Common Variants in the ATP2B1 Gene Are Associated With Susceptibility to Hypertension The Japanese Millennium Genome Project

Yasuharu Tabara, Katsuhiko Kohara, Yoshikuni Kita, Nobuhito Hirawa, Tomohiro Katsuya, Takayoshi Ohkubo, Yumiko Hiura, Atsushi Tajima, Takayuki Morisaki, Toshiyuki Miyata, Tomohiro Nakayama, Naoyuki Takashima, Jun Nakura, Ryuichi Kawamoto, Norio Takahashi, Akira Hata, Masayoshi Soma, Yutaka Imai, Yoshihiro Kokubo, Tomonori Okamura, Hitonobu Tomoike, Naoharu Iwai, Toshio Ogihara, Itsuro Inoue, Katsushi Tokunaga, Toby Johnson, Mark Caulfield, Patricia Munroe on behalf of the Global Blood Pressure Genetics Consortium, Satoshi Umemura, Hirotsugu Ueshima, Tetsuro Miki

Abstract—Hypertension is one of the most common complex genetic disorders. We have described previously 38 single nucleotide polymorphisms (SNPs) with suggestive association with hypertension in Japanese individuals. In this study we extend our previous findings by analyzing a large sample of Japanese individuals (n=14 105) for the most associated SNPs. We also conducted replication analyses in Japanese of susceptibility loci for hypertension identified recently from genome-wide association studies of European ancestries. Association analysis revealed significant association of the ATP2B1 rs2070759 polymorphism with hypertension ($P=5.3\times10^{-5}$; allelic odds ratio: 1.17 [95% CI: 1.09 to 1.26]). Additional SNPs in ATP2B1 were subsequently genotyped, and the most significant association was with rs11105378 (odds ratio: 1.31 [95% CI: 1.21 to 1.42]; $P=4.1\times10^{-11}$). Association of rs11105378 with hypertension was cross-validated by replication analysis with the Global Blood Pressure Genetics consortium data set (odds ratio: 1.13 [95% CI: 1.05 to 1.21]; $P=5.9\times10^{-4}$). Mean adjusted systolic blood pressure was highly significantly associated with the same SNP in a meta-analysis with individuals of European descent ($P=1.4\times10^{-18}$). ATP2B1 mRNA expression levels in umbilical artery smooth muscle cells were found to be significantly different among rs11105378 genotypes. Seven SNPs discovered in published genome-wide association studies were also genotyped in the Japanese population. In the combined analysis with replicated 3 genes, FGF5 rs1458038, CYP17A1, rs1004467, and CSK rs1378942, odds ratio of the highest risk group was 2.27 (95% CI: 1.65 to 3.12; $P=4.6\times10^{-7}$) compared with the lower risk group. In summary, this study confirmed common genetic variation in ATP2B1, as well as FGF5, CYP17A1, and CSK, to be associated with blood pressure levels and risk of hypertension. (Hypertension. 2010;56:973-980.)

Key Words: hypertension
genetic variation ATP2B1 Millennium Genome Project Global BPgen

B ecause of its large impact on a number of cardiovascular diseases, hypertension is a major contributor to global health burden. Because hypertension is one of the most prevalent complex genetic disorders, with a heritability of

 \leq 60% based on the estimation by 24-hour blood pressure (BP) readings,¹ numerous studies, including recent genomewide association studies (GWAS),²⁻⁶ have attempted to identify genetic variation associated with human BP levels.

Full author list of the Global BPgen consortium is given in the online Data Supplement.

Correspondence to Yasuharu Tabara, Department of Basic Medical Research and Education, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon-City, Ehime 791-0295, Japan. E-mail tabara@m.ehime-u.ac.jp

© 2010 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

Received March 16, 2010; first decision April 11, 2010; revision accepted September 1, 2010.

From the Departments of Basic Medical Research and Education (Y.T.), Geriatric Medicine (K.K., J.N., T.Mik.), Community Medicine (R.K.), Ehime University Graduate School of Medicine, Toon, Japan; Division of Anti-Aging and Genomics (Y.T., K.K., T.Mik.), Ehime Proteo-Medicine Research Center, Toon, Japan; Department of Health Science (Y.Ki., T.Oh., N.Takas., H.U.), Shiga University of Medical Science, Otsu, Japan; Division of Nephrology and Hypertension (N.H.), Yokohama City University Medical Center, Yokohama, Japan; Department of Medical Science and Cardiorenal Medicine (S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Geriatric Medicine (T.K., T.Og.), Osaka University Graduate School of Medicine, Suita, Japan; Departments of Planning for Drug Development and Clinical Evaluation (T.Oh.) and Clinical Pharmacology and Therapeutics (Y.I.), Tohoku University Graduate School of Pharmaceutical Science and Medicine, Sendai, Japan; Departments of Genomic Medicine (Y.H., N.I.), Molecular Biology (T.Mo.), Molecular Pathogenesis (T.Miy.), Preventive Cardiology (Y.Ko., T.Ok., H.T.), National Cerebral and Cardiovascular Research Center, Suita, Japan; Division of Molecular Life Science (A.T., I.I.), School of Medicine, Tokai University, School a, Japan; Divisions of Laboratory Medicine (T.N.) and Nephrology and Endocrinology (M.S.), Department of Medicine, Nihou University School and Genetics (N.Takah.), Radiation Effects Research Foundation, Hiroshima, Japan; Department of Public Health (A.H.), Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Human Genetics (K.T.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Clinical Pharmacology (T.J., M.C., P.M.), William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.

Except for rare mendelian forms of hypertension,⁷ the estimated effects of each genetic factor on BP levels have been found to be small in the general population (typically <1.0 mm Hg on systolic BP [SBP] and <0.5 mm Hg on diastolic BP [DBP] per risk allele). However, multiple risk alleles are known to have a cumulative impact on several complex traits, including BP and hypertension risk.³ In addition, it is anticipated that identification of novel susceptibility genes would lead to further understanding of disease pathogenesis.

As a part of a series of nationally based cooperative projects, the Millennium Genome Project (Millennium GPJ), we conducted multiple candidate gene analyses to identify susceptible genes and polymorphisms for hypertension. In a previously reported study,⁶ we focused on 307 genes, which were genes encoding components of signal transduction pathways potentially related to BP regulation, including receptors, soluble carrier proteins, binding proteins, channels, enzymes, and G proteins. That study identified 38 single nucleotide polymorphisms (SNPs) as suggestively associated with hypertension by analysis of 758 hypertensive patients and 726 normotensive controls.6 To extend our previous study, we have now genotyped all 38 of the SNPs in a replication panel composed of 1929 hypertensives and 1993 normotensives and have taken forward validated SNPs with further genotyping in a large Japanese genetic epidemiological cohort sample (n=14 105). An in silico validation analysis of our most promising loci was performed using the Global Blood Pressure Genetics (Global BPgen) consortium data set, a large-scale GWAS of samples of European descent.² Furthermore, we also conducted a replication analysis of recent European GWAS-derived susceptible loci for hypertension from Global BPgen² and CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) GWAS³ in a Japanese large-scale general population sample (Figure S1, available in the online Data Supplement at http://hyper.ahajournals.org).

Methods

Case and Control Subjects (Screening Panel)

Details of the screening panel subjects have been described previously.⁶ Briefly, hypertensive patients and normotensive controls were recruited in the Asahikawa, Tokyo, Osaka, and Hiroshima regions of Japan according to the following criteria. Hypertensive subjects (n=758) had a previous diagnosis of hypertension at between 30 and 59 years of age and were either being treated with antihypertensive medication or had a SBP >160 mm Hg and/or DBP >100 mm Hg. They had a family history of hypertension in their parents and/or siblings and were not obese (body mass index [BMI] <25 kg/m²). Normotensive controls (n=726) aged >45 years were recruited from the same regions. These individuals have never been treated with antihypertensive medications, and their SBP was <120 mm Hg and DBP <80 mm Hg. They had no family history of hypertension. All of the subjects were unrelated and were native Japanese.

Cohort-Based Population Samples

Seven independent study cohorts for cardiovascular diseases and related risk factors were combined to compose a large-scale Japanese genetic epidemiological population sample of 14 105. The Ohasama, Shigaraki, Takashima, Suita, and Nomura studies are general population-based genetic epidemiological studies. The study subjects were recruited via a medical checkup process for community residents. The 2 other cohorts, Yokohama and Matsuyama, are derived from employees of large manufacturing industries. The clinical parameters used in this study were obtained from personal health records during annual medical checkups. Further details of the study cohorts are described in the online Data Supplement.

Nested Case and Control Subjects Derived From the Cohort-Based Sample (Replication Panel)

Hypertensive cases and normotensive controls were chosen from the cohort-based population samples described above (n=11 569; the Suita study was excluded because of ethical issues). The selection criteria of the hypertensive and normotensive subjects were as follows: hypertensive subjects (n=1929) aged ≤ 64 years and either treatment with antihypertensive medication and/or SBP >160 mm Hg and/or DBP >90 mm Hg; normotensive subjects (n=1993) aged ≥ 40 years and having SBP <120 mm Hg and DBP <80 mm Hg; and no current use of antihypertensive medication and free from any history of cardiovascular disease.

Global BPgen (In Silico) Analyses

To investigate cross-validation of the most promising SNPs, we obtained results for 4 SNPs in the *ATP2B1* gene from the Global BPgen consortium, a study that is composed of 17 GWAS studies with 34 433 individuals of European descent. A detailed description of the study design and phenotype measurement for all of the cohorts has been reported previously.²

Validation of Published BP Polymorphisms in the Japanese Millennium Cohort

Thirteen loci have been identified recently and robustly validated for association with BP and hypertension in recent large-scale GWAS of European samples, by the Global BPgen consortium² and the CHARGE consortium.³ From the associated SNPs reported at these 13 loci, we selected SNPs expected to have minor allele frequencies in Japanese samples >0.10, based on the HapMap database (JPT only, Public Release No. 27)⁸: *FGF5* rs1458038, *CYP17A1* rs1004467, *CSK* rs1378942, *PLCD3* rs12946454, *PLEKHA7* rs381815, *ULK4* rs9815354, and *CSK-ULK3* rs6495122. These 7 SNPs were genotyped in the Japanese population-based cohort sample to test whether the same associations exist in samples of Japanese ancestry.

Genotyping

Genomic DNA was extracted from peripheral blood. All of the SNPs were analyzed by TaqMan probe assays (Applied Biosystems Co, Ltd) using commercially available primers and probes purchased from the Assay-on-Demand system. The fluorescence level of PCR products was measured using an ABI PRISM 7900HT sequence detector.

Ethical Considerations

All of the study procedures were approved by the ethics committee of each university or research institute. Written informed consent was obtained from all of the participating subjects.

Ex Vivo Expression Analysis of ATP2B1 mRNA

Umbilical artery smooth muscle cells were isolated from umbilical cords obtained at delivery (n=34). Expression levels of ATP2B1 mRNA were analyzed by RT-PCR using a relative quantification method. Further details of the ex vivo expression analysis are described in the online Data Supplement.

Statistical Analysis

At each SNP, frequency differences in each genotype among hypertensive and normotensive subjects were assessed using a χ^2 test. Linkage disequilibrium (LD) coefficients were calculated using the Haploview software (Broad Institute).⁹ Adjusted odds ratios for hypertension, as well as coefficients and SEs for SBP and DBP, were calculated using logistic and linear multiple regression analysis,

Table 1. Association of ATP2B1 SNPs With Hypertension in the Screening and Replication Panels

						Screenin	g Panel		Replication Panel						
			G	Genotyp	e	Call			Genotype		Call				
SNP	Genotyp	е	Fi	requen	су	HWE	Rate	Odds (P)	Fi	requen	су	HWE	Rate	Odds (P)	Overall Odds (P)
rs1401982	AA/AG/GG	HT	318	328	92	0.603	96.3	1.28 (0.001)	825	833	247	0.108	98.7	1.25 (3.0×10 ⁻⁶)	1.26 (1.5×10 ⁻⁸)
		NT	249	324	118	0.474			699	961	305	0.397			
rs2681472	AA/AG/GG	HT	335	321	90	0.334	97.8	1.26 (0.003)	846	832	242	0.095	99.5	1.26 (1.0×10 ⁻⁶)	1.26 (8.7×10 ⁻⁹)
		NT	267	328	111	0.539			715	966	303	0.431			
rs2070759	GG/GT/TT	HT	216	379	151	0.515	97.6	1.16 (0.045)	582	896	399	0.118	97.2	1.18 (4.4×10 ⁻⁴)	1.17 (5.3×10 ⁻⁵)
		NT	186	341	175	0.454			507	956	474	0.579			
rs11105364	TT/TG/GG	HT	335	322	88	0.432	97.2	1.29 (0.001)	846	834	236	0.171	99.3	1.25 (2.4×10 ⁻⁶)	1.26 (4.1×10 ⁻⁹)
		NT	261	323	113	0.438			729	947	303	0.874			
rs11105378	CC/CT/TT	HT	359	301	76	0.276	97.3	1.37 (6.3×10 ⁻⁵)	868	821	217	0.280	98.8	1.28 (1.4×10 ⁻⁷)	1.31 (4.1×10 ⁻¹¹)
		NT	280	320	108	0.295			746	922	300	0.586			

The screening panel is composed of 758 middle age-onset severe hypertensive patients and 726 middle-aged to elderly evidently normotensive controls (Table S4). The replication panel consists of 1929 hypertensive cases, and 1993 normotensive controls selected from 11 569 cohort sample were enrolled (Table S2). ORs and *P* values for allelic model are shown.

adjusting for sex, age, age², BMI, and cohort variables, using additive (1 degree of freedom) and genotypic (2 degrees of freedom) genetic models. Adjustment for treatment with antihypertensive medication was achieved by adding fixed constants to measured values (+15 mm Hg for SBP and +10 mm Hg for DBP).¹⁰ The Global BPgen data and statistical methods have been described elsewhere.2 Meta-analysis was performed assuming fixed effects and using inverse variance weights. An unweighted genetic risk score based on 4 SNPs (ATP2B1 rs1105378, FGF5 rs1458038, CYP17A1 rs1004467, and CSK rs1378942) was calculated by adding the number of risk alleles showing higher BP values. Risk allele of each SNP was defined as follows: ATP2B1, C allele; FGF5, T allele; CYP17A1, A allele; and CSK, C allele. The CSK-ULK3 SNP rs6495122 showing positive association with BP trait and hypertension was not included in the calculation of genetic risk score, because the strong LD with the CSK SNP rs1378942 (D'=0.884; $r^2=0.731$) is most parsimoniously explained by both SNPs tagging a single risk variant. Differences in mRNA expression levels among the ATP2B1 rs1105378 genotype were assessed by ANOVA. The statistical analyses were performed using a commercially available statistical software package (JMP version 8, SAS Institute).

