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Abstract. Random multistate networks, generalizations of the Boolean
Kauffman networks, are generic models for complex systems of interacting
agents. Depending on their mean connectivity, these networks exhibit ordered
as well as chaotic behavior with a critical boundary separating both regimes.
Typically, the nodes of these networks are assigned single discrete states. Here,
we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership
(DOM) functions specifying the degree to which the nodes are in each of
their discrete states. This allows our models to deal with imprecision and
uncertainties. Compatible update rules are constructed by expressing the update
rules of the multistate network in terms of Boolean operators and generalizing
them to fuzzy logic (FL) operators. The standard choice for these generalizations
is the Gödel FL, where AND and OR are replaced by the minimum and
maximum of two DOMs, respectively. In mean-field approximations we are able
to analytically describe the percolation and asymptotic distribution of DOMs in
random Gödel FL networks. This allows us to characterize the different dynamic
regimes of random multistate networks in terms of FL. In a low-dimensional
example, we provide explicit computations and validate our mean-field results
by showing that they agree well with network simulations.
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1. Introduction

Multistate models (MMs) are a class of discrete dynamical systems. The model’s variables take
values in discrete, finite sets and develop in discrete time steps. At each time point, the value of a
variable is determined by an update rule that deterministically depends upon the values of some
of the other variables at the previous time point. MMs are frequently used to model molecular
networks in theoretical biology [1]–[4]. In these applications, the discrete states of a variable
are interpreted as, e.g., ‘low’–‘medium’–‘high’ or ‘active’–‘inactive’, and the update rules are
typically specified by propositional formulae (Boolean expressions), which often allow for an
interpretation in terms of interacting regulatory mechanisms. For this reason, MMs are often
referred to as logical models. (Here, we call them crisp logical models when confusion with
the fuzzy logic (FL) models introduced below needs to be prevented.) Despite being a crude
simplification of biological reality, logical modeling has become a popular tool in theoretical
biology and has been substantiated from a biophysical [5] as well as a philosophical point of
view [6].

In 1969, Kauffman proposed random MMs—the so-called Kauffman networks (KNs)—
as generic models for large-scale gene regulatory networks [7]. Kauffman himself provided
computational results in the special case of Boolean networks, where each variable assumes
values either ‘off’ or ‘on’. He showed that these networks exhibit surprisingly ordered structures
and are able to give insights into biological phenomena such as cell replication or lineage
differentiation. Interest in KNs was rekindled as their close relation to classical models from
statistical mechanics was realized. In a number of studies [8]–[10], the self-organizing capacity
of KNs was analyzed. It was shown that depending on their connectivity, KNs exhibit ordered
as well as chaotic behavior with a critical boundary separating both regimes. The ordered
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regime is characterized by small stable attractors, whereas in the chaotic regime long-periodic
orbits frequently occur. These properties render both regimes unfavorable for the evolution
of living organisms. Consequently, Kauffman promoted the idea of ‘living at the edge of
chaos’ [11]. Interestingly, the critical connectivity of KNs is 2, which agrees well with the
average connectivities of gene regulatory networks, e.g. in Escherichia coli, Saccharomyces
cerevisiae and Bacillus subtilis [12]. These results about Boolean KNs can be extended
straightforwardly to general random MMs [13, 14].

A major problem with MMs of molecular networks is the imprecision and subjectivity of
categories such as ‘high’–‘low’, ‘active’–‘inactive’, etc. For this reason, FLs [15] are becoming
an increasingly popular extension of logical models in theoretical biology. In an FL model,
a variable is described by a fuzzy number, i.e. a vector of degree-of-membership (DOM)
functions specifying the degree to which the variable is in each of its discrete states. Biological
applications of FLs range from gene regulatory networks [16] over signal transduction and
metabolic pathways [17]–[20] to ecological systems [21].

FL models are natural and biologically relevant generalizations of crisp logical models.
However, they have not yet been combined with random KNs. This is what we address in this
paper. We begin by recalling the phase transition criterion of multistate Kauffman networks
(MKN) in section 2. In section 3, we then study FL versions of these networks. We briefly review
the general concept of FLs and explain that FL models are, indeed, generalizations of crisp
logical models. Subsequently, in section 4, we restrict ourselves to the Gödel FL, which can be
distinguished from all other FLs as it can be derived from first principles. The dynamics of KNs
with Gödel FL are described, and the observations are explained within a mean-field theory.
Thus, a characterization of the three dynamic regimes of MKNs in terms of FL is obtained.
We visualize our results by explicit computations in a low-dimensional example and further
corroborate our findings by simulations of FL-KNs.

2. Phase transitions in random multistate networks

In this section, we review MKNs and briefly recall some results about critical phenomena; for a
detailed account, see [14]. In the following, G = (V, E) will always denote a directed graph of
order N with nodes V = {1, 2, . . . , N } and edges (i → j) ∈ E ⊂ V × V . The ancestors (inputs)
of a node i are denoted by i1 < i2 < · · · < iK i , where Ki is the node’s in-degree.

An MM is a triple (G,S,F) , which consists of a directed graph G, a vector S = (Si)
N
i=1

of numbers of states defining the range 6i := {0, 1, . . . , Si − 1} of node i = 1, 2, . . . , N , and
a vector of discrete functions F = ( fi)

N
i=1, fi :

∏Ki
k=1 6ik → 6i . The discrete function fi is

called update rule of node i . A Boolean model is the special case of an MM where all
Si = 2.

