHD using existing complex-disease consortia 
data sets and genome-wide discovery approaches. This 
will provide opportunities to detect additional and novel 
loci displaying gene-lifestyle interactions revealing genet-

Figure 6. Genome browser view of regulatory features at rs7178051 on Chr15q21.1. 
ChIP-seq experiments were performed on confluent HCASMC for TCF21, Jun, JunD, CEBP, and H3K4me1, H3K27me3, and 
H3K27ac. DNAaseI hypersensitivity data for human AoSMC were acquired from the ENCODE project. Human aortic tissue 
H3K4me1, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq data were acquired from the NIH Roadmap Epigenomics Project. 
AoSMC indicates human aortic smooth muscle cells; ChIP, chromatin immunoprecipitation; HCASMC, human coronary artery 
smooth muscle cells; NIH, National Institutes of Health; and seq, sequencing. 
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ic contexts for targeting intensive lifestyle interventions 
and novel therapeutics.
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Supplementary Data 

ADAMTS7 and CHRNB4-A3-A5 gene expression in vascular cells: 

Cells were cultured to confluence in media under conditions recommended by the suppliers 

(Lonza and ATCC). Total RNA from cultured cells was extracted using Trizol (Invitrogen P/N 

15596-018). DNAse digestion was performed with the Turbo DNAfree kit from Ambion (P/N 

AM1907). cDNA was generated according to the manufacturer’s protocol with the SuperScript® 

III First-Strand Synthesis System (Invitrogen 18080-051). Real-time quantitative PCR (q-PCR) 

measurements were performed on an Applied Biosystems 7900HT Fast Real-Time PCR 

System using the TaqMan® Gene Expression Master Mix (P/N 4369016) and the following 

TaqMan probes: ACTB (Hs01060665_g1), GAPDH (Hs02758991_g1), TBP (Hs00427620_m1), 

ADAMTS7 (Hs00276223_m1), CHRNB4 (Hs00609520_m1), CHRNA3 (Hs01088199_m1), 

CHRNA5 (Hs00181248_m1). The standard cycling protocol was 95°C 10min, 40x (95°C 15s, 

60°C 1min). Delta Cts were calculated as follows:  (CtACTB + CtGAPDH + CtTBP)/3 – CtTARGET GENE). 

Fold changes are derived from delta delta Cts based on formula FC = 2-dCt.  Graphs were 

generated using GraphPad Prism 6.04.  

ADAMTS7 and CHRNB4-A3-A5 gene expression in response to cigarette smoke extract (CSE): 

RNA preparation and q-PCR were conducted as described above except RNA was extracted 

using RNeasy Mini Kit from Qiagen (Valencia, CA), reverse transcription was done using High-

Capacity cDNA Reverse Transcription Kit from Life Technologies (Grand Island, NY), and cDNA 

samples were quantified for expression of ADAMTS7 and CHRNB4-A3-A5 genes by Taqman 

and normalized to GAPDH.  Graphs were generated using GraphPad Prism 6.04. Results were 

presented as means ± SEM, and data were analyzed using Student’s t-Test. 

Regulatory features of the chr. 15q25.1 region:  UCSC browser images were integrated using 

data from the ENCODE project 

(http://genome.ucsc.edu/cgibin/hgTracks?db=hg19&hubUrl=http://ftp.ebi.ac.uk/pub/databases/e

nsembl/encode/integration_data_jan2011/hub.txt, PMID 22955616) and the NIH Roadmap 

Epigenomics Project 

(http://genome.ucsc.edu/cgibin/hgTracks?db=hg19&hubUrl=http://vizhub.wustl.edu/VizHub/Roa

dmapRelease4.txt, PMID 25693563). 
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http://genome.ucsc.edu/cgibin/hgTracks?db=hg19&hubUrl=http://vizhub.wustl.edu/VizHub/RoadmapRelease4.txt


 

Supplementary Figure 1. Flow chart of study strategy. The current study had five inter-related 

components. First, as part of the quality control, we investigated the association of smoking 

status with CHD risk within each study. Second, for all the SNPs (± 50 KB) at the 45 established 

CHD loci, effect estimates from each study in association with CHD risk were obtained and 

pooled to identify the strongest variant (“lead variant”) at all the established CHD loci. Third, we 

conducted gene-smoking interaction analyses for 45 CHD variants with the most significant 

association with the CHD risk in our study population as well as for 5 variants previously 

reported in association with smoking behavior. Fourth, for loci demonstrating differential CHD 

associations by smoking status, we mapped the interaction region, examined linkage 

disequilibrium (LD) across the region and performed conditional analyses to identify 

independent genetic signals. Finally, for loci exhibiting interaction, we assessed their eQTL 

patterns of local genes in available datasets and examined expression of these genes in in 

multiple cell types that play prominent roles in smoking-CHD pathobiology.  