Results

Replication Genotyping

The clinical characteristics of the replication panel chosen from the cohort-based population samples (Table S1, available in the online Data Supplement) are shown in Table S2. Stringent case and control definitions, corresponding with the extreme upper $\approx 17\%$ and lower $\approx 17\%$ of the general population, were used to maximize power for fixed genotyping costs.11 Thirty-six SNPs were successfully genotyped, and results for all of the SNPs are shown in Table S3. Significant association was observed for the ATP2B1 rs2070759 polymorphism located in intron 8 ($P=4.4\times10^{-4}$; allele odds ratio [OR]: 1.18 [95% CI: 1.07 to 1.29]). Several other SNPs also showed marginally significant association; however, the P values did not reach statistical significance after application of Bonferroni correction for multiple comparisons (threshold: 0.05/36=0.0014; Table S3; we note that no other SNPs are significant if the less conservative Benjamini-Hochberg procedure is used to control the false discovery rate at 0.05). Although, the replication results in the less-strict nested case-control sample chosen from the same population sample have been reported in our previous article,⁶ the association was recalculated to narrow down the SNPs to be applied to the following dense SNP analysis.

Dense SNP Analysis of the ATP2B1 Gene

To more precisely identify the SNP or SNPs increasing susceptibility for hypertension, we performed "de novo" genotyping of a dense SNP panel around marker rs2070759 in individuals from the original screening panel (Table S4).⁶ Forty-one tag SNPs located in a 167-kb region around rs2070759 were selected using the HapMap database (Table S5).⁸ Among the 27 SNPs polymorphic in our Japanese sample, the most significant association was observed with rs11105378; this yielded an allelic *P* value of 6.3×10^{-5} (OR: 1.37 [95% CI: 1.17 to 1.60]; Table 1 and Figure S2).

The most associated SNP and the 4 others from the dense SNP analyses were subsequently genotyped in the replication panel. Significant association of rs11105378 was confirmed in the replication panel with an allelic *P* value of 1.4×10^{-7} (OR: 1.28 [95% CI: 1.17 to 1.41]; Table 1). Meta-analysis of both study panels indicated significant association (*P*=4.1×10⁻¹¹; OR: 1.31 [95% CI: 1.21 to 1.42]) and confirmed that the strongest association is seen for rs11105378. The D' and r^2 measures of LD between rs2070759 and rs11105378 were 0.92 and 0.48, respectively. Other SNPs, rs1401982 (D'=0.99; r^2 =0.64), rs2681472 (D'=0.99; r^2 =0.61), rs11105364 (D'=0.97; r^2 =0.59), located within the same LD block, were also significantly associated SNPs suggests a single true association signal in this region.

We examined for possible association of SNPs in the *ATP2B4* gene, a well-investigated isoform of the *ATP2B1* gene, with hypertension in the screening panel. We observed no significant correlation with the 17 SNPs analyzed, which were selected using the HapMap database (Table S6).

Population-Based Meta-Analyses of ATP2B1 SNPs

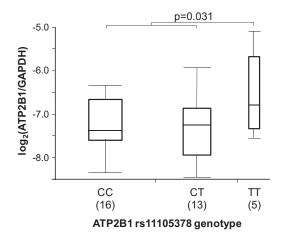
The complete Japanese population-based sample was subsequently genotyped for the 4 most significant SNPs in

Table 2. Meta-Analysis of ATP2B1 SNPs With BP Traits	Table 2.	Meta-Analysis of	ATP2B1	SNPs Wit	th BP Traits
--	----------	------------------	--------	----------	--------------

			Millennium GPJ			Global BPgen			CHARGE*		Poolec	1
SNP	Coded Allele	n (Frequency)	Coefficient (SE), mm Hg	Р	n (Frequency)	Coefficient (SE), mm Hg	Р	n (Frequency)	Coefficient (SE), mm Hg	Р	Coefficient (95% Cl), mm Hg	Р
SBP												
rs1401982	G	13 944	-1.22	1.8×10 ⁻⁷	33 885	-0.30	0.022				-0.52	3.9×10 ⁻⁶
		(0.376)	(0.23)		(0.385)	(0.13)					(−0.74 to −0.30)	
rs2681472	G	14 032	-1.33	1.2×10^{-8}	33 803	-0.62	5.2×10^{-4}	0.17	-1.29	3.5×10^{-11}	-1.03	9.9×10 ⁻²⁰
		(0.373)	(0.23)		(0.158)	(0.18)			(0.19)		(−1.26 to −0.81)	
rs11105364	G	14 013	-1.34	8.9×10 ⁻⁹	33 877	-0.60	7.4×10^{-4}	0.17	-1.30	4.8×10 ⁻¹¹	-1.03	1.2×10 ⁻¹⁹
		(0.364)	(0.23)		(0.179)	(0.18)			(0.19)		(−1.25 to −0.81)	
rs11105378	Т	13 948	-1.33	1.5×10^{-8}	33 171	-0.59	0.001	0.16	-1.31	9.1×10 ⁻¹¹	-1.02	1.4×10 ⁻¹⁸
		(0.360)	(0.23)		(0.158)	(0.18)			(0.20)		(−1.24 to −0.79)	
DBP												
rs1401982	G	13 944	-0.72	2.0×10^{-7}	33 898	-0.18	0.041				-0.34	8.1×10 ⁻⁶
		(0.376)	(0.14)		(0.392)	(0.09)					(−0.49 to −0.19)	
rs2681472	G	14 032	-0.65	2.7×10^{-6}	33 829	-0.35	0.003	0.17	-0.64	3.7×10^{-8}	-0.54	9.7×10 ⁻¹⁵
		(0.373)	(0.14)		(0.157)	(0.12)			(0.11)		(−0.68 to −0.41)	
rs11105364	G	14 013	-0.70	4.5×10^{-7}	33 898	-0.34	0.004	0.17	-0.63	1.2×10^{-7}	-0.54	7.5×10 ⁻¹⁴
		(0.364)	(0.14)		(0.158)	(0.12)			(0.12)		(−0.68 to −0.40)	
rs11105378	Т	13 948	-0.70	5.4×10 ⁻⁷	33 183	-0.33	0.005	0.16	-0.62	3.1×10 ⁻⁷	-0.54	1.6×10 ⁻¹³
		(0.360)	(0.14)		(0.158)	(0.12)			(0.12)		(-0.68 to -0.39)	

Coefficients and SE for SBP and DBP were calculated under the additive model using multiple regression analysis adjusted for age, age², sex, and BMI. In both Millennium GPJ and Global BPgen, adjustment for treatment with antihypertensive medication was achieved by adding fixed constants to measured values (+15 mm Hg for SBP and +10 mm Hg for DBP).² In the Japanese Millennium GPJ and also for some cohorts within Global BPgen, cohort variables were also adjusted to avoid residual population stratification.

*Results of the CHARGE Study were obtained from the published article.³


ATP2B1. To further validate and get more precise effect size estimates in Japanese, for this analysis, hypertensive cases were defined as individuals with treatment with antihypertensive medication, SBP \geq 140 mm Hg, or DBP \geq 90 mm Hg. The ORs for the 4 SNPs were all extremely similar (ranging from 1.19 to 1.21 under the additive model adjusted for age, age², sex, BMI, and cohort variables; see Table S7). These associations were replicated in the Global BPgen subjects of European descent; the pooled analysis demonstrated increased significance (rs1105378: OR: 1.17 [95% CI: 1.11 to 1.23]; $P=7.0\times10^{-10}$), as expected for a larger total sample size (n=28 866; Table S7).

We next evaluated the effect of the most associated SNP, rs11105378, on BP levels in the Millennium GPJ cohort (Table 2). We adjusted for several covariates that are associated with BP phenotypes: age (r=0.362; P<0.001 for SBP), BMI (r=0.275; P<0.001), and sex (male: 131.7 ± 18.2 ; female: 128.6±20.8 mm Hg; P<0.001). In multiple regression analysis for BP levels, including also cohort indicator variables as covariates, the results for a 2-degree-of-freedom test with the TT genotype as a reference identified both the TC genotype (coefficient=+1.66 mm Hg; $P=2.2\times10^{-4}$) and CC genotype (+2.47 mm Hg; $P=4.9\times10^{-8}$) as independent determinants for SBP after adjustment. The TC $(+0.91 \text{ mm Hg}; P=8.0\times10^{-4})$ and CC genotypes $(+1.32 \text{ mm Hg}; P=1.8\times10^{-6})$ were also independently associated with DBP levels. We depict the covariate adjusted mean BP levels by rs11105378 genotype in Figure S3. Results of each cohort separately are summarized in Table S8. We next performed a meta-analysis of data from the Millennium GPJ

and 2 large epidemiological studies (Global BPgen and CHARGE; Table 2). Results show the per-allele differences in SBP and DBP to be ≈ 1.0 and 0.5 mm Hg, respectively.

Genotype-Specific Differences in Ex Vivo Expression of ATP2B1 mRNA

Differences in *ATP2B1* mRNA expression in umbilical artery smooth muscle cells among rs11105738 genotype are shown in Figure 1. Assuming a recessive genetic model, cells homozygous for T allele showed significantly higher levels of

Figure 1. Ex vivo expression analysis of *ATP2B1* mRNA. Graphs depict the log² relative expression levels of the *ATP2B1* mRNA in umbilical artery smooth muscle cells obtained by normalizing to GAPDH. Genotype of *ATP2B1* rs11105378 of each sample was analyzed by direct sequencing using isolated genomic DNA from umbilical artery smooth muscle cells.

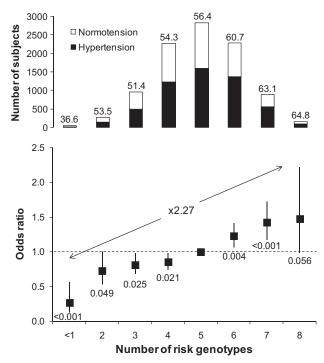
			Millennium GPJ			Global BPgen		Pooled	
SNP	Coded Allele	n (Frequency)	Coefficient (SE), mm Hg	Р	n (Frequency)	Coefficient (SE), mm Hg	Р	Coefficient (95% Cl), mm Hg	Р
Systolic BP									
FGF5	Т	13 826	1.33	1.6×10 ⁻⁸	30 850	0.62	1.6×10 ⁻⁶	0.81	1.1×10 ⁻¹¹
rs1458038		(0.343)	(0.23)		(0.275)	(0.14)		(0.58 to 1.05)	
CYP17A1	А	14 007	0.89	2.3×10 ⁻⁴	33 735	0.94	1.0×10 ⁻⁵	0.92	6.2×10 ⁻⁹
rs1004467		(0.680)	(0.24)		(0.901)	(0.21)		(0.61 to 1.23)	
CSK	С	13 920	0.77	0.007	0.007 34 126 0.62 2.4×10 ⁻⁶ 0.0		0.65	4.2×10 ⁻⁸	
rs1378942		(0.803)	(0.28)		(0.36)	(0.13)		(0.42 to 0.88)	
PLCD3	Т	14 003	0.11	0.703	32 120	0.68	3.9×10 ⁻⁶	0.57	2.5×10 ⁻⁵
rs12946454		(0.831)	(0.30)		(0.28)	(0.15)		(0.30 to 0.83)	
PLEKHA7	Т	14 030	0.11	0.687	33 706	0.52	2.6×10 ⁻⁴	0.44	4.7×10 ⁻⁴
rs381815		(0.199)	(0.28)		(0.26)	(0.14)		(0.19 to 0.68)	
CSK-ULK3	А	14 014	0.68	0.017	33 308	0.47	2.4×10^{-4}	0.51	1.7×10 ⁻⁵
rs6495122		(0.812)	(0.28)		(0.45)	(0.13)		(0.28 to 0.74)	
ULK4	А	13 976	-0.67	0.059	32 034	0.17	0.297	0.01	0.950
rs9815354		(0.116)	(0.35)		(0.18)	(0.17)		(-0.29 to 0.31)	
DBP									
FGF5	Т	13 826	0.73	1.8×10 ⁻⁷	30 850	0.55	1.5×10^{-8}	0.61	6.1×10 ⁻¹⁴
rs1458038		(0.343)	(0.14)		(0.275)	(0.10)		(0.45 to 0.77)	
CYP17A1	А	14 007	0.29	0.047	33 735	0.40	5.4×10 ⁻³	0.35	4.9×10 ⁻⁴
rs1004467		(0.680)	(0.14)		(0.901)	(0.14)		(0.15 to 0.54)	
CSK	С	13 920	0.41	0.015	34 126	0.48	5.9×10 ⁻⁸	0.46	5.2×10 ⁻⁹
rs1378942		(0.803)	(0.17)		(0.36)	(0.09)		(0.31 to 0.62)	
PLCD3	Т	14 003	0.14	0.426	32 120	0.34	5.7×10^{-4}	0.30	1.9×10 ⁻⁴
rs12946454		(0.831)	(0.18)		(0.28)	(0.09)		(0.14 to 0.46)	
PLEKHA7	Т	14 030	0.13	0.437	33 706	0.23	0.014	0.20	0.018
rs381815		(0.199)	(0.17)		(0.26)	(0.10)		(0.04 to 0.37)	
CSK-ULK3	А	14 014	0.38	0.027	33 308	0.35	4.2×10 ⁻⁵	0.36	7.4×10 ⁻⁶
rs6495122		(0.812)	(0.17)		(0.45)	(0.09)		(0.20 to 0.51)	
ULK4	А	13 976	0.21	0.325	32 034	0.40	2.9×10^{-4}	0.36	2.3×10 ⁻⁴
rs9815354		(0.116)	(0.21)		(0.18)	(0.11)		(0.17 to 0.55)	

Table 3. Meta-Analysis of SNPs With BP Traits

ATP2B1 mRNA as compared with cells carrying 1 or 2 C alleles (P=0.031; see Figure 1). Under an additive genetic model, the overall P value was marginally significant (P=0.091).