Each MM (G,S,F) gives rise to a time-discrete dynamical system: with each node i
we associate a time-dependent discrete variable xi(t) ∈ 6i , X (t) = (xi(t))N

i=1. The evolution
of X (t) is determined by the iteration

X (t + 1) = F (X (t)) , t = 0, 1, 2, . . . ,

where the i th component is given by

xi(t + 1) = fi(xi1(t), xi2(t), . . . , xiKi
(t)). (1)

In this paper, we only consider the above synchronous updating, for different update policies,
see e.g. [22, 23].
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We now define MKNs generalizing the definition of KNs as given e.g. in [24]. An MKN is
an MM where

(K1) the Ki are chosen randomly from a probability distribution Pin(K ), K = 1, 2, . . . , Kmax,
Kmax 6 N ;

(K2) the Ki inputs i1, i2, . . . , iK i of i are chosen randomly with uniform probability from
among the network’s nodes 1, 2, . . . , N ;

(K3) the numbers of states Si are chosen randomly from a probability distribution Pnos(S),
S = 2, 3, . . . , Smax; and

(K4) the values of fi are chosen randomly from a probability distribution PSi (s), s ∈ 6i .

Note that in (K4) the distribution PSi does not depend on the node i but only on its number
of states Si . In particular, in the Boolean case the update rules evaluate to 0 with a certain
probability w and to 1 with probability 1 − w.

From (K4) it follows that the probability pSi for the function fi to yield two different values
for two different arguments depends only on PSi and is given by

pSi =

∑
s∈6i

PSi (s)(1 − PSi (s)).

We define the first moment p̄ =
∑Smax

S=2 Pnos (S) pS as well as the mean connectivity K̄ =∑Kmax
K=1 Pin (K ) K . In [14] it is shown that MKNs exhibit the following phase transition:

p̄ K̄

< 1 ordered regime,
= 1 critical boundary,

> 1 chaotic regime.
(2)

3. Fuzzy logic Kauffman networks

In this section, we consider again MKNs as introduced in section 2. However, now we use FLs
to evaluate the network. For the sake of clarity, we denote the variables of the FL model by x̃i(t),
i = 1, 2, . . . , N . The variable x̃i(t) is no longer assigned exactly one value from 6i . Rather its
state at time t is given by a vector

x̃i(t) =


x̃0

i (t)

x̃1
i (t)
...

x̃ Si −1
i (t)


of DOM functions x̃ s

i (t) ∈ [0, 1] indicating the degree to which x̃i(t) has states s ∈ 6i . Note that
we do not require any normalization of x̃i(t).

In crisp logic, update rule (1) can be written as

xi(t + 1) = s ⇐⇒

∨
(ξ1,ξ2,...,ξKi )| fi(ξ1,ξ2,...,ξKi )=s

Ki∧
k=1

(
xik (t) = ξk

)
, (3)
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s ∈ 6i . The disjunction (OR-gate) on the right-hand side runs over all arguments of fi with
output value s. For each argument, the inner conjunction (AND-gate) is true if and only if the
argument agrees with the input values at time t . Now that variables are assigned fuzzy numbers,
the Boolean equations xi(t + 1) = s and xik (t) = ξk from this update rule no longer assume
crisp true–false values, but their degrees of truth are given by the DOMs x̃ s

i (t + 1) ∈ [0, 1] and
x̃ ξk

ik
(t) ∈ [0, 1], respectively. We therefore need to generalize the Boolean operators AND, OR

and NOT to the unit interval.

3.1. A short primer on fuzzy logic

Let us now briefly introduce these generalizations of the Boolean operators; for details,
see [25]. The generalized NOT operator is a strong negation, i.e. a function ¬ : [0, 1] → [0, 1]
satisfying

(N1) ¬(0) = 1 and ¬(1) = 0,

(N2) ¬ is continuous and strictly decreasing,

(N3) ¬ is an involution, ¬(¬(x)) = x .

For the generalization of AND and OR, one typically uses the concepts of t-norms and
t-conorms. AND is replaced by a t-norm, i.e. by a function > : [0, 1] × [0, 1] → [0, 1]
satisfying

(T1) >(x, >(y, z)) = >(>(x, y), z),

(T2) >(x, y) = >(y, x),

(T3) >(x, y)6>(x ′, y′) if x 6 x ′ and y 6 y′,

(T4) >(x, 1) = x .

Analogously, an OR is replaced by a t-conorm, i.e. by a function > : [0, 1] × [0, 1] → [0, 1]
satisfying (T1)–(T3) and

(T4′) >(x, 0) = x .

Clearly, for non-fuzzy DOMs, i.e. DOMs either 0 or 1, the above definitions reduce to their
standard versions. We remark that, for fixed ¬, t-norms and t-conorms are dual concepts
under a generalized DeMorgan’s law: with every t-norm > we can associate a dual t-conorm
⊥ via

⊥(x, y) = ¬ (> (¬(x), ¬(y))) .