Supplementary Table 1. Description of the participating studies with information available on 

“ever-smoking” status, CHD risk and genotypes at the 50 candidate loci. Information on “ever-

smoking” was available in 29 studies, yielding a total sample size of 60,919 CHD cases and 

80,243 controls. All studies recruited participants of European ancestry, except in PROMIS 

(South Asian), LOLIPOP (South Asian) and FGENTCARD (Lebanese). 

 

Supplementary Figure 2. Association of “ever-smoking” status with CHD in participating 

studies. As expected, in all the participating studies, association of “ever-smoking” status with 

CHD risk was directionally consistent with an increased risk of CHD. 

Supplementary Figure 3. Comparison of the lead variants with the top previously reported 

CHD variants at the candidate loci. Effect estimates for SNP association with CHD for (i) the 

most significant SNP that we identified at established CHD loci in the current study population 

(larger than any previously published) as well as for (ii) SNPs previously reported at these 

established CHD loci in prior GWA studies. Of the 45 established CHD loci, we identified 32 for 

which we found a more significant SNP in association with CHD risk in our dataset than the 

previously reported variant. 



Supplementary Figure 4. Association of reported variants with smoking behavior in the 

Tobacco Genetics Consortium (n=140,000). Data on rs302543 was not available in sufficient 

studies; hence was not analyzed in the current gene-CHD smoking interaction analyses. 

Supplementary Table 2. Association of top variants at established CHD loci in our study 

population. Effect estimates for SNP association with CHD for the most significant SNP that we 

identified at established CHD loci in the current study population (larger than any previously 

published) as well as for SNPs previously reported at these established CHD loci in prior GWA 

studies. Of the 45 established CHD loci, we identified 32 for which we found a more significant 

SNP in association with CHD risk in our dataset than the previously reported variant. 

Supplementary Table 3. Stratified (Never-smokers” and “Ever-Smokers”) and Gene-smoking 

interaction analyses in CHD for the CHD and smoking behavior loci. Of the 50 candidate 

variants, we identified effect-modification by “ever-smoking” status on CHD for the lead variants 

at two distinct loci, rs7178051, at the ADAMTS7 CHD locus, and rs1051730, at the CHRNB4-

A3-A5 genes smoking behavior locus). Although associated with different traits and located in 

distinct LD blocks, these two variants reside only ~224 KBs apart on chr.15q25.1 and indeed 

are in weak linkage disequilibrium (LD) (r2 = 0.22). 

Supplementary Figure 5a. Association by smoking status of the APOE εpsiolon genotypes 

with CHD in PROMIS. The OR for CHD among ε4 carriers in “never-smokers” was 1.10 which 

was similar to the CHD OR of 1.11 observed in “ever-smokers”. 

Supplementary Figure 5b. Forest plot displaying interaction beta across the participating 

studies.  

Supplementary Figure 5c. Forest plot displaying interaction beta across the participating 

studies by ethnicity 

Supplementary Figure 6. (a) Unadjusted associations of chromosome 15q21.1 variants with 

CHD (red triangles) and smoking behavior (cigarettes per day, CPD; grey circles); (b) analyses 

adjusted for rs7178051, rs11638490, rs1051730 and rs684513 in association with CHD and 

CPD; (c) analyses of rs7178051 and rs1051730 with MI risk in PROMIS (9,025 MI cases and 

8,506 controls) 

Supplementary Figure 7. Unadjusted effects of 15q21.1 lead variants on CHD stratified by 

smoking status in the CARDIoGRAMplusC4D consortium and analyses of variants with smoking 

behavior in the Tobacco and Genetics Consortium (TGC) in 140,000 participants. 



Supplementary Table 4. Association of rs7178051 with MI risk in PROMIS in participants by 

smoking status who do not carry the minor allele for rs1051730 and rs684513 variants 

Supplementary Table 5. Association of rs7178051 (top CHD SNP) and rs1051730 (top CPD 

SNP) mutually adjusted for each other in 9,025 MI cases and 8,506 controls in PROMIS 

Supplementary Figure 8.  Genome browser view of regulatory features at the CHD and 

smoking behavior loci on Chr15q21.1.  ChIP-seq experiments were performed on confluent 

HCASMC for TCF21, Jun, JunD, CEBP and H3K4me1, H3K27me3, H3K27ac. DNAaseI 

hypersensitivity data for human AoSMC were acquired from the ENCODE project.  Human 

aortic tissue H3K4me1, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq data were acquired 

from the NIH Roadmap Epigenomics Project. ADAMTS7 was associated with RNAseq reads 

and an active transcription mark, H3K36me3, whereas the CHRNB4-A3-A5 genes had 

low/absent RNAseq reads and were positive for repressive marks H3K27me3 and H3K9me3 

HCASMC = human coronary artery smooth muscle cells; AoSMC = human aortic smooth 

muscle cells. TF = transcription factor. 