Replication Analysis of European GWAS-Derived Susceptible SNPs in Japanese

We next conducted a replication analysis in the Millennium GPJ, in which we tested associated SNPs identified in recent large-scale European GWAS by the Global BPgen² and the CHARGE consortia.³ From the 7 most promising SNPs of which the minor allele frequency in Japanese was >0.10 based on the HapMap database, 4 SNPs, namely, *FGF5* rs1458038, *CYP17A1* rs1004467, *CSK* rs1378942, and *CSK-ULK3* rs6495122, showed significant association in either binary trait analyses (Tables S9) or quantitative trait analysis (Table 3 and S10). The most significant association was observed with *FGF5* rs1458038; this yielded a *P* value of 1.6×10^{-8} (+1.33 mm Hg) with SBP and 1.8×10^{-7}


(+0.73 mm Hg) with DBP in the Millennium GPJ cohort, and the effect size was greater than that of Europeans (Table 3). Meta-analysis of both study panels with data from Global BPgen indicated further significant associations.

Multiple Regression Analysis for BP Trait and Hypertension in Japanese

To clarify whether the 4 susceptibility SNPs (*ATP2B1*, *FGF5*, *CYP17A1*, and *CSK*) were independently associated with BP traits and hypertension, multiple regression analysis was performed with possible covariates (Table S11). After adjustment for age, age², sex, BMI, and drinking habits, this analysis confirmed that all 4 of the SNPs were independent determinants for both BP traits and hypertension.

Combined Effect of Risk Genotypes on Hypertension

A risk score for 4 susceptible genotypes was calculated to evaluate their combined effects on hypertension. ORs asso-

Figure 2. ORs for hypertension according to the number of risk genotypes Number of risk genotype was calculated by the following 4 SNPs: *ATP2B1* rs1105378, *FGF5* rs1458038, *CYP17A1*, rs1004467, and *CSK* rs1378942. Hypertensive subjects were defined as being treated with antihypertensive medication, SBP \geq 140 mm Hg, or DBP \geq 90 mm Hg; normotensive subjects were defined as all not treated with antihypertensive medication, SBP \leq 120 mm Hg, and DBP \leq 85 mm Hg.² Adjusted OR for hypertension and BP levels were calculated using logistic and linear multiple regression analysis, adjusting for sex, age, age², BMI, and cohort variables. Frequency of hypertension and *P* values for the hypertension odds are shown in the top of column and the bottom of square, respectively.

ciated with increasing number of risk genotypes in a covariates adjusted logistic regression model are depicted in Figure 2 (overall *P* value was 5.4×10^{-5}). Compared with the reference group (5 risk genotypes), individuals carrying 7 or 8 risk genotypes had higher risk (OR: 1.43 [95% CI: 1.20 to 1.72]; $P=1.0 \times 10^{-4}$) in contrast to the lower OR of individuals with ≤ 2 risk genotypes (OR: 0.63 [95% CI: 0.47 to 0.85]; P=0.020). The OR of the high-risk group was raised to 2.27 (95% CI: 1.65 to 3.12; $P=4.6 \times 10^{-7}$) compared with the lowest risk group. Adjusted per-allele OR for hypertension was 1.17 (95% CI: 1.12 to 1.21; $P=4.0 \times 10^{-15}$). The distribution of the Japanese population sample among the number of risk genotypes is shown in Figure S4.

Discussion

The present study has identified SNPs located upstream or within the *ATP2B1* gene as strong susceptibility polymorphisms for hypertension in Japanese. These are findings that have also been reported recently in individuals of European descent³ and in Koreans.⁴ Although numerous studies have attempted to identify genetic markers for hypertension over the past 2 decades, there has been little cross-validation of loci in different ethnic groups so far except for mendelian forms of hypertension. The SNPs in *ATP2B1* identified in this study showed significant association in large-scale studies in populations with different ancestries and using different discovery approaches, including GWAS in the CHARGE consortium and the Korean study and an independent candidate gene analysis in our present study. Similar findings in different ethnic groups with different methods further strengthen these findings and indicate the *ATP2B1* gene region as a susceptibility locus of likely global significance for BP variation and development of hypertension. Two replication results very recently reported by another Japanese group¹² and a Korean group¹³ also indicated the disease susceptibility of *ATP2B1* SNPs located in the same LD block.

No biological data have been provided whether SNP rs1105378 or other SNPs in strong LD have any effect on the transcriptional activity or transcriptional regulation of the *ATP2B1* gene. Furthermore, although alternative splicing has been found to generate several variants of *ATP2B1* mRNA,¹⁴ the SNP associations that we have observed do not shed light on whether this is a potential mechanism for affecting BP. Our data first showed that the effect of SNPs on ATP2B1 gene expression levels is a potential mechanism by which disease-associated SNP alleles cause the phenotypic changes. Changes in the *ATP2B1* gene product levels are involved in BP regulation. We found no microRNA harboring rs11105378 in the miRBase database.¹⁵

The ATP2B1 (so-called PMAC1) gene encodes the plasma membrane calcium ATPase isoform 1, which removes bivalent calcium ions from eukaryotic cells against very large concentration gradients and plays a critical role in intracellular calcium homeostasis. Although pathophysiological implications of ATP2B1 gene products on the development of hypertension are uncertain, it has been reported that inhibition of ATP2B1 by the selective inhibitor caloxin 2A1 showed endothelium-dependent relaxation of rat aorta by increasing cytosolic Ca²⁺ concentration and consequent activation of endothelial NO synthase.16 Other information on the role of ATP2B1 has been obtained from experiments using bladder smooth muscle cells: contractility measurements on these cells have documented the important role of ATP2B1 in the extrusion of Ca²⁺ after carbachol stimulation or depolarization with potassium chloride.17 These reports suggest altered vascular reactivity as a plausible explanation for disease susceptibility of ATP2B1 gene.

In mammals, calcium ATPase isoforms are encoded by ≥ 4 separate genes (*ATP2B1* to *ATP2B4*).¹⁸ It has been reported that overexpression of the human *ATP2B4* gene in arterial smooth muscle cells in mice increases vascular reactivity and BP partly because of negative regulation of neuronal NO synthase.¹⁹ We, therefore, examined the possible association of *ATP2B4* gene polymorphisms with hypertension by using the screening panel. However, no significant correlation was observed in the 17 SNPs analyzed, which were selected by reference to the HapMap database. The pathophysiological association of plasma membrane Ca²⁺ pump with BP regulation may be isoform specific.

Numerous studies, including the recent GWAS,^{3–6} have attempted to identify genetic variations associated with human BP levels. At present, it is not clear to what extent findings from GWAS in one population can be extrapolated

to other populations with different lifestyles and genetic background. However, the present study provides a crossvalidation of 4 of 7 SNPs (most likely representing 3 of 6 independent signals) derived from European GWAS. Replication studies in other Japanese¹² and Korean¹³ populations also reported the cross-validation of European GWASderived SNP. Conservation of susceptible loci for hypertension was independent of ethnic background. This finding suggests an existence of unidentified common etiology of essential hypertension in relation to the susceptible genes and their physiological pathways.

Although individual common genetic variants confer a modest risk of hypertension, their combination showed a large impact on hypertension. The genetic risk score was associated with \leq 2.27-times greater odds for hypertension. Similar observations have been found in other common diseases and multifactorial phenotypes, including, for example, type 2 diabetes mellitus,²⁰ serum lipid levels,²¹ and serum uric acid levels.²² We reported previously that the findings of the cross-sectional analysis revealed a similar association in the longitudinal analysis²³; the fat mass and obesityassociated gene polymorphism was an independent risk factor for the future development of obesity after adjustment for possible confounding factors. The present cross-sectional study cannot address the question of whether the ATP2B1 polymorphism and other susceptible variants predict future development of hypertension. However, recent articles investigating a prognostic significance of susceptible variants for type 2 diabetes mellitus²⁴ and cardiovascular disease²⁵ showed poor predictive performance of common variants in spite of the high OR observed in subjects carrying multiple risk alleles. A small proportion of the genetically high-risk persons attributed to independent inheritance of risk alleles may make it difficult to discriminate intermediate-risk persons. Genetic information may be most useful to identify a high-risk individual's need for early intervention.

Several definitions of hypertension were used in this study to explore susceptible SNPs with modest effects and to further validate the susceptibility. Since it was expected to be underpowered to detect the effects of common variants in a dichotomized analysis with slightly elevated BP, subjects with high normal BP were excluded from the 65 347 casecontrol analyses. All of the alleles associated with hypertension in a dichotomized analysis (Table S7) were also associated with BP levels (Table 2). Our methodology may, thus, be appropriate to identify susceptible variants for hypertension.

Perspectives

We have identified SNPs located in the *ATP2B1* gene region as susceptibility loci for hypertension in Japanese using a multistage association study, an association that has now been confirmed across different ethnic groups. Differences in the ex vivo *ATP2B1* mRNA expression levels further supported the disease susceptibility of SNP rs1110578. We also replicated the susceptibility of the European GWAS-derived SNPs in Japanese. Because hypertension is a trait that is preventable by dietary and exercise interventions, early detection of at-risk populations using genetic information may be useful in preventing future hypertension-related diseases.

Acknowledgments

We greatly appreciate the efforts of Drs Sumio Sugano and Shoji Tsuji in planning and organization of this study. We thank Drs Hirohito Metoki, Masahiro Kikuya, Takuo Hirose, Kei Asayama, Ken Sugimoto, Kei Kamide, Mitsuru Ohishi, Ryuichi Morishita, Hiromi Rakugi, Yasuyuki Nakamura, Shinji Tamaki, Kenji Matsui, Tanvir Chowdhury Turin, Nahid Rumana, Tadashi Shiwa, Momoko Ogawa, Keisuke Yatsu, Sanae Saka, Nobuko Miyazaki, and Iimori-Tachibana-Rieko for their continued support in this research.

Sources of Funding

This work was supported by Grants for Scientific Research (Priority Areas "Medical Genome Science [Millennium Genome Project]" and "Applied Genomics," Leading Project for Personalized Medicine, and Scientific Research 20390185, 21390099, 19659163, 16790336, 12204008, 15790293, 16590433, 17790381, 17790381, 18390192, 18590265, 18590587, 18590811, 19590929, 19650188, 19790423, 17390186, 20390184, and 21390223) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; a Grants-in-Aid (H15-longevity-005, H17-longevity-003, H16-kenko-001, H18-longevity (kokusai), H11-longevity-020, H17-kenkou-007, H17-pharmaco-common-003, H18-Junkankitou[Seishuu]-Ippan-012, and H20-Junkankitou[Seishuu]-Ippan-009, 013) from the Ministry of Health, Labor and Welfare, Health and Labor Sciences Research Grants, Japan; a Science and Technology Incubation Program in Advanced Regions, Japan Science and Technology Agency; the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation; a Grant-in-Aid from the Japan Society for the Promotion of Science fellows (16.54041, 18.54042, 19.7152, 20.7198, 20.7477, and 20.54043), Tokyo, Japan; Health Science Research Grants and Medical Technology Evaluation Research Grants from the Ministry of Health, Labor and Welfare, Japan; the Japan Atherosclerosis Prevention Fund; the Uehara Memorial Foundation; the Takeda Medical Research Foundation; National Cardiovascular Research grants; Biomedical Innovation grants; and the Japan Research Foundation for Clinical Pharmacology.

Disclosures

Several authors (Y.T., K.K., Y.Ki., N.H., J.N., S.U., H.U., and T.Mik.) have been named as inventors on a patent application by Ehime University, Shiga University of Medical Science, and Yokohama City University in work related to this study.

References

- Kotchen TA, Kotchen JM, Grim CE, George V, Kaldunski ML, Cowley AW, Hamet P, Chelius TH. Genetic determinants of hypertension: identification of candidate phenotypes. *Hypertension*. 2000;36:7–13.
- 2. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, for the Wellcome Trust Case Control Consortium, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvänen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dörr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Völker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Völzke H, Uiterwaal

CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. *Nat Genet*. 2009;41:666–676.

- 3. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, Aulchenko Y, Lumley T, Köttgen A, Vasan RS, Rivadeneira F, Eiriksdottir G, Guo X, Arking DE, Mitchell GF, Mattace-Raso FU, Smith AV, Taylor K, Scharpf RB, Hwang SJ, Sijbrands EJ, Bis J, Harris TB, Ganesh SK, O'Donnell CJ, Hofman A, Rotter JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, Witteman JC, Boerwinkle E, Wang TJ, Gudnason V, Larson MG, Chakravarti A, Psaty BM, van Duijn CM. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–687.
- 4. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M, Cha SH, Kim JW, Han BG, Min H, Ahn Y, Park MS, Han HR, Jang HY, Cho EY, Lee JE, Cho NH, Shin C, Park T, Park JW, Lee JK, Cardon L, Clarke G, McCarthy MI, Lee JY, Lee JK, Oh B, Kim HL. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. *Nat Genet*. 2009;41:527–534.
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*. 2007;447:661–678.
- 6. Kohara K, Tabara Y, Nakura J, Imai Y, Ohkubo T, Hata A, Soma M, Nakayama T, Umemura S, Hirawa N, Ueshima H, Kita Y, Ogihara T, Katsuya T, Takahashi N, Tokunaga K, Miki T. Identification of hypertension-susceptibility genes and pathways by a systemic multiple candidate gene approach: the millennium genome project for hypertension. *Hypertens Res.* 2008;31:203–212.
- Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–680.
- International HapMap Consortium. The International HapMap Project. *Nature*. 2003;426:789–796.
- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics*. 2005;21:263–265.
- Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. *Stat Med.* 2005;24:2911–2935.
- Xiong M, Fan R, Jin L. Linkage disequilibrium mapping of quantitative trait loci under truncation selection. *Hum Hered*. 2002;53:158–172.
- Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, Nabika T, Fujioka A, Ohnaka K, Asano H, Yamori Y, Yamaguchi S, Kobayashi S, Takayanagi R, Ogihara T, Kato N. Blood pressure and hypertension are associated with 7 loci in the Japanese population. *Circulation*. 2010;121:2302–2309.
- Hong KW, Jin HS, Lim JE, Kim S, Go MJ, Oh B. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. *J Hum Genet.* 2010;55:336–341.