(T1) allows us to inductively define the t-norm and t-conorm of more than two arguments.
It is impossible for a dual pair of t-norm and t-conorm to preserve all laws from Boolean

algebra. In fact, there is a trade-off between the classical Aristotelian laws of thought—the law
of the excluded middle and the law of non-contradiction—on the one hand, and the distributive
law, the law of absorption and idempotency on the other hand. It can be shown that any law
of the latter group is respected only by the Gödel t-norm and t-conorm >(x, y) = min(x, y)

and ⊥ (x, y) = max(x, y), which are dual under the negation ¬(x) = 1 − x , cf appendix A.
These choices of t-norm and t-conorm, in turn, violate both the law of the excluded middle
and the law of non-contradiction. These properties allow us to deduce the Gödel pair from first
principles [26] and make it the standard choice.
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3.2. General fuzzy logic Kauffman networks

We generalize update rule (3) to the FL update rule

x̃ s
i (t + 1) = ⊥(>(x̃ ξ1

i1
(t), . . . , x̃

ξKi
iKi

(t))| fi(ξ1, . . . , ξKi ) = s), (4)

s ∈ 6i . These update rules define a function F̃ mapping a state X̃(t) = (x̃1(t), x̃2(t), . . . , x̃N (t))
onto its successor X̃(t + 1) = (x̃1(t + 1), x̃2(t + 1), . . . , x̃N (t + 1)).

Let us conclude this section by showing that (4) is, indeed, a generalization of update rule
(3). To this end, consider non-fuzzy states, i.e. states X̃(t) where for all i there exists si such
that x̃ si

i (t) = 1 and x̃ s
i (t) = 0, s 6= si . There is a canonical bijection φ between the states X (t)

and the non-fuzzy states X̃(t). Clearly, φ is compatible with the mappings F and F̃ in the sense
that for a non-fuzzy state X̃(t) also X̃(t + 1) = F̃(X̃(t)) is non-fuzzy and the diagram

∏N
i=1 6i

φ
//

F
��

φ
(∏N

i=1 6i

)
F̃

��∏N
i=1 6i

φ
// φ
(∏N

i=1 6i

)
commutes.

4. Kauffman networks with Gödel fuzzy logic

In this section, we treat the special case of the Gödel t-norm and t-conorm. We concretize update
rule (4) accordingly and obtain

x̃ s
i (t + 1) = max

(ξ1,ξ2,...,ξKi )| fi(ξ1,ξ2,...,ξKi )=s

(
Ki

min
k=1

(
x̃ ξk

ik
(t)
))

, s ∈ 6i . (5)

Let us see how this update rule works in a simple example.

Example 4.1 Consider the part of a network shown in figure 1. Node i has Si = 4 discrete
states and Ki = 2 inputs i1 and i2 with Si1 = 3 and Si2 = 2 states, respectively. The figure also
shows the truth-table of the update rule fi . We assume that at time t the states of the nodes i1

and i2 are given by the vectors of DOMs x̃i1(t) = (0.7, 0.3, 0.4) and x̃i2(t) = (0.2, 0.8). Then,
following (5), we compute the state of node i at time t + 1 as

x̃0
i (t + 1) = max

(ξ1,ξ2)| fi (ξ1,ξ2)=0
(min(x̃ ξ1

i1
(t), x̃ ξ2

i2
(t)))

= max(min(x̃1
i1
(t), x̃0

i2
(t)), min(x̃2

i1
(t), x̃1

i2
(t)))

= max(min(0.3, 0.2), min(0.4, 0.8)) = 0.4,

x̃1
i (t + 1) = max(min(0.3, 0.8)) = 0.3,

x̃2
i (t + 1) = max(min(0.7, 0.2)) = 0.2,

x̃3
i (t + 1) = max(min(0.4, 0.2), min(0.7, 0.8)) = 0.7 .
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i

i2

i1

t  t+1

2

1 0

0

0

1

0

1

3

3

xi1 
xi2

2

(0.2,0.8)

(0.7,0.3,0.4)

time t

i

i2

i1

time t+1update rule fi

(0.4,0.3,0.2,0.7)

Figure 1. The left and right columns show the neighborhood of some node i
in a network at times t and t + 1, respectively. Node i has Si = 4 discrete states
and Ki = 2 inputs i1 and i2 with Si1 = 3 and Si2 = 2 states. At time t the states
of nodes i1 and i2 are given by the vectors of DOMs x̃i1(t) = (0.7, 0.3, 0.4)

and x̃i2(t) = (0.2, 0.8). In the middle column, the truth-table of the update rule
fi is shown. Together with (5), fi implies x̃i(t + 1) = (0.4, 0.3, 0.2, 0.7), see
example 4.1 for the computations.

4.1. Phenomenology

We begin by phenomenologically describing the dynamics of KNs with Gödel FL. To this end,
we sample three networks containing N = 104 nodes, each with S = 3 states and K = 2 inputs,
i.e. Pnos(S) = δS,2 and Pin(K ) = δK ,2. The entries of the update rules are sampled from the three
distributions:

P (a)

3 (0) = 3/4, P (a)

3 (1) = 1/8, P (a)

3 (2) = 1/8,

P (b)

3 (0) = 2/3, P (b)

3 (1) = 1/6, P (b)

3 (2) = 1/6 and

P (c)
3 (0) = 1/2, P (c)

3 (1) = 1/4, P (c)
3 (2) = 1/4.