Supplementary Figure 9.  ADAMTS7 and CHRNB4-A3-A5 mRNA levels were measured in 

HCASMC, HCAEC, HAoSMC, HAoEC, HAoAF, and the THP-1 cell line. Cells were cultured to 

confluence, total RNA was extracted and cDNA generated. q-PCR was performed for ACTB, 

GAPDH, TBP, ADAMTS7, CHRNB4, CHRNA3, CHRNA5. Delta Cts were calculated as follows:  

(CtACTB + CtGAPDH + CtTBP)/3 – CtTARGET GENE). Fold changes are derived from delta delta Cts 

based on formula FC = 2-dCt.  Graphs were generated using GraphPad Prism 6.04.  

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 1. Flow chart of study strategy  
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Supplementary Table 1. Description of the participating studies with information available on “ever-

smoking” status, coronary heart disease risk and genotypes at the 50 candidate loci 

 

 

 

Study Name Location Ethnicity Age (years) 
Mean (SD) 

Platform Number of CHD 
cases 

Number of 
controls 

Ever 
smokers 
in CHD 
cases (%) 

Ever 
smokers in 
controls 
(%) 

Medstar USA European 48.9(6.4)/59.7(8.9) GWAS 873 445 52.5 49.8 

STR USA European 78.9(9.7)/73.1(11.0) Metabochip 359 1367 33.4 31.6 

ROTTERDAM Netherlands European 41.6(6.0)/51.0(11.8) GWAS 1099 4963 23.2 24.4 

EPIC-Norfolk UK European 71.8(8.18)/60.3(9.3) Metabochip 1822 1335 67.0 54.3 

PennCath USA European 52.7 (7.6)/61.7(9.6) GWAS 415 156 79.8 54.5 

OHGS Canada European 49.0(7.3)/74.5(5.5) GWAS 3686 3269 67.5 50.3 

CARDIOGENICS Europe European 57.0(8.8)/53.5(7.0) GWAS 354 349 74.6 40.4 

DILGOM FINLAND European 56.6(9.5)/51.7(13.6) Metabochip 143 3773 59.4 42.8 

MIGEN USA & Europe European 42.4 (6.6)/43.0(7.8) GWAS 5221 4188 46.79 36.87 

CADOMICS Germany European 59.3(10.8)/59.3(10.8) GWAS 2080 2958 63.75 52.84 

AGES ICELAND European 76.4 (5.4)/79.1(5.5) GWAS 873 445 52.58 49.89 

GERMIFSII Germany European 55.0(6.8)/51.1(12.9) GWAS 450 466 61.1 13.09 

PIVUS Sweden European 65.0(7.2)/70.2(0.2) Metabochip 94 858 65.96 50 

Cleveland Clinic USA European 61.7(11.1)/73.0(5.7) GWAS 2345 335 73.22 54.33 

FRAMINGHAM USA European 64.5(12.8)/75.2(12.2) GWAS 259 4202 72.9 60.6 

LOLIPOP UK South Asian 59.3(9.7)/52.4(10.2) GWAS 2289 3238 33.9 22.5 

EPIC-CVD Europe European 71.8(8.18)/60.3(9.3) Metabochip 8964 11613 66.24 50.59 

FGENTCARD Lebanon Middle-eastern 61.0(11.1)/55.6(11.6) GWAS 1556 432 67.1 54.8 

SCARF-SHEEP Sweden European 57.6(7.3)/50.5(7.0) Metabochip 1520 1883 73.7 59.2 

MORGAM Europe European 64.5(7.3)/60.9(7.8) Metabochip 1955 1955 79.9 71.1 

DUKE USA European 57(9.7)/63(8.7) GWAS 1172 824 54.69 41.1 

Diabetes Heart Study USA European 59.3(10)/61.5 (9.35) Metabochip 686 450 65.3 49.3 