- 14. Keeton TP, Burk SE, Shull GE. Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca(2+)-ATPase isoforms 1, 2, 3, and 4. *J Biol Chem.* 1993;268: 2740–2748.
- Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. *Nucleic Acids Res.* 2008;36:D154–D158.
- Chaudhary J, Walia M, Matharu J, Escher E, Grover AK. Caloxin: a novel plasma membrane Ca2+ pump inhibitor. *Am J Physiol Cell Physiol*. 2001;280:C1027–C1030.
- Liu L, Ishida Y, Okunade G, Shull GE, Paul RJ. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. *Am J Physiol Cell Physiol.* 2006;290:C1239–C1247.
- 18. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992;267:2115–2118.
- Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN, Husain M. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. *Circ Res.* 2003;93:614–621.
- Lango H; UK Type 2 Diabetes Genetics Consortium, Palmer CN, Morris AD, Zeggini E, Hattersley AT, McCarthy MI, Frayling TM, Weedon MN. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. *Diabetes*. 2008;57:3129–3135.
- 21. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P, Sanna S, Uda M, Yang Q, Lunetta KL, Dupuis J, de Bakker PI, O'Donnell CJ, Chambers JC, Kooner JS, Hercberg S, Meneton P, Lakatta EG, Scuteri A, Schlessinger D, Tuomilehto J, Collins FS, Groop L, Altshuler D, Collins R, Lathrop GM, Melander O, Salomaa V, Peltonen L, Orho-Melander M, Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, Cupples LA. Common variants at 30 loci contribute to polygenic dyslipidemia. *Nat Genet.* 2009;41:56–65.
- 22. Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. *Lancet*. 2008;372:1953–1961.
- 23. Tabara Y, Osawa H, Guo H, Kawamoto R, Onuma H, Shimizu I, Takara Y, Nishida W, Yamamoto M, Makino H, Kohara K, Miki T. Prognostic significance of FTO genotype in the development of obesity in Japanese: the J-SHIPP study. *Int J Obes (Lond)*. 2009;33:1243–1248.
- Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M, Kivimäki M, Humphries SE. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. *BMJ*. 2010;340:b4838.
- Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. 2009;150: 65–72.

Common Variants in the ATP2B1 Gene Are Associated With Susceptibility to Hypertension: The Japanese Millennium Genome Project

Yasuharu Tabara, Katsuhiko Kohara, Yoshikuni Kita, Nobuhito Hirawa, Tomohiro Katsuya, Takayoshi Ohkubo, Yumiko Hiura, Atsushi Tajima, Takayuki Morisaki, Toshiyuki Miyata, Tomohiro Nakayama, Naoyuki Takashima, Jun Nakura, Ryuichi Kawamoto, Norio Takahashi, Akira Hata, Masayoshi Soma, Yutaka Imai, Yoshihiro Kokubo, Tomonori Okamura, Hitonobu Tomoike, Naoharu Iwai, Toshio Ogihara, Itsuro Inoue, Katsushi Tokunaga, Toby Johnson, Mark Caulfield, Patricia Munroe on behalf of the Global Blood Pressure Genetics Consortium, Satoshi Umemura, Hirotsugu Ueshima and Tetsuro Miki

 Hypertension. 2010;56:973-980; originally published online October 4, 2010; doi: 10.1161/HYPERTENSIONAHA.110.153429
 Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2010 American Heart Association, Inc. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://hyper.ahajournals.org/content/56/5/973

Data Supplement (unedited) at: http://hyper.ahajournals.org/content/suppl/2010/10/01/HYPERTENSIONAHA.110.153429.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at: http://hyper.ahajournals.org//subscriptions/

ONLINE SUPPLEMENT

Common variants in the ATP2B1 gene are associated with susceptibility to hypertension The Japanese Millennium Genome Project

Yasuharu Tabara, Katsuhiko Kohara, Yoshikuni Kita, Nobuhito Hirawa, Tomohiro Katsuya, Takayoshi Ohkubo, Yumiko Hiura, Atsushi Tajima, Takayuki Morisaki, Toshiyuki Miyata, Tomohiro Nakayama, Naoyuki Takashima, Jun Nakura, Ryuichi Kawamoto, Norio Takahashi, Akira Hata, Masayoshi Soma, Yutaka Imai, Yoshihiro Kokubo, Tomonori Okamura, Hitonobu Tomoike, Naoharu Iwai, Toshio Ogihara, Itsuro Inoue, Katsushi Tokunaga, Toby Johnson, Mark Caulfield, Patricia Munroe, on behalf of the Global BPgen consortium*, Satoshi Umemura, Hirotsugu Ueshima, and Tetsuro Miki.

Correspondence to

Yasuharu Tabara Ph.D. Department of Basic Medical Research and Education, Ehime University Graduate School of Medicine. Shitsukawa 454, Toon-City, Ehime 791-0295, Japan. TEL: +81-89-960-5278 FAX: +81-89-960-5279 e-mail: tabara@m.ehime-u.ac.jp

SUPPLEMENTAL METHODS

ex vivo expression analysis of ATP2B1 mRNA

We obtained 34 umbilical cords at delivery (Kosei General Hospital). Umbilical arteries were excised from the cords and cut into small pieces. Umbilical artery smooth muscle cells (UASMCs) were separated using Hanks buffer containing 2 mg/ml collagenase and cultured in HuMedia-SG (Kurabo, Osaka, Japan) supplemented with epithelial growth factor (0.5 ng/ml), basic fibroblast growth factor (2 ng/ml), insulin (5 µg/ml), antibiotics and 5% fetal bovine serum. Total RNAs was extracted from UASMCs during early passages using TRIzol reagent according to manufacturer's instructions (Invitrogen, Carlsbad, CA). First-strand cDNA was synthesized from 500 ng of the total RNA using a PrimeScript 1st strand cDNA Synthesis Kit (Takara Bio, Shiga, Japan), and then diluted five times for subsequent real-time PCR (RT-PCR). RT-PCR was performed using TaqMan Gene Expression Assays on a 7900HT Sequence Detection System (Applied Biosystems). A relative quantification method [1] was used to measure the amounts of ATP2B1 (TaqMan assay ID, Hs00155949 m1) with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Hs99999905_m1) as an internal control. Genotype of ATP2B1 rs11105378 of each sample was analyzed by direct sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit on a 3730x1 GeneticAnalyzer, Applied Biosystems) using isolated genomic DNA from UASMCs (QIAamp DNA Mini Kit, QIAGEN GmbH, Hilden, Germany). The direct sequencing was performed with the following primers; forward 5'-TTCATAGCCCTTTTCATCTCTTTC-3', reverse 5'-AGAATCTCGGGAAAACAGCA-3'.

	Total		Communit	y-based general	population		Company employee		
Parameters	(14,105)	Ohasama (1,592)	Shigaraki (2,273)	Takashima (1,730)	Suita (2,536)	Nomura (2,876)	a Yokohama M $(2,290)$.0 45.7±10.2 .2 29 1659/631 .2 .2 22 22.4 ± 3.1 .2 .2 0.4 .1 123.8±14.9 1.3 $.8$ 78.3 ± 10.3 .8	Matsuyama (808)	
Age (years)	57.8±14.0	57.5±11.2	57.2±15.5	59.7±14.1	65.6±10.9	61.1±14.0	45.7±10.2	54.2±5.8	
Sex (male/female)	6931/7174	601/991	862/1411	633/1097	1160/1376	1247/1629	1659/631	769/39	
Body mass index (kg/m ²)	23.0±3.1	23.7±3.2	22.6±3.1	22.9±3.0	22.9±3.1	23.4±3.2	22.4±3.1	23.4±2.9	
History of CVD	7.1	11.9	12.1	4.0	7.5	8.1	0.4	4.3	
Systolic BP (mmHg)	130.1±19.6	131.7±14.2	130.1±19.5	130.6±21.3	124.5±18.9	137.7±22.1	123.8±14.9	134.3±19.1	
Diastolic BP (mmHg)	77.9±11.5	74.4±9.4	76.7±11.7	76.8±12.0	75.6±10.5	81.0±11.8	78.3±10.3	85.1±12.2	
Hypertension (%)	40.7	43.2	44.4	39.5	38.2	53.3	22.9	46.2	
Antihypertensive treatment (%)	20.5	26.5	23.5	16.4	26.4	25.7	6.5	12.4	

Table S1 Clinical characteristics of the cohort-based population sample

Values are mean±SD. Cardiovascular disease (CVD); stroke, myocardial infarction, and angina pectoris. Hypertension; any or all of systolic blood pressure more than 140 mmHg, diastolic blood pressure more than 90 mmHg, and current use of antihypertensive agents. The Ohasama study conducted by Tohoku University is a population-based longitudinal epidemiological study focusing on the clinical implications of home BP measurement [2]. Ohasama Town is a rural community located in the northern part of Japan (Iwate Prefecture). Subjects were recruited through a community-based annual medical check-up process. The Shigaraki [3] and Takashima [4]| studies of Shiga University of Medical Science are general population-based longitudinal studies. Both towns are located in central Japan (Shiga Prefecture). Subjects were recruited through a community-based annual medical check-up process. The Suita study conducted by the National Cardiovascular Center is based on the residents of Suita city, an urban city located in the second largest area Osaka, Japan [5]. Subjects were recruited through a biennial medical check-up process of the National Cardiovascular Center. The Nomura study of Ehime University is a longitudinal epidemiological study based on the Nomura Town residents, a largely rural community located in Ehime Prefecture [6]. Subjects were recruited through a community-based annual medical check-up process. The Yokohama (Yokohama City University) and Matsuyama (Ehime University) cohorts are derived from employees of large manufacturing industries located in Kanagawa and Matuyama City, Ehime Prefecture (western part of Japan) [7] respectively. In all cohorts, clinical parameters were obtained from personal health records during the annual or biennial medical check-up process. All study procedures were approved by the ethics committee of each University or Institution. Singed informed consent was obtained from all participating subjects.

Parameters	Hypertensive cases (1,929)	Normotensive controls (1,993)	р
Age (years)	55.1±7.1	55.2±9.5	0.680
Sex (male/female)	1,200/729	829/1,164	< 0.001
Body mass index (kg/m ²)	24.4±3.1	21.9±2.7	< 0.001
History of CVD (%)	5.4	0	< 0.001
Systolic blood pressure (mmHg)	146.3±15.9	109.5±7.5	< 0.001
Diastolic blood pressure (mmHg)	91.0±10.1	67.7±6.5	< 0.001
Antihypertensive treatment (%)	47.5	0	< 0.001

Table S2 Clinical characteristics of the replication panel	Table S2	Clinical	characteristics	of the	replication	panel
--	----------	----------	-----------------	--------	-------------	-------

Values are mean±SD. Nested hypertensive cases and normotensive control subjects were chosen from the cohort-based population sample according to the following criteria: hypertensive subjects aged 64 years or younger, and were either being treated with antihypertensive medication or had a SBP more than 160 mmHg and/or DBP more than 90 mmHg; normotensive subjects aged 40 years or older, and all of SBP less than 120 mmHg, and DBP less than 80 mmHg, no current use of antihypertensive medication, and free from any history of cardiovascular disease. Cardiovascular disease (CVD) includes stroke, myocardial infarction, and angina pectoris.

Cana	SNP	Canatura			S	Screening	Panel		Odds ratio (p-value)				
Gene	(position)	Genotype		Geno	type freq	luency	HWE	Call rate	Allelic	Recessive	Dominant	Additive	
ACCN1	rs28933	AA/GA/GG	HT	464	974	449	0.159	97.6	1.03	1.07	1.02	(0.686)	
			NT	469	986	485	0.466		(0.479)	(0.385)	(0.766)		
ADORA1	rs3766554	AA/GA/GG	HT	424	923	557	0.262	98.6	1.03	1.00	1.09	(0.523)	
			NT	410	981	574	0.808		(0.548)	(0.977)	(0.289)		
ATP10A	rs3736186	GG/AG/AA	HT	791	868	263	0.312	99.4	1.10	1.04	1.18	(0.033)	
			NT	734	963	280	0.206		(0.040)	(0.666)	(0.010)		
ATP10D	rs1058793	AA/GA/GG	HT	675	894	325	0.326	98.2	1.07	1.17	1.04	(0.169)	
			NT	680	896	382	0.005		(0.147)	(0.060)	(0.555)		
ATP2A3	rs887387	TT/TC/CC	HT	936	775	189	0.126	98.7	1.05	1.02	1.07	(0.527)	
			NT	936	836	200	0.508		(0.342)	(0.840)	(0.263)		
ATP2B1	rs2070759	GG/GT/TT	HT	582	896	399	0.118	97.2	1.18	1.2	1.27	(0.002)	
			NT	507	956	474	0.579		$(4.0*10^{-4})$	(0.018)	(0.001)		
CACNA1E	rs2293990	AA/TA/TT	HT	568	911	412	0.194	98.2	1.03	1.07	1.01	(0.661)	
			NT	585	926	451	0.022		(0.532)	(0.372)	(0.881)		
CACNA2D2	rs2236957	GG/GA/AA	HT	459	925	496	0.499	97.3	1.00	1.00	1.01	(0.997)	
			NT	471	954	512	0.523		(0.948)	(0.972)	(0.943)		
CAST	rs967591	AA/AG/GG	HT	442	916	552	0.100	99.1	1.00	0.98	1.02	(0.875)	
			NT	451	964	561	0.345		(0.932)	(0.725)	(0.814)		
CHGA	rs3759717	CC/TC/TT	HT	744	877	288	0.263	99.1	1.00	0.93	1.04	(0.522)	
			NT	755	943	281	0.624		(0.977)	(0.434)	(0.598)		
COL4A1	rs2305080	GG/GA/AA	HT	485	908	523	0.023	99.2	1.02	0.97	1.07	(0.468)	
			NT	473	972	528	0.536		(0.723)	(0.707)	(0.332)		