(6)

One easily computes p̄(a) K̄ = 13/32 × 2 = 26/32, p̄(b) K̄ = 1/2 × 2 = 1 and p̄(c) K̄ = 5/8 ×

2 = 5/4. Thus, according to (2) the three networks fall into the frozen, critical and chaotic
regimes.

Initial DOMs are drawn randomly from a uniform probability distribution on [0, 1] and
the networks are evolved for 20 time steps. The histograms in figures 2(A)–(C) show the
distributions of the DOMs in the three networks over time. In each subfigure, the DOMs are, of
course, evenly distributed across the unit interval at time t = 0. We observe that in each network
the range of the DOMs sharply decreases over time until, finally, all DOMs fall into a few bins
at the lower end of the unit interval. At t = 20, the distributions of DOMs have reached a steady
state in each network. These steady-state distributions differ between the three networks, cf the
insets in figures 2(A)–(C). In each case, DOMs are divided into two bins. However, whereas in
the frozen network shown in (A) only about one-third of the DOMs end up in the higher bin, this
bin contains almost all DOMs of the chaotic network shown in (C). In the critical network from
(B), the two bins are approximately evenly populated. Simulations with different realizations
(not shown) produce similar results. We now give an explanation for these observations in a
mean-field approximation of FL-KNs.

New Journal of Physics 13 (2011) 013041 (http://www.njp.org/)

http://www.njp.org/


8

0 0.05
0

1

2x 10
4

t=20

# 
D

O
M

s

A

0 0.02 0.04
0

1

2x 10
4

t=20

# 
D

O
M

s

Bfrozen critical

0 0.02 0.04
0

2

4x 10
4

t=20

# 
D

O
M

s

chaotic

u
p

p
er

 b
o

u
n

d
 o

f 
b

in

indicate 10-logarithms of # of DOMscolors
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Figure 2. Simulations of three networks with N = 104, Pnos(S) = δS,3, Pin(K ) =

δK ,2 and (A) P (a)

3 , (B) P (b)

3 , (C) P (c)
3 from (6). As derived in the main text, the

three networks fall into the (A) frozen, (B) critical and (C) chaotic regimes. For
each network, initial DOMs are drawn randomly from a uniform probability
distribution on the unit interval and the network is simulated for 20 time steps
according to update rule (5). Each subfigure shows the distributions of the DOMs
over time. At t = 20 this distribution has reached a steady state in each network.
For visualization, the unit interval is subdivided into 100 equally sized bins,
whose upper bounds are shown on the y-axis. Colors indicate the 10-logarithm
of the number of DOMs in the respective bin, cf the colorbar shown above. Note
that there is a total of S̄ · N = 3 × 104 DOMs. The insets in panels (A)–(C) show
the steady-state distributions of the DOMs at time t = 20. In each case, DOMs
are divided into two bins. The ratios of high and low DOMs, however, differ
greatly between frozen, critical and chaotic networks.

4.2. Bounds for degrees-of-membership

First we turn our attention to the decreasing range of the DOMs. More precisely, we show that
the DOMs become bounded by the smallest maximal DOM per node at time t = 0, which we
denote by m. Formally,

m :=
N

min
i=1

max
s∈6i

x̃ s
i (0). (7)

If N is large and the initial conditions are sampled uniformly, we may expect m to be small.
Thus, this upper bound indeed explains the observed decrease of the DOMs. We call a node i
bounded at time t if it satisfies

max
s∈6i

x̃ s
i (t) = m. (8)

Clearly, for random initial DOMs, exactly one node is bounded at t = 0; we denote it by ī .
Now let us consider an FL-KN with general Pin, Pnos and PS in the thermodynamic limit

N → ∞. To understand the long-term behavior of the quantity

b(t) :=
1

N
· # {i |i is bounded at time t.}
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we set up an iteration b(t + 1) = H(b(t)) in a mean-field approximation. To this end, consider
some node i at time t + 1. We show that node i will be bounded at t + 1 if and only if any
of its inputs is bounded at time t . First, suppose that i has an input, w.l.o.g. i1, which is
bounded at t . Then m is an upper bound on the DOMs x̃ s

i (t + 1). Moreover, for (ξ1, ξ2, . . . , ξK i )

satisfying x̃ ξk
ik

(t) = maxs∈6ik
x̃ s

ik
(t)> m, k = 1, 2, . . . , Ki , we have minKi

k=1 x̃ ξk
ik

(t) = m and,

hence, x̃
fi(ξ1,ξ2,...,ξKi )

i (t + 1) = m. Conversely, assume that none of i’s inputs are bounded at t
and let (ξ1, ξ2, . . . , ξK i ) again be defined as above. Now this implies minKi

k=1 x̃ ξk
ik

(t) > m and,

hence, x̃
fi(ξ1,ξ2,...,ξKi )

i (t + 1) > m.
Because, in the thermodynamic limit, the inputs of i can be assumed to be independent [27],

we may write

b(t + 1) = H (b(t)) :=
Kmax∑
K=1

Pin (K )
[
1 − (1 − b(t))K

]
.

Note that this is the mean probability that at least one input of a node is bounded at t . In the two
fixed points b?