COROGENE FINLAND European 66.0(11.8)/56.7(11.3) GWAS 2197 1893 62.8 50.1 

GoDARTS Scotland European 61.5(10.5)/61.8(9.5) Metabochip 723 1948 74.8 61.1 

THISEAS GREECE European 57.6(7.3)/50.5(7.0) Metabochip 448 752 79.02 57.3 

PROMIS Pakistan South Asian 54.2(10.6)/53.5(10.0) GWAS 6990 6626 57.7 36.02 

PROCARDIS Europe European 53.6(8.1)/60.9(13.1) GWAS 5719 1674 72.2 51.3 

WTCCC United Kingdom European 53.5(9.6)/44(0) GWAS 1935 1446 76.07 56.02 

deCODE Iceland European 74.8(11.8)/53.7(21.5) GWAS 4037 10253 83.87 67.02 

Family Heart Study USA European 64.5+12.8/75.2(12.2) GWAS 439 3430 64.01 41.11 



Supplementary Figure 2. Association of “ever-smoking” status with coronary heart disease in 

participating studies 
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Supplementary Figure 3. Comparison of the lead variants with the top previously reported coronary heart disease variants at the candidate loci  
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Supplementary Figure 4. Association of reported variants with smoking behavior in the Tobacco Genetics Consortium  
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Supplementary Table 2. Association of top variants at established coronary heart disease loci in our study population 

   Lead variant observed in our study population at established CHD Loci   Association of reported variant at established CHD loci in our study population  

Chr Locus  SNP Position (Mb) Effect allele Beta SE P-value   SNP Position (Mb) Effect allele Beta SE P-value  

13q12.3 FLT1  rs9319428 28973621 A 0.04 0.01 1.09E-04   rs9319428 28973621 A 0.04 0.01 1.09E-04  

7q22.3 COG5  rs12539895 107091849 C 0.04 0.01 1.25E-03   rs12539895 107091849 C 0.04 0.01 1.25E-03  

2p11.2 GGCX*  rs6738645 85783128 G 0.05 0.01 2.34E-06   rs1561198 85809989 T 0.04 0.01 2.36E-06  

6p21.2 KCNK5  rs10947789 39174922 T 0.05 0.01 2.02E-05   rs10947789 39174922 T 0.05 0.01 2.02E-05  

6p21.31 ANKS1A*  rs12203818 35251317 G 0.05 0.01 5.69E-05   rs12205331 34898455 C 0.04 0.01 2.94E-03  

10p11.23 KIAA1462*  rs17294968 30300420 G 0.05 0.01 2.97E-08   rs2505083 30335122 C 0.05 0.01 7.52E-07  

17p13.3 SMG6*  rs2760751 2028106 G 0.05 0.01 7.51E-07   rs2281727 2117945 G 0.02 0.01 3.39E-02  

2p21 ABCG8*  rs4245791 44074431 C 0.06 0.01 1.96E-07   rs6544713 44073881 T 0.04 0.01 2.56E-04  

17q21.32 UBE2Z*  rs16941382 45043508 C 0.06 0.01 2.05E-06   rs15563 47005193 G 0.03 0.01 1.51E-03  

17p11.2 RAI1*  rs8080061 17776389 C 0.06 0.01 3.31E-07   rs12936587 17543722 G 0.04 0.01 5.20E-04  

6q23.2 TCF21*  rs10457618 134188626 C 0.06 0.01 7.15E-09   rs12190287 134214525 C 0.04 0.01 7.26E-03  

5q31.1 SLC22A4  rs273909 131667353 G 0.06 0.01 2.32E-05   rs273909 131667353 G 0.06 0.01 2.32E-05  

1q21.3 IL6R*  rs4845579 151770138 C 0.06 0.01 8.00E-07   rs4845625 154422067 T 0.05 0.01 1.34E-06  

2p24.1 APOB*  rs488507 21393689 T 0.06 0.01 1.26E-07   rs515135 21286057 C 0.06 0.01 1.33E-05  

6q26 LPA*  rs7770628 161018174 C 0.07 0.01 6.38E-12   rs4252120 161143608 T 0.03 0.01 1.20E-02  

13q34 COL4A2*  rs750597 111029256 T 0.07 0.01 7.30E-11   rs4773144 110960712 G 0.07 0.01 2.64E-08  

7p21.1 HDAC9  rs2023938 19036775 C 0.07 0.02 1.12E-05   rs2023938 19036775 C 0.07 0.02 1.12E-05  

19p13.2 LDLR*  rs3786722 11161537 C 0.07 0.01 5.53E-10   rs1122608 11163601 G 0.07 0.01 5.54E-10  