 Table S3 Association of 36 candidate SNPs with hypertension (replication panel)

Table S3	Continued
----------	-----------

Cana	SNP	Construns			S	creening	Panel		Odds ratio (p-value)					
Gene	(position)	Genotype		Geno	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive		
DLGAP2	rs2301963	CC/CA/AA	HT	510	904	493	0.024	98.6	1.05	1.07	1.08	(0.516)		
			NT	497	932	532	0.029		(0.239)	(0.368)	(0.321)			
ERCC1	rs2298881	CC/CA/AA	HT	595	899	387	0.161	97.5	1.00	0.96	1.04	(0.702)		
			NT	600	955	388	0.821		(0.948)	(0.642)	(0.616)			
EXOSC3	rs7158	AA/AG/GG	HT	511	967	418	0.327	97.9	1.01	1.09	0.95	(0.262)		
			NT	545	941	458	0.187		(0.850)	(0.264)	(0.452)			
FGF2	rs3747676	GG/GA/AA	HT	415	937	519	0.839	96.4	1.01	1.07	0.94	(0.309)		
			NT	444	908	556	0.050		(0.892)	(0.340)	(0.424)			
GIPC1	rs3815715	GG/GA/AA	HT	734	863	309	0.040	98.8	1.03	0.98	1.07	(0.510)		
			NT	728	927	313	0.532		(0.585)	(0.794)	(0.330)			
GNA14	rs1801258	TT/TC/CC	HT	317	919	675	0.888	99.0	1.05	1.11	0.90	(0.249)		
			NT	330	899	743	0.039		(0.321)	(0.128)	(0.903)			
GNAI2	rs2236943	GG/GA/AA	HT	556	912	429	0.137	97.9	1.04	1.02	1.07	(0.640)		
			NT	543	953	448	0.448		(0.427)	(0.751)	(0.345)			
GUCA1C	rs2715709	AA/GA/GG	HT	225	886	767	0.204	97.1	1.06	1.12	0.98	(0.156)		
			NT	236	853	843	0.373		(0.242)	(0.081)	(0.824)			
HCN4	rs3743496	GG/TG/TT	HT	431	877	594	0.002	98.2	1.01	0.94	1.11	(0.150)		
			NT	408	959	583	0.710		(0.859)	(0.369)	(0.192)			
HLA-DMB	rs2071556	CC/CA/AA	HT	511	932	450	0.534	98.0	1.09	1.17	1.07	(0.105)		
			NT	500	928	521	0.036		(0.060)	(0.035)	(0.346)			
KCNIP2	rs755381	TT/TC/CC	HT	453	904	543	0.044	98.2	1.05	1.03	1.12	(0.311)		
			NT	425	957	569	0.548		(0.245)	(0.688)	(0.128)			

Table S3 C	ontinued
------------	----------

Gene	SNP	Canatuna			S	creening	g Panel		Odds ratio (p-value)				
Gene	(position)	Genotype		Genot	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive	
KCNMB4	rs710652	CC/AC/AA	HT	660	953	298	0.131	99.2	1.09	1.28	1.03	(0.012)	
			NT	669	930	379	0.083		(0.056)	(0.003)	(0.638)		
KCNN1	rs2278993	TT/TC/CC	HT	189	805	919	0.513	99.2	1.07	1.08	1.15	(0.335)	
			NT	172	819	985	0.924		(0.152)	(0.259)	(0.207)		
PPP1R1B	rs3764352	TT/TC/CC	HT	547	940	374	0.412	96.0	1.07	1.16	1.04	(0.165)	
			NT	546	928	431	0.333		(0.156)	(0.059)	(0.621)		
PTHR1	rs1138518	TT/TC/CC	HT	381	931	595	0.626	98.5	1.01	1.04	0.98	(0.803)	
			NT	396	935	626	0.169		(0.814)	(0.599)	(0.843)		
PTPRT	rs3746539	AA/AG/GG	HT	495	991	430	0.119	99.1	1.04	1.12	0.99	(0.262)	
			NT	514	975	482	0.644		(0.435)	(0.139)	(0.863)		
RAC2	rs929023	TT/TC/CC	HT	387	921	588	0.448	98.2	1.06	1.06	1.12	(0.373)	
			NT	365	961	629	0.951		(0.200)	(0.438)	(0.173)		
RGS2	rs3767489	AA/GA/GG	HT	635	892	370	0.075	98.0	1.03	0.94	1.12	(0.104)	
			NT	603	981	362	0.291		(0.483)	(0.476)	(0.099)		
RGS20	rs3816772	CC/CG/GG	HT	268	924	695	0.162	97.6	1.03	1.11	0.92	(0.112)	
			NT	295	884	760	0.152		(0.543)	(0.132)	(0.377)		
SLC13A1	rs2140516	GG/GA/AA	HT	341	917	662	0.448	99.4	1.06	1.11	1.03	(0.322)	
			NT	343	907	727	0.039		(0.225)	(0.135)	(0.736)		
SLC22A7	rs2270860	AA/GA/GG	HT	233	868	788	0.800	97.8	1.1	1.15	1.09	(0.100)	
			NT	223	844	878	0.352		(0.048)	(0.032)	(0.406)	~ /	
SLC26A8	rs2295852	TT/TC/CC	HT	994	747	154	0.413	97.6	1.01	0.97	1.03	(0.857)	
			NT	1002	779	153	0.926		(0.835)	(0.806)	(0.690)	()	

Table S3 Continued

Cono	SNP	Construns		S	Screening	Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype	Geno	type freq	luency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
SLC2A11	rs2236620	AA/AG/GG H7	308	890	715	0.266	99.0	1.04	1.00	1.16	(0.211)
		NT	279	953	738	0.306		(0.360)	(0.956)	(0.092)	
SLCO1B1	rs2291075	GG/GA/AA HT	719	868	319	0.039	98.7	1.01	0.95	1.05	(0.493)
		NT	719	932	314	0.680		(0.866)	(0.524)	(0.466)	
WNK1	rs2255390	GG/GA/AA HT	490	925	475	0.359	97.4	1.07	1.09	1.10	(0.339)
		NT	466	949	516	0.470		(0.139)	(0.262)	(0.201)	

The replication panel consists of 1,929 hypertensive cases and 1,993 normotensives controls selected from a 11,569 cohort sample (Table S2).

Table S4 Clinical characteristics of the screening panel	Table S4 Clinical	characteristics of the	e screening panel
--	--------------------------	------------------------	-------------------

Parameters	Hypertensive cases (758)	Normotensive controls (726)
Male (n (%))	564 (74.4)	550 (75.8)
Age (years)	59.0±11.0	62.8±9.4
Body mass index (kg/m ²)	23.6±3.0	22.7±2.9
Systolic BP (mmHg)	163.5±24.6	115.9±12.0
Diastolic BP (mmHg)	100.3±15.7	72.0±7.6
Antihypertensive medication (n (%))	499 (65.8)	-

Values are mean±standard deviation. Hypertensive cases: non-obese hypertensive patients, who had a previous diagnosis of hypertension at between 30 and 59 years of age, were either being treated with antihypertensive medication or had a SBP more than 160 mmHg and/or DBP more than 100 mmHg, had a family history of hypertension in their parents and/or siblings. Normotensive controls: middle-aged to elderly subjects (aged more than 45 years), who had never been treated with antihypertensive medications, had a SBP less than 120 mmHg and DBP less than 80 mmHg, and had no family history of hypertension.

Gene	SNP	Construns			S	creening	Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Geno	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B1	rs3920010	GG/GA/AA	HT	17	191	542	0.971	97.9	0.95	0.72	0.97	(0.596)
	(88464519)		NT	22	177	504	0.187		(0.591)	(0.311)	(0.808)	
	rs3900133	CC/CA/AA	HT					NF				
	(88512561)		NT									
	rs1401982	AA/AG/GG	HT	318	328	92	0.603	96.3	1.28	1.34	1.45	(0.006)
	(88513730)		NT	249	324	118	0.474		(0.001)	(0.007)	(0.014)	
	rs988111	TT/TC/CC	HT					NF				
	(88515650)		NT									
	rs10858912	GG/GA/AA	HT					NF				
	(88515998)		NT									
	rs4516026	TT/TG/GG	HT					NF				
	(88518251)		NT									
	rs2854371	GG/GA/AA	HT	23	208	520	0.692	98.7	1.32	1.38	1.37	(0.028)
	(88519597)		NT	16	159	538	0.300		(0.008)	(0.333)	(0.008)	
	rs1520184	GG/GA/AA	HT					NF				
	(88520698)		NT									
	rs1356819	AA/AC/CC	HT	743	5	0	0.927	98.6	1.26	1.26		
	(88524892)		NT	709	6	0	0.910		(0.707)	(0.706)		
	rs957525	TT/TC/CC	HT	414	264	62	0.034	97.6	1.05	1.11	0.90	(0.389)
	(88524946)		NT	377	277	54	0.753		(0.554)	(0.303)	(0.599)	
	rs17017109	TT/TG/GG	HT	591	144	7	0.586	97.8	0.81	0.79	0.89	(0.211)
	(88528238)		NT	591	113	6	0.816		(0.094)	(0.079)	(0.842)	

 Table S5 Dense SNP analysis of the ATP2B1 gene (screening panel)

Cana	SNP	Construes			S	Screening	g Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Geno	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B1	rs1520183	CC/CT/TT	HT					NF				
	(88532742)		NT									
	rs2681472	GG/GA/AA	HT	90	321	335	0.334	97.8	0.79	0.74	0.75	(0.012)
	(88533090)		NT	111	328	267	0.539		(0.003)	(0.044)	(0.006)	
	rs11614886	GG/GC/CC	HT					NF				
	(88535251)		NT									
	rs2070759	GG/GT/TT	HT	216	379	151	0.515	97.6	1.15	1.13	1.31	(0.096)
	(88541867)		NT	186	341	175	0.454		(0.054)	(0.297)	(0.033)	
	rs2070758	AA/AC/CC	HT	638	103	10	0.016	98.4	1.23	1.32	0.63	(0.056)
	(88545352)		NT	575	128	6	0.701		(0.113)	(0.050)	(0.377)	
	rs1050395	TT/TC/CC	HT	730	17	0	0.753	97.9	1.38	1.32		(0.468)
	(88553032)		NT	685	20	1	0.042		(0.327)	(0.406)		
	rs1050396	CC/CA/AA	HT					NF				
	(88553110)		NT									
	rs2056327	CC/CT/TT	HT					NF				
	(88562685)		NT									
	rs939329	AA/AG/GG	HT	196	382	168	0.485	97.4	1.08	1.04	1.18	(0.422)
	(88564015)		NT	178	343	178	0.623		(0.313)	(0.726)	(0.190)	
	rs7975689	AA/AG/GG	HT					NF				
	(88571125)		NT									
	rs7138016	TT/TA/AA	HT					NF				
	(88572551)		NT									

Table S5 Continued

Gene	SNP	Construns			Sc	creening	Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Geno	type frequ	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B1	rs12579302	GG/GA/AA	HT	105	310	333	0.018	98.9	0.80	0.76	0.76	(0.023)
	(88574634)		NT	127	319	273	0.046		(0.004)	(0.058)	(0.011)	
	rs11105359	TT/TG/GG	HT					NF				
	(88575212)		NT									
	rs11105360	TT/TC/CC	HT					NF				
	(88575303)		NT									
	rs11105361	CC/CA/AA	HT					NF				
	(88576810)		NT									
	rs7131965	TT/TC/CC	HT	731	15	0	0.025	98.7	0.90	0.83		(0.468)
	(88590466)		NT	707	11	1	0.990		(0.778)	(0.627)		
	rs11105364	TT/TG/GG	HT	335	322	88	0.276	97.2	1.29	1.36	1.44	(0.005)
	(88593407)		NT	261	323	113	0.295		(0.001)	(0.004)	(0.016)	
	rs11105368	GG/GC/CC	HT	349	284	89	0.883	94.0	1.25	1.21	1.53	(0.015)
	(88598572)		NT	294	260	119	0.212		(0.005)	(0.082)	(0.005)	
	rs7136259	TT/TC/CC	HT	323	325	87	0.348	97.2	1.24	1.22	1.50	(0.016)
	(88605319)		NT	277	312	119	0.389		(0.006)	(0.063)	(0.007)	
	rs17836871	TT/TC/CC	HT	419	260	61	0.025	97.8	1.08	1.16	0.90	(0.202)
	(88606297)		NT	376	282	53	0.990		(0.368)	(0.153)	(0.577)	
	rs11105378	TT/TC/CC	HT	76	301	359	0.276	97.3	0.73	0.64	0.69	$(4.6*10^{-4})$
	(88614872)		NT	108	320	280	0.295		$(6.3*10^{-5})$	(0.005)	$(4.2*10^{-4})$. ,
	rs12230074	GG/GA/AA	HT	83	328	332	0.883	97.6	0.82	0.70	0.82	(0.036)
	(88614998)		NT	108	316	282	0.212		(0.013)	(0.021)	(0.068)	()