= 1 and b??
= 0 of this iteration, we have H ′(b?) = Pin(1) and H ′ (b??) = K̄ ,

respectively. From K̄ > 1 ⇐⇒ Pin (1) < 1 it follows that, if K̄ > 1, the fixed point b?
= 1 is

stable and the fixed point b??
= 0 is unstable. Hence, for K̄ > 1, the network will ultimately

reach a state where all nodes are bounded. Visually speaking, if K̄ > 1, property (8) percolates
through the network. Emanating from node ī , at each time step all nodes satisfying this property
bequeath it to their descendants.

4.3. Distributions of degrees-of-membership

Let us now explain the observed differences in the steady-state distributions between the three
dynamic regimes. For this, we restrict ourselves to the special case Pnos (S) = δS,S̄ and study the
behavior for K̄ > 1 in more detail, so let K̄ > 1. We may then assume that each DOM x̃ s

i (t)6 m
and that at least one DOM per node is equal to m after some time t0. We study the distribution
Z(t) = (Z z(t))S̄

z=0,

Z z(t) :=
1

N
· #{i |x̃i(t) has z DOMs equal to m}, z = 0, . . . , S̄, (9)

of DOMs m per node in the network. In this section, we will consider only times t > t0. Hence,
we have Z 0(t) = 0 and may thus omit this component.

Our goal now is to set up an iteration Z(t + 1) = E(Z(t)) for this distribution in a mean-
field approximation. To this end, let us consider some node i at time t + 1. We describe its inputs
by a vector (κ1, κ2, . . . , κS̄) indicating the number of inputs with 1, 2, . . . , S̄ DOMs m at time
t . Clearly, κ1 + κ2 + · · · + κS̄ = Ki . In the thermodynamic limit, we may assume the inputs to be
independent [27] and the probability for the configuration (κζ )

S̄
ζ=1 is given by

(
Ki

κ1, . . . , κS̄

) S̄∏
ζ=1

(
Z ζ (t)

)κζ
.

The number of tuples (ξ1, ξ2, . . . , ξK i ) satisfying x̃ ξk
ik

(t) = m, k = 1, 2, . . . , Ki , is
∏S̄

ζ=1 ζ κζ . The

x̃
fi(ξ1,ξ2,...,ξKi )

i (t + 1) belonging to these tuples are the DOMs of x̃i(t + 1) which are equal to m.
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To compute their number, we let `(ζ, z) denote the probability that ζ fields, which are randomly
filled with numbers 0, 1, . . . , S̄ − 1 according to PS̄, contain exactly z different elements. For
notational convenience, we let `(

∏S̄
ζ=1 ζ κζ , z) = `((κζ ), z). The `(ζ, z) are difficult to compute

analytically and one has to resort to exhaustive enumeration. We can, however, make use of the
following relations.

Lemma 4.1

(i) For any S̄ and PS̄ we have `(1, 1) > `(2, 2) > · · · > `
(
S̄, S̄

)
.

(ii) For S̄ = 3 and any P3 we have `(2, 2)6 `(3, 2).

(iii) For any S̄ and PS̄ we have ` (1, 1)> ` (2, 1)> · · ·> `
(
S̄, 1

)
with equalities if and only if

PS̄ is a degenerate delta-distribution.

We are now able to set up an iteration for the probabilities Z(t) in a mean-field
approximation:

Z(t + 1) = E(Z(t)), (10)

where the zth component E z(Z(t)) of the right-hand side is given by

Kmax∑
K=1

Pin (K )
∑

κ1+···+κS̄=K

(
K

κ1, . . . , κS̄

) S̄∏
ζ=1

(Z ζ (t))κζ · `((κζ ), z).

It is intuitive and can also easily be shown that Z ?
= (1, 0, . . . , 0)t is a fixed point of this

iteration. We now investigate its stability. The distributions Z(t) live on the affine hyperplane
of RS̄ defined by

∑S̄
z=1 Z z(t) = 1. In order to take derivatives, we think of it as a manifold

and choose as a global chart the projection on the first S̄ − 1 coordinates. We remark that the
choice of charts, in general, does affect the Jacobian, but not its eigenvalues, as a change of
charts merely means a change of basis in the tangent space. Hence, this choice is not crucial for
stability analyses. The Jacobian of E at Z ? can be written in global coordinates as

J = DE |Z?
= K̄ ·




` (1, 1) ` (2, 1) · · · `
(
S̄ − 1, 1

)
0 ` (2, 2) · · · `

(
S̄ − 1, 2

)
...

...
. . .

...

0 0 · · · `
(
S̄ − 1, S̄ − 1

)


−


`
(
S̄, 1

)
`
(
S̄, 1

)
· · · `

(
S̄, 1

)
`
(
S̄, 2

)
`
(
S̄, 2

)
· · · `

(
S̄, 2

)
...

...
. . .

...

`
(
S̄, S̄ − 1

)
`
(
S̄, S̄ − 1

)
· · · `

(
S̄, S̄ − 1

)

 , (11)

cf appendix B. It can be shown that the eigenvalues of J are K̄ · ` (s, s), s = 2, 3, . . . , S̄, cf
appendix C. From lemma 4.1 it follows that the largest eigenvalue is K̄ · ` (2, 2). Further note
that ` (2, 2) =

∑S̄−1
s=0 PS̄(s)(1 − PS̄(s)) = pS̄ = p̄. Thus, in terms of FL, the dynamic regimes of
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MKNs from (2) have the following characteristics:

K̄ = 1 : Property (8) does not percolate through the entire network.