4q31.22 EDNRA  rs1878406 148393664 T 0.07 0.01 1.13E-07   rs1878406 148393664 T 0.07 0.01 1.13E-07  

10q24.32 CYP17A1*  rs11191454 104660004 A 0.07 0.02 7.64E-06   rs12413409 104719096 G 0.07 0.02 9.91E-05  

9q34.2 ABO  rs579459 136154168 C 0.07 0.01 6.32E-10   rs579459 136154168 C 0.07 0.01 6.32E-10  

7q32.2 ZC3HC1  rs11556924 129663496 C 0.07 0.01 1.27E-10   rs11556924 129663496 C 0.07 0.01 1.27E-10  

8q24.13 TRIB1*  rs2954021 126482077 A 0.07 0.01 1.69E-11   rs2954029 126490972 A 0.06 0.01 1.93E-09  

12q24.12 SH2B3*  rs653178 112007756 C 0.07 0.01 1.44E-11   rs3184504 111884608 T 0.07 0.01 3.12E-11  

4q32.1 GUCY1B3*  rs10517620 156676558 G 0.08 0.01 1.23E-09   rs7692387 156635309 G 0.07 0.01 2.93E-06  

10q23.31 LIPA  rs2246833 91005854 T 0.08 0.01 1.82E-12   rs2246833 91005854 T 0.08 0.01 1.82E-12  

14q32.2 HHIPL1  rs2895811 100133942 C 0.05 0.01 5.11E-07   rs2895811 100133942 C 0.05 0.01 5.11E-07  

1p32.3 PCSK9  rs11206510 55496039 T 0.08 0.01 2.41E-08   rs11206510 55496039 T 0.08 0.01 2.41E-08  

15q25.1 ADAMTS7*  rs7178051 79118296 C 0.08 0.01 5.71E-16   rs7173743 79141784 T 0.07 0.01 4.73E-13  

11q22.3 PDGFD  rs974819 103660567 T 0.08 0.01 1.35E-15   rs974819 103660567 T 0.08 0.01 1.35E-15  

15q26.1 FURIN*  rs6227 91425232 T 0.08 0.01 1.31E-13   rs17514846 91416550 A 0.07 0.01 2.51E-10  

1q41 MIA3*  rs2133189 222814442 T 0.08 0.01 2.00E-10   rs17464857 222762709 T 0.06 0.01 3.39E-05  

2q22.3 ZEB2*  rs16824790 146106518 T 0.08 0.02 1.86E-07   rs2252641 145801461 C 0.03 0.01 3.47E-04  

3q22.3 MRAS*  rs2345270 137325390 A 0.09 0.01 2.61E-10   rs9818870 138122122 T 0.07 0.01 3.45E-07  

19q13.32 APOE*  rs6857 45392254 T 0.09 0.02 2.46E-07   rs2075650 45395619 G 0.08 0.02 6.61E-07  

21q22.11 KCNE2*  rs8131284 35607496 C 0.09 0.01 4.01E-11   rs9982601 35599128 T 0.09 0.01 1.45E-10  

8p21.3 LPL*  rs343 19810787 C 0.09 0.02 1.04E-07   rs264 19813180 G 0.07 0.01 7.09E-07  

10q11.21 CXCL12*  rs10900001 44695585 C 0.09 0.01 1.81E-10   rs501120 44753867 T 0.07 0.01 1.33E-08  

1p13.3 SORT1*  rs629301 109818306 T 0.10 0.01 1.61E-13   rs602633 109821511 G 0.08 0.01 3.37E-12  

11q23.3 APOA5*  rs10790162 116639104 A 0.10 0.02 1.03E-08   rs9326246 116611733 C 0.08 0.02 1.01E-05  

6q25.3 SLC22A3*  rs3125055 160736787 A 0.11 0.02 2.65E-13   rs2048327 160863532 C 0.05 0.01 3.23E-08  

1p32.2 PPAP2B*  rs4634932 56996191 T 0.14 0.02 2.36E-13   rs17114036 56962821 A 0.12 0.02 1.74E-10  

6p24.1 PHACTR1*  rs9349379 12903957 G 0.14 0.01 3.22E-46   rs9369640 12901441 A 0.11 0.01 2.66E-31  

2q33.2 WDR12*  rs7560547 203757916 G 0.17 0.02 3.94E-20   rs6725887 203745885 C 0.15 0.02 5.20E-18  

9p21.3 CDKN2BAS1*  rs1537371 22099568 A 0.18 0.01 5.55E-86   rs1333049 22125503 C 0.12 0.01 8.12E-37  

*lead variant observed in our study population differed with the reported variant  

 