Table S5 Continued

Cana	SNP	Construnc			S	Screening	g Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Geno	type freq	luency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B1	rs11105379	TT/TC/CC	HT	450	240	39	0.348	96.3	1.11	1.12	1.16	(0.542)
	(88619304)		NT	413	244	43	0.389		(0.261)	(0.292)	(0.520)	
	rs10858918		HT	40	266	442	0.998	98.6	0.90	0.82	0.89	(0.456)
	(88620476)	TT/TC/CC	NT	46	267	402	0.852		(0.212)	(0.378)	(0.267)	
	rs2113894		HT	459	232	43	0.063	96.3	1.12	1.14	1.17	(0.458)
	(88623528)	AA/AT/TT	NT	413	235	47	0.090		(0.200)	(0.228)	(0.482)	
	rs1358350		HT	49	202	445	< 0.001	91.8	0.85	0.82	0.84	(0.263)
	(88626023)	TT/TA/AA	NT	56	212	398	< 0.001		(0.085)	(0.345)	(0.113)	
	rs12369944		HT	617	97	15	< 0.001	94.5	1.27	1.33	1.01	(0.104)
	(88626925)	CC/CA/AA	NT	542	117	14	0.013		(0.066)	(0.043)	(0.976)	
	rs2280715		HT	463	223	54	< 0.001	97.0	1.14	1.16	1.17	(0.364)
	(88627833)	CC/CG/GG	NT	413	228	59	0.001		(0.137)	(0.166)	(0.425)	
	rs11105381		HT	452	259	37	0.990	98.2	1.09	1.09	1.18	(0.621)
	(88630966)	GG/GA/AA	NT	413	255	41	0.843		(0.334)	(0.398)	(0.479)	
	rs1590008		HT	438	265	42	0.818	98.2	1.11	1.12	1.18	(0.508)
	(88631856)	TT/TC/CC	NT	399	266	47	0.767		(0.243)	(0.288)	(0.443)	

Table S5 Continued

The screening panel is comprised of 758 middle age-onset severe hypertensive patients and 726 middle-aged to elderly evidently normotensive controls (Table S4). NF; no genotype frequency

Cana	SNP	Construng			S	creening	g Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Geno	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B4	rs4245719	GG/GA/AA	HT	287	343	117	0.389	98.5	0.90	0.90	0.82	(0.332)
			NT	293	327	94	0.854		(0.153)	(0.307)	(0.175)	
	rs4600103	GG/GA/AA	HT	286	312	129	0.007	94.3	1.03	1.08	0.98	(0.685)
			NT	252	304	117	0.128		(0.678)	(0.466)	(0.860)	
	rs17537593	TT/TA/AA	HT	64	237	432	< 0.001	96.6	1.03	1.33	0.97	(0.252)
			NT	47	246	407	0.240		(0.704)	(0.154)	(0.761)	
	rs4951273	GG/GC/CC	HT	114	339	289	0.377	97.9	1.11	1.21	1.11	(0.383)
			NT	93	323	295	0.756		(0.178)	(0.214)	(0.323)	
	rs12749310	GG/GA/AA	HT	427	245	56	0.014	96.1	1.03	1.10	0.81	(0.256)
			NT	393	261	44	0.940		(0.766)	(0.370)	(0.305)	
	rs4297354	GG/GA/AA	HT	462	227	40	0.087	96.1	1.20	1.27	1.11	(0.086)
			NT	402	253	42	0.794		(0.047)	(0.028)	(0.662)	
	rs11576343	TT/TC/CC	HT	53	251	432	0.051	97.3	0.92	1.02	0.87	(0.382)
			NT	50	266	392	0.597		(0.323)	(0.918)	(0.202)	
	rs6594013	TT/TA/AA	HT	163	348	231	0.141	97.9	0.95	0.98	0.89	(0.587)
			NT	159	348	204	0.647		(0.443)	(0.856)	(0.310)	
	rs16852152	GG/GA/AA	HT	437	252	38	0.831	95.9	0.92	0.92	0.82	(0.618)
			NT	432	234	30	0.812		(0.354)	(0.449)	(0.418)	
	rs3766752	GG/GA/AA	HT	210	367	167	0.782	97.8	1.09	1.15	1.10	(0.454)
			NT	180	356	171	0.847		(0.225)	(0.235)	(0.433)	
	rs11808688	GG/GA/AA	HT	197	372	169	0.795	96.9	0.94	0.86	1.00	(0.370)
			NT	209	331	160	0.189		(0.389)	(0.183)	(0.985)	

 Table S6 Association of 17 ATP2B4 SNPs with hypertension (screening panel)

Table S6 Continued

Cono	SNP	Construng			S	Screening	g Panel			Odds ratio	o (p-value)	
Gene	(position)	Genotype		Genot	type freq	uency	HWE	Call rate	Allelic	Recessive	Dominant	Additive
ATP2B4	rs4951130	GG/GA/AA	HT	410	278	50	0.758	97.2	1.21	1.22	1.40	(0.082)
			NT	356	283	65	0.421		(0.025)	(0.058)	(0.086)	
	rs12095268	TT/TA/AA	HT	367	313	67	0.982	98.0	1.09	1.09	1.19	(0.556)
			NT	333	300	74	0.599		(0.303)	(0.439)	(0.335)	
	rs12410036	TT/TC/CC	HT	48	256	439	0.200	97.7	0.90	0.93	0.87	(0.434)
			NT	49	264	394	0.599		(0.232)	(0.720)	(0.196)	
	rs7547344	GG/GA/AA	HT	172	362	205	0.618	97.7	1.00	1.02	0.98	(0.954)
			NT	163	354	194	0.951		(0.977)	(0.875)	(0.846)	
	rs955865	GG/GA/AA	HT	208	368	173	0.677	98.6	0.95	0.96	0.89	(0.668)
			NT	204	359	151	0.765		(0.456)	(0.733)	(0.370)	
	rs955866	TT/TC/CC	HT	170	366	208	0.712	98.5	1.05	1.11	1.04	(0.702)
			NT	151	361	206	0.758		(0.489)	(0.401)	(0.756)	

The screening panel is comprised of 758 middle age-onset severe hypertensive patients and 726 middle-aged to elderly evidently normotensive controls (Table S4).

Table S7 Meta-analysis of ATP2B1 SNPs with hypertension

	Coded	М	lillennium GP	°J	(Global BPgen			Pooled	
SNP	Allele	OR (95% CI)	Р	Ν	OR (95% CI)	Р	Ν	OR (95% CI)	Р	N
rs1401982	А	1.19 (1.11-1.29)	1.3*10 ⁻⁶	9,967	1.07 (1.02-1.12)	0.010	19126	1.10 (1.06-1.15)	1.5*10 ⁻⁶	29,093
rs2681472	А	1.21 (1.13-1.30)	1.8*10 ⁻⁷	10,039	1.14 (1.06-1.22)	$2.2*10^{-4}$	19055	1.17 (1.12-1.23)	2.1*10 ⁻¹⁰	29,094
rs11105364	Т	1.21 (1.13-1.30)	1.5*10 ⁻⁷	10,014	1.13 (1.06-1.21)	4.6*10 ⁻⁴	19151	1.17 (1.11-1.22)	3.1*10 ⁻¹⁰	29,165
rs11105378	С	1.21 (1.13-1.30)	1.5*10 ⁻⁷	9,972	1.13 (1.05-1.21)	5.9*10 ⁻⁴	18894	1.17 (1.11-1.23)	$7.0*10^{-10}$	28,866

In both Japanese Millennium GPJ and Global BP gen, hypertensive subjects were defined as being treated with antihypertensive medication, or SBP greater or equal to 140 mmHg, or DBP greater or equal to 90 mmHg; normotensive subjects were defined as all of not treated with antihypertensive medication, and SBP less or equal to 120 mmHg, and DBP less or equal to 85 mmHg [8]. Adjusted odds ratio was calculated under additive model using multiple logistic regression analysis adjusted for age, age², sex, BMI, and cohort variables. Within Global BPgen, individual cohort results were combined using inverse variance weighted meta-analysis of the effects on a log-odds-ratio scale.

CND	coded	allele		coho	rt			SBP			DBP	
SNP	allele	%	name	n	HWE	CR	coefficient	SE	р	coefficient	SE	р
		61.9	Ohasama	1569	0.227	98.6	0.35	0.60	0.558	0.06	0.39	0.868
		62.3	Yokohama	2269	0.588	99.1	-1.51	0.43	4.2 *10 ⁻⁴	-0.75	0.29	0.009
		62.6	Shigaraki	2191	0.908	96.4	-1.72	0.56	0.002	-0.91	0.35	0.010
rs1401982	А	61.8	Takashima	1718	0.302	99.3	-1.95	0.72	0.007	-0.90	0.41	0.028
		61.7	Suita	2529	0.506	99.7	-0.80	0.57	0.160	-0.44	0.33	0.182
		62.0	Matsuyama	803	0.175	99.4	-1.27	0.97	0.194	-1.39	0.62	0.026
		63.8	Nomura	2865	0.611	99.6	-1.39	0.56	0.020	-0.67	0.33	0.045
		62.1	Ohasama	1587	0.226	99.7	0.38	0.60	0.522	0.06	0.39	0.887
		62.6	Yokohama	2278	0.321	99.5	-1.52	0.43	3.8 *10 ⁻⁴	-0.78	0.28	0.006
		63.5	Shigaraki	2254	0.701	99.2	-2.03	0.56	2.9*10⁻⁴	-1.15	0.35	0.001
rs2681472	А	62.3	Takashima	1718	0.257	99.3	-2.25	0.72	0.002	-1.03	0.41	0.013
		62.1	Suita	2528	0.655	99.7	-0.97	0.57	0.089	-0.49	0.33	0.131
		62.1	Matsuyama	802	0.191	99.3	-1.13	0.98	0.248	-1.39	0.62	0.026
		64.3	Nomura	2865	0.907	99.6	-1.42	0.60	0.018	-0.69	0.34	0.041
		62.2	Ohasama	1589	0.203	99.8	0.42	0.60	0.477	0.12	0.39	0.766
		63.3	Yokohama	2277	0.414	99.4	-1.61	0.43	1.8 *10 ⁻⁴	-0.79	0.29	0.006
		64.3	Shigaraki	2234	0.410	98.3	-2.11	0.56	$1.7*10^{-4}$	-1.16	0.35	0.001
rs11105364	Т	62.7	Takashima	1727	0.570	99.8	-2.25	0.71	0.002	-0.98	0.41	0.017
		62.4	Suita	2530	0.635	99.8	-1.08	0.57	0.058	-0.54	0.33	0.096
		62.8	Matsuyama	805	0.285	99.6	-1.05	0.98	0.285	-1.35	0.62	0.031
		64.4	Nomura	2851	0.495	99.1	-1.30	0.60	0.030	-0.60	0.34	0.077

 Table S8 Association of ATP2B1 SNPs and blood pressure traits in each Japanese cohort

Table S8 Continued

CND	coded	allele		coho	rt			SBP			DBP	
SNP	allele	%	name	n	HWE	CR	coefficient	SE	р	coefficient	SE	р
		62.9	Ohasama	1566	0.478	98.4	0.31	0.60	0.600	-0.04	0.39	0.914
		63.4	Yokohama	2258	0.244	98.6	-1.32	0.43	0.002	-0.66	0.29	0.022
		65.2	Shigaraki	2213	0.141	97.4	-2.45	0.56	1.3 *10 ⁻⁵	-1.31	0.35	2.2 *10 ⁻⁴
rs11105378	С	63.2	Takashima	1722	0.237	99.5	-2.41	0.72	8.5*10 ⁻⁴	-1.15	0.41	0.006
		63.0	Suita	2521	0.498	99.4	-1.00	0.58	0.084	-0.42	0.33	0.207
		63.2	Matsuyama	803	0.434	99.4	-1.14	0.99	0.249	-1.56	0.63	0.014
		65.7	Nomura	2865	0.468	99.6	-1.11	0.60	0.065	-0.47	0.34	0.164

Coefficients and standardized error for systolic and diastolic BP were calculated under additive model using multiple regression analysis adjusted for age, age2, sex, BMI. Adjustment for treatment with antihypertensive medication was achieved by adding fixed constants to measured values (+15mmHg for SBP and +10mmHg for DBP). CR indicates call rate.

		Screening panel							Replication panel					overall	
SNP	Genotype -		Genotype frequency		HWE	Call Odds rate (p value)		Genotype frequency		HWE	Call rate	Odds (p value)	Odds (p value)		
FGF5	TT/TC/CC	HT	92	338	315	0.928	98.0	1.19	271	838	788	0.047	97.9	1.21	1.20
rs1458038		NT	81	281	347	0.039		0.030	225	801	918	0.014		(1.1*10 ⁻⁴)	(9.9 *10 ⁻⁶)
CYP17A1	AA/AG/GG	HT	380	299	66	0.514	98.6	1.35	894	869	168	0.034	99.8	1.09	1.16
rs1004467		NT	309	308	101	0.089		(1.4*10 ⁻⁴)	877	901	205	0.236		(0.079)	(4.9*10 ⁻⁴)
CSK	CC/CA/AA	HT	483	236	25	0.557	98.0	1.09	1237	605	72	0.853	98.9	1.04	1.05
rs1378942		NT	452	223	35	0.274		0.340	1259	621	85	0.449		(0.536)	(0.305)
PLCD3	TT/TA/AA	HT	28	210	510	0.276	98.8	1.12	68	526	1339	0.070	99.7	0.99	1.03
rs12946454		NT	13	207	499	0.107		0.256	68	545	1364	0.140		(0.907)	(0.624)
PLEKHA7	TT/TC/CC	HT	27	242	483	0.624	98.8	1.05	85	567	1273	0.033	99.4	0.99	1.01
rs381815		NT	31	208	475	0.181		0.596	93	574	1308	0.004		(0.913)	(0.852)
CSK-ULK3	AA/AC/CC	HT	508	204	21	0.924	96.8	1.18	1289	561	72	0.263	99.2	1.10	1.12
rs6495122		NT	458	221	25	0.793		0.085	1267	626	77	0.976		(0.102)	(0.021)
ULK4	AA/AG/GG HT 7	7	142	598	0.654	98.5	0.90	31	385	1507	0.265	98.9	1.05	1.01	
rs9815354		NT	10	144	561	0.826		0.374	26	382	1548	0.659		(0.463)	(0.873)

Table S9 Association of European GWAS-derived SNPs with hypertension in the Japanese screening and replication panels

The screening panel is comprised of 758 middle age-onset severe hypertensive patients and 726 middle-aged to elderly evidently normotensive controls (Table S4). The replication panel consists of 1,929 hypertensive cases and 1,993 normotensives controls selected from a 11,569 cohort sample were enrolled (Table S2). Odds ratios and p-values for allelic model are shown.