K̄ > 1 and p̄ K̄ < 1 : Eventually, all nodes satisfy (8). The state where only one DOM per
node is equal to m is stable.

K̄ > 1 and p̄ K̄ = 1 : Critical boundary.

K̄ > 1 and p̄ K̄ > 1 : Eventually, all nodes satisfy (8). The state where only one DOM per
node is equal to m is unstable.

Iteration (10) is exact in the thermodynamic limit from time t0 on. Recall that this is the
time after which each DOM x̃ s

i (t)6 m and at least one DOM per node is equal to m. The
crucial point is whether Z(t0) = Z ? or not. If yes, it follows that Z(t) = Z ? for all t > t0 as Z ?

is a fixed point. In this case its stability is irrelevant. If not, the differences between the dynamic
regimes come into play. In the frozen regime, the fixed point Z ? is attractive and we may expect
Z(t) = Z ? at some point in time. In the chaotic regime, Z ? is repellent.

Let us now see which case occurs if we draw the initial DOMs randomly from a uniform
probability distribution on [0, 1]. To this end, consider the update of a node i with input node
ī , w.l.o.g. ī = i1. As the initial DOMs are uniformly distributed, each input ik , k = 2, 3, . . . , Ki ,
has expected S̄(1 − m) DOMs bigger than m at t = 0. Moreover, for sufficiently large N , we
have m � 1, and consequently S̄(1 − m) > 1. Hence, we expect at least (S̄(1 − m))Ki −1

� 1
different tuples (ξ1, ξ2, . . . , ξK i ) such that minKi

k=1 x̃ ξk
ik

(0) = m. Consequently, also the expected
number of DOMs x̃ s

i (1) that are set to m will be greater than 1. Inductively, this shows that
Z(t0) 6= Z ?. We have thus found an explanation for the observed differences between the
dynamic regimes in section 4.1. In the following, these differences are analyzed in more detail.

4.4. Example and network simulations

We finish by detailing the behavior of the distributions Z(t) in a specific example, more
precisely in the case S̄ = 3. The distribution P3 will be assumed to be non-degenerate, i.e.
P3(s) 6= 1 for s = 0, 1, 2. In particular, we address the following questions:

(i) Are the global dynamics in the frozen regime governed by the stable fixed point Z ??

(ii) What is the asymptotic behavior in the chaotic regime?

Again, we work in the projection of (10) on the first two coordinates(
Z 1(t + 1)

Z 2(t + 1)

)
=

(
E1
(
Z 1(t), Z 2(t)

)
E2
(
Z 1(t), Z 2(t)

)) .

The implicit function theorem guarantees the existence of maps Z 2
1(Z 1) and Z 2

2(Z 1) around
Z ? satisfying E1(Z 1, Z 2

1(Z 1)) = Z 1 and E2(Z 1, Z 2
2(Z 1)) = Z 2, respectively. Together with (11)

this theorem also implies

dZ 2
1

dZ 1
(1) = −

K̄ [` (1, 1) − ` (3, 1)] − 1

K̄ [` (2, 1) − ` (3, 1)]
(12)

dZ 2
2

dZ 1
(1) = −

−K̄` (3, 2)

K̄ [` (2, 2) − ` (3, 2)] − 1
. (13)
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Table 1. Coefficients ci for equations (14) and (15).

c1 = `(1, 1) − 2`(3, 1) + `(9, 1) c2 = 2`(2, 1) − 2`(3, 1) − 2`(6, 1) + 2`(9, 1)

c3 = `(4, 1) − 2`(6, 1) + `(9, 1) c4 = 2`(3, 1) − 2`(9, 1)

c5 = 2`(6, 1) − 2`(9, 1) c6 = `(9, 1)

c7 = `(1, 2) − 2`(3, 2) + `(9, 2) c8 = 2`(2, 2) − 2`(3, 2) − 2`(6, 2) + 2`(9, 2)

c9 = `(4, 2) − 2`(6, 2) + `(9, 2) c10 = 2`(3, 2) − 2`(9, 2)

c11 = 2`(6, 2) − 2`(9, 2) c12 = `(9, 2)

First observe that lemma 4.1 implies dZ 2
2/dZ 1(1) < 0. In appendix D, it is shown that the

dynamic regimes of MKNs from (2) have the following characteristics:

p̄ K̄ < 1 :
dZ 2

1

dZ 1
(1) > −1,

dZ 2
2

dZ 1
(1) > −1,

p̄ K̄ = 1 :
dZ 2

1

dZ 1
(1) = −1,

dZ 2
2

dZ 1
(1) = −1,

p̄ K̄ > 1 :
dZ 2

1

dZ 1
(1) < −1,

dZ 2
2

dZ 1
(1) < −1.