Supplementary Table 3. Stratified (Never-smokers” and “Ever-Smokers”) and Gene-smoking interaction analyses in coronary heart 

disease for the coronary heart disease and smoking behavior loci  

     Never-Smokers  Ever-Smokers   

Chr Locus variant Allele (E/R)*  Cases Controls Total Beta SE P-value  Cases Controls Total  Beta Se P-value  INTERACTION 
P-value 

                                                 CHD RELATED LOCI 
15q25.1 ADAMTS7 rs7178051 T/C  21232 38713 59945 -0.13 0.02 1.30E-16  39585 40749 80334 -0.05 0.01 2.49E-04  8.57E-05 
14q32.2 HHIPL1 rs2895811 T/C  16542 29114 45656 -0.08 0.02 2.68E-06  31524 30816 62340 -0.04 0.01 8.16E-03  9.45E-03 

1q41 MIA3 rs2133189 T/C  14475 23848 38323 0.12 0.02 6.31E-09  24428 22522 46950 0.06 0.02 7.19E-04  0.05057 
6p21.2 KCNK5 rs10947789 T/C  21232 38713 59945 0.02 0.02 1.56E-01  39585 40749 80334 0.06 0.01 1.37E-05  0.0949 

10q24.32 CYP17A1 rs11191454 A/G  18470 29062 47532 0.10 0.02 7.84E-05  38155 35437 73592 0.05 0.02 1.12E-02  0.1088 
12q24.12 SH2B3 rs653178 T/C  18206 32975 51181 -0.10 0.02 3.44E-09  33647 34874 68521 -0.05 0.01 8.95E-05  0.1131 

5q31.1 SLC22A4 rs273909 A/G  19247 33076 52323 -0.09 0.02 5.05E-05  38049 36478 74527 -0.04 0.02 3.18E-02  0.1144 
11q22.3 PDGFD rs974819 T/C  20559 38198 58757 0.11 0.02 5.73E-11  38923 40371 79294 0.07 0.01 7.70E-07  0.1426 
9q34.2 ABO rs579459 T/C  21232 38713 59945 -0.06 0.02 1.37E-03  39585 40749 80334 -0.08 0.02 7.52E-08  0.1598 

13q12.3 FLT1 rs9319428 A/G  21232 38713 59945 0.06 0.02 3.13E-04  39585 40749 80334 0.03 0.01 4.07E-02  0.1619 
2p11.2 GGCX rs6738645 T/G  20377 37440 57817 -0.02 0.02 1.35E-01  38382 39181 77563 -0.06 0.01 1.07E-06  0.1687 
2p21 ABCG8 rs4245791 T/C  18906 34620 53526 -0.07 0.02 1.35E-05  37169 38266 75435 -0.04 0.01 1.52E-03  0.2016 

17p13.3 SMG6 rs2760751 A/G  18484 31315 49799 -0.07 0.02 8.19E-05  33722 32479 66201 -0.05 0.01 1.76E-03  0.2017 
21q22.11 KCNE2 rs8131284 T/C  20827 32578 53405 -0.12 0.02 1.25E-07  39353 37234 76587 -0.08 0.02 2.36E-05  0.2254 
15q26.1 FURIN rs6227 T/C  17094 31503 48597 0.11 0.02 1.08E-09  30978 32908 63886 0.07 0.01 4.87E-06  0.2261 
1p32.3 PCSK9 rs11206510 T/C  19080 30813 49893 0.07 0.02 1.91E-03  33026 28327 61353 0.09 0.02 2.76E-06  0.2742 
6q23.2 TCF21 rs10457618 T/C  20553 37945 58498 -0.05 0.02 4.98E-03  38909 40166 79075 -0.07 0.01 2.07E-07  0.315 
6q25.3 SLC22A3 rs3125055 A/T  19496 31336 50832 0.13 0.02 3.32E-08  37193 35724 72917 0.10 0.02 8.24E-07  0.3191 
2q33.2 WDR12 rs7560547 A/G  11452 16774 28226 -0.15 0.03 5.62E-07  23827 22810 46637 -0.19 0.02 8.83E-15  0.3584 
6q26 LPA rs7770628 T/C  21050 37955 59005 -0.06 0.01 9.27E-05  39044 39559 78603 -0.07 0.01 1.30E-08  0.3634 

13q34 COL4A2 rs750597 A/T  21232 38713 59945 -0.07 0.02 4.00E-06  39585 40749 80334 -0.06 0.01 3.46E-06  0.3881 
7p21.1 HDAC9 rs2023938 T/C  20178 31202 51380 -0.05 0.02 6.02E-02  39137 36961 76098 -0.08 0.02 3.44E-05  0.3987 