SNP	coded	allele		coho	rt			SBP		DBP		
SNP	allele	%	name	n	HWE	CR	coefficient	SE	р	coefficient	SE	р
		33.7	Ohasama	1557	0.174	97.8	1.58	0.60	0.008	0.44	0.39	0.260
		33.5	Yokohama	2223	0.005	97.1	0.84	0.44	0.055	0.46	0.29	0.115
		33.8	Shigaraki	2156	0.001	94.9	1.17	0.56	0.037	0.46	0.35	0.196
FGF5 rs1458038	Т	31.4	Takashima	1714	0.163	99.1	2.43	0.73	0.001	1.62	0.42	1.0*10 ⁻⁴
131450050		33.6	Suita	2533	0.508	99.9	0.67	0.58	0.250	0.43	0.33	0.191
		33.4	Matsuyama	804	0.459	99.5	0.70	1.04	0.500	0.54	0.67	0.414
		38.2	Nomura	2841	0.105	98.8	1.85	0.58	0.002	1.09	0.33	0.001
		70.2	Ohasama	1579	0.254	99.2	1.41	0.45	0.002	0.48	0.30	0.110
		68.4	Yokohama	2276	0.812	99.4	1.05	0.57	0.065	0.03	0.36	0.938
~~~~		65.5	Shigaraki	2244	0.898	98.7	1.46	0.74	0.050	0.83	0.43	0.051
CYP17A1 rs1004467	А	67.8	Takashima	1714	0.573	99.1	-0.21	0.59	0.721	-0.34	0.34	0.308
15100107		66.8	Suita	2533	0.865	99.9	0.12	1.05	0.911	-0.10	0.67	0.885
		67.4	Matsuyama	804	0.388	99.5	1.25	0.62	0.045	0.50	0.35	0.149
		69.7	Nomura	2859	0.475	99.4	1.41	0.45	0.002	0.48	0.30	0.110
		77.7	Ohasama	1575	0.821	98.9	-0.17	0.68	0.804	-0.53	0.45	0.241
		78.1	Yokohama	2245	0.152	98.0	0.73	0.52	0.157	0.48	0.35	0.167
		83.0	Shigaraki	2225	0.187	97.9	1.80	0.71	0.012	1.35	0.45	0.003
CSK rs1378942	С	80.7	Takashima	1703	0.808	98.4	-0.41	0.88	0.644	0.08	0.51	0.870
101370772		80.5	Suita	2528	0.098	99.7	1.28	0.69	0.063	0.43	0.39	0.270
		79.7	Matsuyama	798	0.846	98.8	0.24	1.21	0.842	0.07	0.77	0.923
		81.0	Nomura	2848	0.075	99.0	1.18	0.72	0.103	0.63	0.41	0.121

Table S10 Association of European GWAS-derived SNPs and blood pressure traits in each Japanese cohort

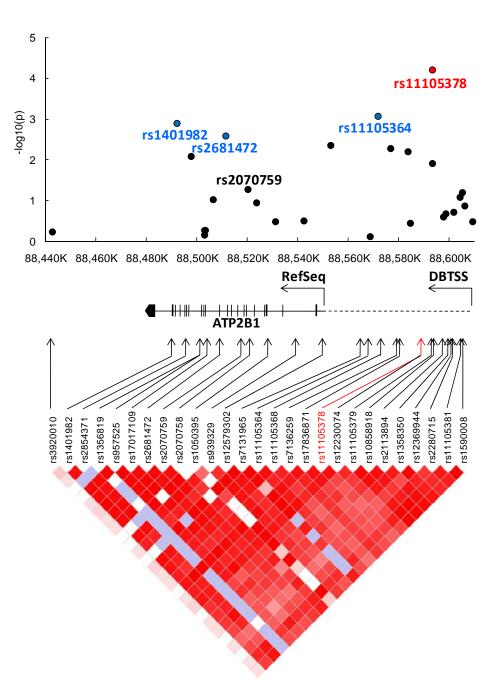
SNP	coded	allele		rt		SBP			DBP			
	allele	%	name	n	HWE	CR	coefficient	SE	р	coefficient	SE	р
		81.6	Ohasama	1583	0.356	99.4	1.76	0.72	0.015	0.99	0.48	0.038
		83.0	Yokohama	2274	0.517	99.3	0.23	0.56	0.687	0.12	0.37	0.752
		83.3	Shigaraki	2242	0.966	98.6	0.46	0.72	0.524	0.76	0.46	0.094
PLCD3 rs12946454	Т	85.3	Takashima	1712	0.707	99.0	-1.37	0.98	0.163	-1.09	0.56	0.052
1312740434		83.2	Suita	2528	0.234	99.7	0.53	0.73	0.464	0.08	0.42	0.845
		82.4	Matsuyama	805	0.799	99.6	0.34	1.28	0.790	0.86	0.82	0.290
		82.4	Nomura	2861	0.142	99.5	-0.35	0.75	0.635	-0.05	0.42	0.899
		15.1	Ohasama	1590	0.566	99.9	0.22	0.79	0.778	0.23	0.52	0.657
		19.7	Yokohama	2281	0.457	99.6	-0.77	0.52	0.139	0.04	0.35	0.900
		19.3	Shigaraki	2248	0.587	98.9	-0.38	0.68	0.574	-0.90	0.43	0.034
PLEKHA7 rs381815	Т	19.0	Takashima	1719	0.434	99.4	-0.196	0.87	0.271	-0.22	0.50	0.660
15501015		20.2	Suita	2527	0.421	99.6	0.76	0.69	0.272	0.42	0.40	0.289
		20.2	Matsuyama	808	0.496	100.0	0.99	1.19	0.408	0.53	0.76	0.489
		23.2	Nomura	2859	0.007	99.4	0.88	0.66	0.187	0.73	0.37	0.052
		79.4	Ohasama	1581	0.050	99.3	-0.39	0.69	0.569	-0.46	0.45	0.308
		78.4	Yokohama	2288	0.157	99.9	0.88	0.51	0.086	0.66	0.34	0.055
		83.5	Shigaraki	2237	0.146	98.4	0.96	0.72	0.183	0.96	0.45	0.034
CSK-ULK3 rs6495122	А	80.6	Takashima	1720	0.221	99.4	0.03	0.86	0.969	0.06	0.49	0.907
150+73122		81.6	Suita	2529	0.004	99.7	0.87	0.69	0.211	0.18	0.40	0.654
		81.5	Matsuyama	806	0.734	99.8	1.35	1.24	0.276	0.68	0.79	0.391
		82.6	Nomura	2855	0.115	99.3	1.16	0.75	0.120	0.64	0.42	0.129

CND	coded	allele	cohort				SBP			DBP		
SNP	allele	%	name	n	HWE	CR	coefficient	SE	р	coefficient	SE	р
		14.9	Ohasama	1569	0.749	98.6	-0.08	0.80	0.918	0.32	0.53	0.543
		10.5	Yokohama	2269	0.122	99.1	-1.01	0.67	0.134	-0.44	0.45	0.331
		12.7	Shigaraki	2252	0.099	99.1	-1.58	0.80	0.047	-0.10	0.50	0.846
ULK4 rs9815354	А	12.0	Takashima	1710	0.201	98.8	-0.57	1.08	0.600	0.15	0.62	0.802
157015554		11.9	Suita	2521	0.456	99.4	-1.03	0.86	0.232	-0.08	0.49	0.867
		11.4	Matsuyama	804	0.389	99.5	-0.91	1.50	0.547	0.70	0.96	0.467
		9.1	Nomura	2853	0.632	99.2	0.79	1.00	0.427	1.21	0.56	0.030

Coefficients and standardized error for systolic and diastolic BP were calculated under additive model using multiple regression analysis adjusted for age, age2, sex, BMI. Adjustment for treatment with antihypertensive medication was achieved by adding fixed constants to measured values (+15mmHg for SBP and +10mmHg for DBP).

	Coded	Syste	olic blood pressu	re	Diast	olic blood press	Hypertension		
Parameters	allele	Coefficient	Standardized coefficient	Р	Coefficient	Standardized coefficient	Р	Odds (95% C.I.)	р
Sex		2.38	0.05	< 0.001	3.15	0.12	< 0.001	1.33 (1.18-1.50)	< 0.001
Age (years)		0.31	0.19	< 0.001	0.96	1.03	< 0.001	1.15 (1.12-1.19)	< 0.001
Age ²		0.00	0.25	< 0.001	-0.01	-0.74	< 0.001	0.99 (0.99-0.99)	0.008
Body mass index (kg/m ² )		1.80	0.25	< 0.001	1.12	0.27	< 0.001	1.28 (1.26-1.30)	< 0.001
Habitual drinking		0.79	0.02	0.035	0.93	0.04	< 0.001	1.24 (1.11-1.40)	< 0.001
ATP2B1 rs11105378	С	1.32	0.04	4.4*10 ⁻⁸	0.71	0.04	6.1*10 ⁻⁷	1.21 (1.12-1.30)	4.0*10 ⁻⁷
FGF5 rs1458038	Т	1.36	0.04	1.5*10 ⁻⁸	0.77	0.04	6.4*10 ⁻⁸	1.20 (1.11-1.29)	1.4*10 ⁻⁶
CYP17A1 rs1004467	А	0.97	0.03	8.9*10 ⁻⁵	0.35	0.02	0.017	1.14 (1.06-1.23)	8.4*10 ⁻⁴
CSK rs1378942	С	0.71	0.02	0.014	0.36	0.02	0.036	1.09 (1.00-1.19)	0.046

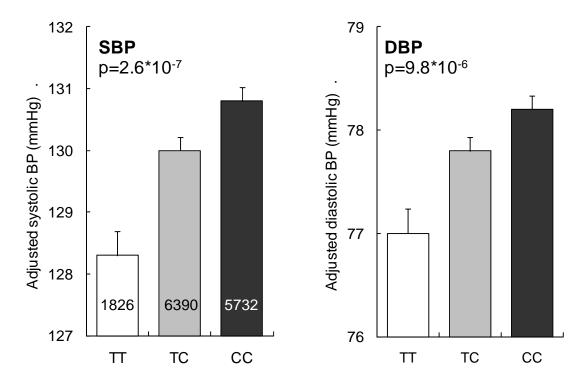
## Table S11 Multiple linear regression analysis for BP trait and hypertension

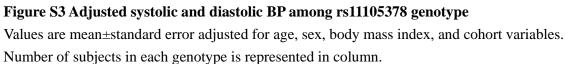

Coefficients for systolic and diastolic BP were calculated using multiple linear regression analysis adjusted cohort variables. Adjustment for treatment with antihypertensive medication was achieved by adding fixed constants to measured values (+15mmHg for SBP and +10mmHg for DBP). Hypertensive subjects were defined as being treated with antihypertensive medication, or SBP greater or equal to 140 mmHg, or DBP greater or equal to 90 mmHg; normotensive subjects were defined as all of not treated with antihypertensive medication, and SBP less or equal to 120 mmHg, and DBP less or equal to 85 mmHg [8].

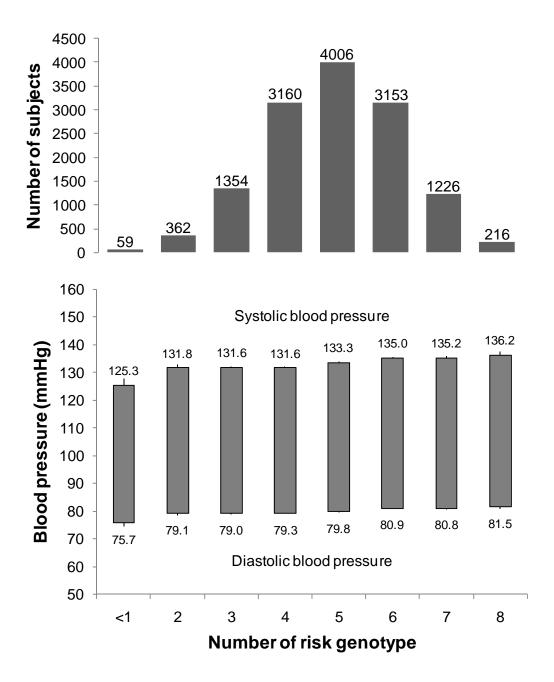
# FIGURE S1

	Sample	Results			
Replication genotyping (previously identified 38 candidate SNPs)	Replication panel	• Table S3; Association analysis			
ATP2B1 v rs2070759					
Dense SNP analysis of ATP2B1 gene	Screening panel	<ul> <li>Table S5; Association analysis</li> <li>Figure S2; LD map</li> </ul>			
ATP2B1 rs1401982, rs2681472, rs2070759, rs11105364, rs11105378					
Replication genotyping (most promising SNPs in the ATP2B1 gene)	Replication panel	• Table 1; Association analysis			
Population-based analysis	Population	<ul> <li>Table 2; BP trait analysis</li> <li>Table S6; dichotomized analysis</li> <li>Table S7; BP trait analysis (each cohort)</li> <li>Figure S3; adjusted BP by ATP2B1 genotype</li> </ul>			
Cross-validation analysis	Global BPgen	<ul><li>Table 2; BP trait analysis</li><li>Table S6; dichotomized analysis</li></ul>			
	Screening/Replication panel	• Table S9; association analysis			
Replication of the European GWAS derived SNPs	Population/Global BPgen	<ul> <li>Table 3; BP trait analysis</li> <li>Table S10; BP trait analysis (each cohort)</li> </ul>			
ATP2B1, FGF5, CYP17A1, CSK Combination analysis of ATP2B1, FGF5, CYP17A1 and CSK	Population	<ul> <li>Figure 1; odds for hypertension</li> <li>Figure S4; BP trait</li> <li>Table S11; multiple regression analysis</li> </ul>			
ex vivo expression analysis of ATP2B1 mRNA	Umbilical artery smooth muscle cells	• Figure 2; mRNA expression levels			

Figure S1 Study procedure and corresponding samples and results


## FIGURE S2





## Figure S2 Dense SNP analysis of the ATP2B1 gene

The top graph shows p-values (-log10(P)) of association analyses using the screening panel (Table S4). The red circle (rs11105378) indicates the SNP showing the most significant association with hypertension. The lower panel shows a LD (D') map based on the genotype frequency of the control subjects

## FIGURE S3







## Figure S4 Adjusted blood pressure by the number of risk genotypes

Number of risk genotype was calculated by the following four SNPs; *ATP2B1* rs1105378, *FGF5* rs1458038, *CYP17A1*, rs1004467 and *CSK* rs1378942. Age, age2, sex, BMI and cohort variable adjusted systolic and diastolic BP is shown in the lower panel. Upper panel indicates the number of subjects in each group.

## THE GLOBAL BPGEN CONSORTIUM

Christopher Newton-Cheh^{1,2,3}, Toby Johnson^{4,5,6}, Vesela Gateva⁷, Martin D Tobin⁸, Murielle Bochud⁵, Lachlan Coin⁹, Samer S Najjar¹⁰, Jing Hua Zhao^{11,12}, Simon C Heath¹³, Susana Eyheramendy^{14,15}, Konstantinos Papadakis¹⁶, Benjamin F Voight^{1,3}, Laura J Scott⁷, Feng Zhang¹⁷, Martin Farrall^{18,19}, Toshiko Tanaka^{20,21}, Chris Wallace^{22,23}, John C Chambers⁹, Kay-Tee Khaw^{12,24}, Peter Nilsson²⁵, Pim van der Harst²⁶, Silvia Polidoro²⁷, Diederick E Grobbee²⁸, N Charlotte Onland-Moret^{28,29}, Michiel L Bots²⁸, Louise V Wain⁸, Katherine S Elliott¹⁹, Alexander Teumer³⁰, Jian'an Luan¹¹, Gavin Lucas³¹, Johanna Kuusisto³², Paul R Burton⁸, David Hadley¹⁶, Wendy L McArdle³³, Wellcome Trust Case Control Consortium³⁴, Morris Brown³⁵, Anna Dominiczak³⁶, Stephen J Newhouse²², Nilesh J Samani³⁷, John Webster³⁸, Eleftheria Zeggini^{19,39}, Jacques S Beckmann^{4,40}, Sven Bergmann^{4,6}, Noha Lim⁴¹, Kijoung Song⁴¹, Peter Vollenweider⁴², Gerard Waeber⁴², Dawn M Waterworth⁴¹, Xin Yuan⁴¹, Leif Groop^{43,44}, Marju Orho-Melander²⁵, Alessandra Allione²⁷, Alessandra Di Gregorio^{27,45}, Simonetta Guarrera²⁷, Salvatore Panico⁴⁶, Fulvio Ricceri²⁷, Valeria Romanazzi^{27,45}, Carlotta Sacerdote⁴⁷, Paolo Vineis^{9,27}, Inês Barroso^{12,39}, Manjinder S Sandhu^{11,12,24}, Robert N Luben^{12,24}, Gabriel J. Crawford³, Pekka Jousilahti⁴⁸, Markus Perola^{48,49}, Michael Boehnke⁷, Lori L Bonnycastle⁵⁰, Francis S Collins⁵⁰, Anne U Jackson⁷, Karen L Mohlke⁵¹, Heather M Stringham⁷, Timo T Valle⁵², Cristen J Willer⁷, Richard N Bergman⁵³, Mario A Morken⁵⁰, Angela Döring¹⁵, Christian Gieger¹⁵, Thomas Illig¹⁵, Thomas Meitinger^{54,55}, Elin Org⁵⁶, Arne Pfeufer⁵⁴, H Erich Wichmann^{15,57}, Sekar Kathiresan^{1,2,3}, Jaume Marrugat³¹, Christopher J O'Donnell^{58,59}, Stephen M Schwartz^{60,61}, David S Siscovick^{60,61}, Isaac Subirana^{31,62}, Nelson B Freimer⁶³, Anna-Liisa Hartikainen⁶⁴, Mark I McCarthy^{19,65,66}, Paul F O'Reilly⁹, Leena Peltonen^{39,49}, Anneli Pouta^{64,67}, Paul E de Jong⁶⁸, Harold Snieder⁶⁹, Wiek H van Gilst²⁶, Robert Clarke⁷⁰, Anuj Goel^{18,19}, Anders Hamsten⁷¹, John F Peden^{18,19}, Udo Seedorf⁷², Ann-Christine Syvänen⁷³, Giovanni Tognoni⁷⁴, Edward G Lakatta¹⁰, Serena Sanna⁷⁵, Paul Scheet⁷⁶, David Schlessinger⁷⁷, Angelo Scuteri⁷⁸, Marcus Dörr⁷⁹, Florian Ernst³⁰, Stephan B Felix⁷⁹, Georg Homuth³⁰, Roberto Lorbeer⁸⁰, Thorsten Reffelmann⁷⁹, Rainer Rettig⁸¹, Uwe Völker³⁰, Pilar Galan⁸², Ivo G Gut¹³, Serge Hercberg⁸², G Mark Lathrop¹³, Diana Zeleneka¹³, Panos Deloukas^{12,39}, Nicole Soranzo^{17,39}, Frances M Williams¹⁷, Guangju Zhai¹⁷, Veikko Salomaa⁴⁸, Markku Laakso³², Roberto Elosua^{31,62}, Nita G Forouhi¹¹, Henry Völzke⁸⁰, Cuno S Uiterwaal²⁸, Yvonne T van der Schouw²⁸, Mattijs E Numans²⁸, Giuseppe Matullo^{27,45}, Gerjan Navis⁶⁸, Göran Berglund²⁵, Sheila A Bingham^{12,83}, Jaspal S Kooner⁸⁴, John M Connell³⁶, Stefania Bandinelli⁸⁵, Luigi Ferrucci²¹, Hugh Watkins^{18,19}, Tim D Spector¹⁷, Jaakko Tuomilehto^{52,86,87}, David Altshuler^{1,3,88,89}, David P Strachan¹⁶, Maris Laan⁵⁶, Pierre Meneton⁹⁰, Nicholas J Wareham^{11,12}, Manuela Uda⁷⁵, Marjo-Riitta Jarvelin^{9,67,91}, Vincent Mooser⁴¹, Olle Melander²⁵, Ruth JF Loos^{11,12}, Paul Elliott⁹, Gonçalo R Abecasis⁹², Mark Caulfield²², Patricia B Munroe²²