Let us now visualize this for Pin(K ) = δK ,2. Here, we can easily compute

Z 2
1(Z 1) =

−c5 − c2 Z 1 +
√

(c5 + c2 Z 1)2 − 4c3(c6 − Z 1 + c4 Z 1 + c1(Z 1)2)

2c3
(14)

and

Z 2
2(Z 1) =

1 − c11 − c8 Z 1
−
√

(−1 + c11 + c8 Z 1)2 − 4c9(c12 + c10 Z 1 + c7(Z 1)2)

2c9
(15)

with coefficients ci from table 1. Figures 3(A)–(C) show Z 2
1(Z 1) and Z 2

2(Z 1) from (14) and
(15), respectively, for the three distributions P (a/b/c)

3 from (6), which fall into the frozen, critical
and chaotic regimes. Whereas in the frozen and critical regimes (cf figures 3(A) and (B)) Z ?

is the only fixed point, an additional (stable) fixed point Z ?? emerges in the chaotic regime (cf
figure 3(C)).

We now further investigate these situations by simulations of FL-KNs. Figures 3(D)–(F)
show the distributions Z(t) = (Z z(t))3

z=0 in simulations of FL-KNs for the same choices of P3 as
in figures 3(A)–(C). First of all, we observe the percolation of property (8) through the network
as in each case Z 0(t) (yellow bars) decreases over time. Moreover, we detect nice agreement
between the coordinates of the (attractive) fixed points in panels (A)–(C) and the steady-state
distributions in panels (D)–(F). The agreement is worst between panels (B) and (E) due to the
critical fixed point. (For numerical details see the figure caption.) With respect to our initiatory
questions, we observe that the asymptotic dynamics in the frozen regime are, indeed, governed
by the stable fixed point Z ? and that the asymptotic dynamics in the chaotic regime are governed
by the additional attractive fixed point Z ??.

This result also explains our findings in section 4.1. Here, we observed that in the frozen
regime, finally about one-third of all DOMs are equal to m, cf figure 2(A). This agrees with the
fact that in the stable steady-state Z ? only one out of S̄ = 3 DOMs per node is equal to m. In
the chaotic regime, almost all DOMs were found to be ultimately equal to m, cf figure 2(C).
Accordingly, in the stable steady state Z ?? about 70% of all nodes have three DOMs equal to m
and a further 27% of all nodes have two DOMs equal to m.
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Figure 3. The situation of delta-distributed S and K at S̄ = 3 and
K̄ = 2. Panels (A)–(C) show Z 2

1(Z 1) (blue) and Z 2
2(Z 1) (red) from (14)

and (15), respectively, for (A) P (a)

3 , (B) P (b)

3 and (C) P (c)
3 from (6).

The coordinates of the fixed points are Z ?
= (1, 0) and in (C) Z ??

≈

(0.0226, 0.2747). Panels (D)–(F) show the distributions Z(t) = (Z z(t))3
z=0

in simulations of FL-KNs with N = 104 nodes and P3 as in (A)–(C).
According to (9), Z z(t) was computed as the fraction of nodes with z DOMs
equal to m, where m = minN

i=1 maxs∈6i x̃
s
i (0). Color legend: Z 0(t): yellow;

Z 1(t): blue; Z 2(t): red; and Z 3(t): green. The final distributions are (D)
Z(60) = (0, 0.9993, 0.0007, 0)t , (E) Z(70) = (0, 0.9207, 0.0765, 0.0028)t and
(F) Z(20) = (0, 0.0235, 0.2708, 0.7057)t . These steady-state distributions agree
well with the coordinates of the (attractive) fixed points in panels (A)–(C).
Abbreviations: FL, fuzzy logic; KN, Kauffman network.

5. Conclusions

In this paper, we studied FL-KNs. These are random MMs, where nodes are described by fuzzy
numbers, i.e. vectors of DOM functions specifying the degree to which the nodes are in each of
their discrete states. The update rules are constructed by replacing the Boolean operators AND
and OR by continuous generalizations, the so-called t-norms and t-conorms.

We first observed that, for any choice of t-norm and t-conorm, an FL model is a true
generalization of the underlying crisp model in the sense that for non-fuzzy initial conditions the
behavior of the latter is reproduced. Subsequently, Gödel FL-KNs were studied in more detail.
We found that, unless the mean connectivity equals one, the DOM m from (7) (the smallest of
the maximal DOMs per node) percolates through the network, i.e. m becomes a global upper
bound for all DOMs in the network.

One can interpret m as the maximal amount of uncertainty present in the network. Node
ī (the node whose maximal DOM is equal to m at t = 0) is the node that we have the greatest
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difficult assigning a discrete state to. For K̄ > 1 this maximal uncertainty m becomes a global
bound on the certainties with which we assign to nodes their discrete states.

How many DOMs per node are equal to m depends on the dynamic regime of the MKN.
More precisely, we could analytically show in a mean-field approximation that the state where
only one DOM per node is equal to m is stable in frozen networks and unstable in chaotic
networks. In a low-dimensional example, we explicitly computed the distribution of DOMs m
and could show that the results from our mean-field approximations well agree with simulations
of FL-KNs.

The differences in the behavior of the DOMs in the different regimes have significant
dynamical consequences. Let us first consider a frozen MKN and assume that at time t only
one of the DOMs x̃i(t) of node i is equal to m for all i = 1, 2, . . . , N . We define si ∈ 6i such
that x̃ si

i (t) = m and initialize the crisp MKN by setting xi(t) equal to si , i = 1, 2, . . . , N . After
evolving the crisp MKN for one time step, xi(t + 1) indicates the state of node i whose DOM is
equal to m at time t + 1 in the FL-KN, i.e. x̃ xi (t+1)

i (t + 1) = m. Hence, the dynamics of the FL-KN
are strongly related to the dynamics of the crisp MKN. This is no longer the case for chaotic
MKNs. Here, the FL-KN ultimately reaches a state where a large fraction of DOMs are equal
to m. Consequently, the dynamics of the FL-KN contains no information about the dynamics of
the crisp MKN.