10q11.21 CXCL12 rs10900001 C/G  20029 30278 50307 0.09 0.02 1.04E-04  38286 35107 73393 0.10 0.02 3.91E-07  0.4158 
1p13.3 SORT1 rs629301 T/G  17401 28346 45747 0.11 0.02 9.86E-08  32124 30718 62842 0.09 0.02 2.42E-07  0.419 

4q31.22 EDNRA rs1878406 T/C  20568 31970 52538 0.08 0.02 8.06E-05  39177 37144 76321 0.06 0.02 2.96E-04  0.4329 
17p11.2 RAI1 rs8080061 T/C  16313 26850 43163 -0.04 0.02 1.63E-02  28987 28172 57159 -0.07 0.02 3.06E-06  0.4536 
1p32.2 PPAP2B rs4634932 T/C  14428 21600 36028 0.18 0.03 3.47E-09  29796 27171 56967 0.12 0.03 4.61E-06  0.4825 
3q22.3 SOX14 rs2345270 A/G  13811 22661 36472 0.07 0.02 4.94E-04  24704 21225 45929 0.10 0.02 8.78E-08  0.4994 

10q23.31 LIPA rs2246833 T/C  17742 32340 50082 0.09 0.02 1.29E-07  32175 34064 66239 0.07 0.01 1.85E-06  0.5051 
1q21.3 IL6R rs4845579 T/C  20933 37873 58806 -0.06 0.02 9.71E-04  39323 39994 79317 -0.06 0.02 2.39E-04  0.5327 
4q32.1 GUCY1B3 rs10517620 A/G  19324 32464 51788 -0.08 0.02 7.83E-06  34925 34047 68972 -0.07 0.02 3.04E-05  0.6146 

6p21.31 ANKS1A rs12203818 A/G  18318 34529 52847 -0.05 0.02 1.61E-02  36527 37975 74502 -0.05 0.02 1.25E-03  0.6371 
7q32.2 ZC3HC1 rs11556924 T/C  15973 28497 44470 -0.08 0.02 3.03E-06  30026 30932 60958 -0.06 0.01 6.85E-06  0.6466 

17q21.32 UBE2Z rs16941382 T/C  21013 37746 58759 -0.06 0.02 8.19E-04  39402 40002 79404 -0.05 0.02 6.75E-04  0.7015 
8p21.3 LPL rs343 A/C  16096 25458 41554 -0.10 0.03 3.00E-04  35930 33164 69094 -0.09 0.02 8.97E-05  0.7019 

11q23.3 APOA5 rs10790162 A/G  18776 28882 47658 0.11 0.03 2.31E-05  38184 34895 73079 0.09 0.02 9.36E-05  0.7106 
8q24.13 TRIB1 rs2954021 A/G  16449 27132 43581 0.08 0.02 3.67E-06  29253 28441 57694 0.07 0.01 9.83E-07  0.7373 
19p13.2 LDLR rs3786722 A/C  21232 38713 59945 -0.07 0.02 7.01E-05  39585 40749 80334 -0.07 0.01 1.92E-06  0.7522 
2p24.1 APOB rs488507 T/G  20559 37688 58247 0.06 0.02 1.06E-03  38310 39748 78058 0.07 0.02 3.32E-05  0.7576 

19q13.32 APOE rs6857 T/C  12159 22932 35091 0.10 0.03 7.93E-04  23753 24019 47772 0.09 0.02 8.68E-05  0.7612 
10p11.23 KIAA1462 rs17294968 A/G  21232 38713 59945 -0.05 0.02 4.26E-04  39585 40749 80334 -0.05 0.01 1.87E-05  0.8262 

7q22.3 COG5 rs12539895 A/C  18206 32975 51181 -0.05 0.02 2.02E-02  33647 34874 68521 -0.04 0.02 2.34E-02  0.8558 
6p24.1 PHACTR1 rs9349379 A/G  19819 33838 53657 -0.15 0.02 9.37E-21  37887 37825 75712 -0.14 0.01 3.62E-27  0.9004 
9p21.3 CDKN2BAS1 rs1537371 A/C  21232 38713 59945 0.19 0.01 2.45E-37  39585 40749 80334 0.18 0.01 1.73E-50  0.9201 
2q22.3 ZEB2 rs16824790 T/C  15330 27420 42750 0.09 0.03 1.13E-03  30004 33753 63757 0.08 0.02 4.67E-05  0.9841 