- 1. Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- 2. Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- 3. Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- 4. Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
- 5. University Institute for Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, 1005 Lausanne, Switzerland
- 6. Swiss Institute of Bioinformatics, Switzerland
- 7. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- 8. Departments of Health Sciences & Genetics, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH
- 9. Department of Epidemiology and Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
- 10. Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA 21224
- 11. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- 12. Cambridge Genetics of Energy Metabolism (GEM) Consortium, Cambridge, UK
- Centre National de Génotypage, 2 rue Gaston Crémieux, CP 5721, 91 057 Evry Cedex, France
- Pontificia Universidad Catolica de Chile, Vicuña Mackenna 4860, Facultad de Matematicas, Casilla 306, Santiago 22, Chile, 7820436
- 15. Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
- Division of Community Health Sciences, St George's, University of London, London SW17 0RE, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH
- 18. Department of Cardiovascular Medicine, University of Oxford
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
- 20. Medstar Research Institute, 3001 S. Hanover Street, Baltimore, MD 21250, USA
- 21. Clinical Research Branch, National Institute on Aging, Baltimore, MD, 21250 USA
- 22. Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ

- 23. JDRF/WT Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke's Hospital Cambridge, CB2 0XY
- 24. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge CB2 2SR, UK
- 25. Department of Clinical Sciences, Lund University, Malmö University Hospital, SE-20502 Malmö, Sweden
- 26. Department of Cardiology University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- 27. ISI Foundation (Institute for Scientific Interchange), Villa Gualino, Torino, 10133, Italy
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, STR 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands
- 29. Complex Genetics Section, Department of Medical Genetics DBG, University Medical Center Utrecht, STR 2.2112, PO Box 85500, 3508 GA Utrecht, The Netherlands.
- Interfaculty Institute for Genetics and Functional Genomics,
   Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
- 31. Cardiovascular Epidemiology and Genetics, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
- 32. Department of Medicine University of Kuopio 70210 Kuopio, Finland
- ALSPAC Laboratory, Department of Social Medicine, University of Bristol, BS8 2BN, UK
- 34. A full list of authors is provided in the supplementary methods online.
- 35. Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, UK CB2 2QQ
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK G12 8TA
- Department of Cardiovascular Science, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
- 38. Aberdeen Royal Infirmary, Aberdeen, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- 40. Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, 1011, Switzerland
- 41. Genetics Division, GlaxoSmithKline, King of Prussia, PA 19406, USA
- 42. Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) 1011 Lausanne, Switzerland
- 43. Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital, Malmö
- 44. Lund University, Malmö S-205 02, Sweden

- 45. Department of Genetics, Biology and Biochemistry, University of Torino, Torino, 10126, Italy
- Department of Clinical and Experimental Medicine, Federico II University, Naples, 80100, Italy
- 47. Unit of Cancer Epidemiology, University of Turin and Centre for Cancer Epidemiology and Prevention (CPO Piemonte), Turin, 10126, Italy
- 48. National Institute for Welfare and Health P.O. Box 30, FI-00271 Helsinki, Finland
- 49. Institute for Molecular Medicine Finland FIMM, University of Helsinki and National Public Health Institute
- 50. Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
- 51. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- 52. Diabetes Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, 00300 Helsinki, Finland
- Physiology and Biophysics USC School of Medicine 1333 San Pablo Street, MMR 626 Los Angeles, California 90033
- 54. Institute of Human Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
- 55. Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
- 56. Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- 57. Ludwig Maximilians University, IBE, Chair of Epidemiology, Munich
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- 59. Framingham Heart Study and National, Heart, Lung, and Blood Institute, Framingham, Massachusetts 01702, USA
- 60. Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington, 98101 USA
- Department of Epidemiology, University of Washington, Seattle, Washington, 98195 USA
- 62. CIBER Epidemiología y Salud Pública, Barcelona, Spain
- 63. Center for Neurobehavioral Genetics, Gonda Center, Room 3506, 695 Charles E Young Drive South, Box 951761, UCLA, Los Angeles, CA 90095.
- 64. Department of Clinical Sciences/ Obstetrics and Gynecology, P.O. Box 5000 Fin-90014, University of Oulu, Finland
- 65. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford, UK OX3 7LJ
- 67. Department of Child and Adolescent Health, National Public Health Institute (KTL),

Aapistie 1, P.O. Box 310, FIN-90101 Oulu, Finland

- 68. Division of Nephrology, Department of Medicine University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Richard Doll Building, Roosevelt Drive, Oxford, OX3 7LF, UK
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Building L8:03, S-17176 Stockholm, Sweden
- Leibniz-Institut f
  ür Arterioskleroseforschung an der Universit
  ät M
  ünster, Domagkstr. 3, D-48149, M
  ünster, Germany
- Molecular Medicine, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
- 74. Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy
- 75. Istituto di Neurogenetica e Neurofarmacologia, CNR, Monserrato, 09042 Cagliari, Italy
- Department of Epidemiology, Univ. of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- 77. Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA 21224
- Unitá Operativa Geriatria, Istituto Nazionale Ricovero e Cura per Anziani (INRCA) IRCCS, Rome, Italy
- 79. Department of Internal Medicine B, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
- 80. Institute for Community Medicine, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
- 81. Institute of Physiology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
- U557 Institut National de la Santé et de la Recherche Médicale, U1125 Institut National de la Recherche Agronomique, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France
- MRC Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, U.K
- 84. National Heart and Lung Institute, Imperial College London SW7 2AZ
- 85. Geriatric Rehabilitation Unit, Azienda Sanitaria Firenze (ASF), 50125, Florence, Italy
- 86. Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- 87. South Ostrobothnia Central Hospital, 60220 Seinäjoki, Finland
- Department of Medicine and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

- 89. Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- 90. U872 Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Paris Descartes, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex, France
- 91. Institute of Health Sciences and Biocenter Oulu, Aapistie 1, FIN-90101, University of Oulu, Finland
- 92. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109 USA

## REFERENCES

- 1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25:402-408.
- Imai Y, Nagai K, Sakuma M, Sakuma H, Nakatsuka H, Satoh H, Minami N, Munakata M, Hashimoto J, Yamagishi T. Ambulatory blood pressure of adults in Ohasama, Japan. *Hypertension*. 1993;22:900-912.
- 3. Tamaki S, Nakamura Y, Tsujita Y, Nozaki A, Amamoto K, Kadowaki T, Kita Y, Okamura T, Iwai N, Kinoshita M, Ueshima H. Polymorphism of the angiotensin converting enzyme gene and blood pressure in a Japanese general population (the Shigaraki Study). *Hypertens Res.* 2002;25:843-848.
- Yoshida M, Kita Y, Nakamura Y, Nozaki A, Okayama A, Sugihara H, Kasamatsu T, Hirose K, Kinoshita M, Ueshima H. Incidence of acute myocardial infarction in Takashima, Shiga, Japan. *Circ J.* 2005;69:404-408.
- 5. Mannami T, Konishi M, Baba S, Nishi N, Terao A. Prevalence of asymptomatic carotid atherosclerotic lesions detected by high-resolution ultrasonography and its relation to cardiovascular risk factors in the general population of a Japanese city: the Suita study. *Stroke.* 1997;28:518-525.
- Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T, Kohara K, Makino H. Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. *Diabetes*. 2009;58:493-498.
- Jin JJ, Nakura J, Wu Z, Yamamoto M, Abe M, Tabara Y, Yamamoto Y, Igase M, Kohara K, Miki T. Association of endothelin-1 gene variant with hypertension. *Hypertension*. 2003;41:163-167.
- 8. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL; Wellcome Trust Case Control Consortium, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvänen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dörr M, Ernst F, Felix SB,

Homuth G, Lorbeer R, Reffelmann T, Rettig R, Völker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Völzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. *Nat Genet*. 2009;41:666-676.