                                                       SMOKING RELATED LOCI 
15q25.1 CHRNA3 rs1051730 A/G  20559 38198 58758 -0.04 0.02 1.65E-02  38923 40371 79294 0.03 0.01 1.53E-02  2.37E-04 
10q23.32 LOC100188947 rs1329650 T/G  19339 32588 68973 -0.01 0.02 0.49  34925 34047 68973 -0.022 0.0141 0.1032  0.5291 

19q13.2 CYP2A6 rs3733829 A/G  18875 31953 50829 0.01 0.02 0.465  33453 33237 66691 -0.005 0.01 0.7142  0.4924 
11p14.1 BDNF-AS rs6265 T/C  21232 38713 59946 -0.06 0.02 1.72E-03  39585 40749 80334 -0.03 0.02 3.79E-02  0.4163 
8p11.21 CHRNB3 rs6474412 T/C  19269 30935 50205 -0.01 0.02 6.15E-01  34736 31498 66234 -0.01 0.02 6.61E-01  0.7113 

*(E/R) – (effect allele / reference allele)



Supplementary Figure 5a. Association by smoking status of the APOE locus with coronary heart disease in the 

CARDIoGRAMplusC4D consortium and PROMIS 
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Supplementary Figure 5b. Forest plot displaying interaction beta across the participating 

studies 
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Supplementary Figure 5c. Forest plot displaying interaction beta across the participating 

studies by ethnicity 
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Supplementary Figure 6. (a) Unadjusted and (b) adjusted associations of chromosome 

15q21.1 variants with coronary heart disease (CHD, red triangles) and smoking behavior 

(cigarettes per day, CPD; grey circles) 

 

 

 

 

 

(b) analyses conditioned on rs717805, rs11072794, 

rs1051730 and rs684513

(a) Main effects on CHD risk and CPD behavior (unconditional)  

(b) analyses conditioned on rs717805, rs11072794, rs1051730 

and rs684513 



Supplementary Figure 6c – Analyses of rs7178051 and rs1051730 with MI risk in PROMIS 

(9,025 MI cases and 8,506 controls) 
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adjusted for rs11072794 (Second CHD signal)
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eFigure 6c – Analyses of rs7178051 and rs1051730 with MI risk in PROMIS

(9,025 MI cases and 8,506 controls)

The current analyses used data from a customized cardiometabochip that was genotyped in 9,025 MI cases 

and 8,506 controls from the PROMIS study 



Supplementary Figure 7.  Unadjusted effects of 15q21.1 lead variants on coronary heart disease and smoking behavior 
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Supplementary Table 4. Association of rs7178051 (top CHD SNP) and rs1051730 (top CPD SNP) mutually adjusted for each other 

in 9,025 MI cases and 8,506 controls in PROMIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROMIS (9,025 MI cases and 8,506 controls) 

 OR Se P-value 

rs7178051 (unadjusted) 0.90 0.02 1.31E-05 

adjusted for rs1051730 using logistic regression 0.91 0.02 6.78E-05 

adjusted for rs1051730 using GCTA 0.91 0.02 2.60E-05 

    

rs1051730 (unadjusted) 0.96 0.02 0.076 

adjusted for rs7178051 using logistic regression 1.00 0.03 0.875 

adjusted for rs7178051 using GCTA method       1.00       0.02       0.80 



Supplementary Table 5. Association of rs7178051 with MI risk in PROMIS in participants by smoking status who do not carry the 

minor allele for rs1051730 and rs684513 variants 

 

   PROMIS   

 

 
Cases Controls OR P-value 

 Never-smokers 2110 2787 0.88 0.01 
 Ever-smokers 2982 2026 0.94 0.21 
 

      Current meta-analyses utilizing data from all participants 

 Never-smokers 21232 38713 0.88 1.30x 10-16 
 Ever-smokers 39585 40749 0.95 2.49 x10-04 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 8. Genome browser view of regulatory features at Chr15q21.  

 

 

 

 

 

eFigure 8 

HCASMC TCF21 ChIP-Seq Peak



Supplementary Figure 9. Expression of ADAMTS7 and CHRNB4-A3-A5 mRNAs in 

HCASMC, HCAEC, HAoSMC, HAoEC, HAoAF and THP-1 cells. 
 

 

HCASMC = human coronary artery smooth muscle cells; HCAEC = human coronary artery 

endothelial cells; HAoSMC = human aortic smooth muscle cells; HAoEC = human aortic 

endothelial cells; HAoAF = human aortic adventitial fibroblasts; THP-1 = human acute 

monocytic leukemia cell line; ND = not detected. 

 