Future work could address the behavior of other FLs, such as the probabilistic or
Łukasiewicz FL. From a more general point of view, FL models are an intermediate between
discrete and continuous models. They are fully specified by a discrete model but allow
(discrete-)time evolutions of a continuous state space. It would be interesting to compare
this to other continuous extensions of logical models as proposed e.g. in [28, 29].
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Appendix A

It can be verified by straightforward computations that the Gödel t-norm and -conorm are indeed
idempotent and satisfy the distributive law and the law of absorption. To show uniqueness, we
first prove that the Gödel t-(co)norm is the only idempotent t-(co)norm. So, suppose that we are
given a pair (>, ⊥) of dual t-norm and t-conorm satisfying >(x, x) = x and ⊥ (x, x) = x for all
x ∈ [0, 1]. Further, let x, y ∈ [0, 1], w.l.o.g. x 6 y. Then, x = >(x, 1)>>(x, y)>>(x, x) = x
and, hence, >(x, y) = x = min(x, y). From the duality of (>, ⊥) it follows that ⊥ (x, y) =

max(x, y).
We continue by proving that each distributive pair (>, ⊥) of dual t-norm and t-conorm is

idempotent and, thus, the Gödel-pair. Assuming distributivity, it holds for x ∈ [0, 1]

x = > (x, 1)>> (x, ⊥(1, 1))

= ⊥ (>(x, 1), >(x, 1)) = ⊥(x, x)>⊥(x, 0) = x .

It follows that ⊥ (x, x) = x and from the duality of (>, ⊥) also >(x, x) = x .
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It remains to be shown that each pair (>, ⊥) of dual t-norm and t-conorm, which satisfies
the law of absorption, is idempotent and, thus, the Gödel-pair. For such (>, ⊥) and x ∈ [0, 1] it
holds x = >(x, ⊥ (x, 0)) = >(x, x). Again, duality implies ⊥ (x, x) = x .

Appendix B

Let us first consider the case of fixed K . In global coordinates we can write

E z(Z 1, . . . , Z S̄−1) =

∑
κ1+···+κS̄=K

(
K

κ1, . . . , κS̄

) S̄−1∏
ζ=1

(Z ζ )κζ

1 −

S̄−1∑
ζ=1

Z ζ

κS̄

`((κζ ), z).

Differentiating with respect to Z s yields

dE z

dZ s
=

∑
κ1+···+κS̄=K

(
K

κ1, . . . , κS̄

)
`((κζ ), z)

×

∏
ζ 6=s,S̄

(
Z ζ
)κζ

− (Z s)
κs κS̄

1 −

S̄−1∑
ζ=1

Z ζ

κS̄−1

+ κs (Z s)
κs−1

1 −

S̄−1∑
ζ=1

Z ζ

κS̄
 ,

where, formally, 0 × 0−1
= 0. The evaluation of this term at Z ? is

dE z

dZ s

∣∣∣∣
Z?

= K · ` (s, z) − K · `(S̄, z).

To see this, note that the only non-zero contributions to the sum over the (κ1, . . . , κS̄) are
the combinations (K , 0, . . . , 0, 0) and (K − 1, 0, . . . , 0, 1) if s = 1, and the combinations
κ1 = K − 1, . . . , κs = 1, . . . , κS̄ = 0 and κ1 = K − 1, . . . , κs = 0, . . . , κS̄ = 1 if s 6= 1.

For general Pin the linearity of the derivative implies

dE z

dZ s

∣∣∣∣
Z?

=

Kmax∑
K=1

Pin (K ) K [` (s, z) − `(S̄, z)]

= K̄ [`(s, z) − `(S̄, z)].

Appendix C

According to (11), we write J = K̄ (A − B) with (S̄ − 1) × (S̄ − 1) matrices A and B. We
extend A to an S̄ × S̄ upper triangular matrix A′ by an S̄th row (0, 0, . . . , `(S̄, S̄)) and
S̄th column a= (`(S̄, 1), `(S̄, 2), . . . , `(S̄, S̄))t . For s = 2, 3, . . . , S̄ let vs = (vr

s )
S̄
r=1 be an

eigenvector to the eigenvalue `(s, s) of A′. As A′ is a left stochastic matrix, it follows from
`(s, s)vs = Avs that `(s, s)

∑S̄
r=1 vr

s =
∑S̄

r=1 vr
s . Thus,

∑S̄
r=1 vr

s = 0, since `(s, s) < 1. As B
consists of identical columns a this implies B(vr

s )
S̄−1
r=1 = −v S̄

s a. It follows that

(A − B)(vr
s )

S̄−1
r=1 = `(s, s)(vr

s )
S̄−1
r=1 − v S̄

s a+ v S̄
s a= `(s, s)(vr

s )
S̄−1
r=1 ,

which shows that K̄`(s, s) is an eigenvalue of J .
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Appendix D

To determine the relation between the nominator and the denominator in (12) and (13), we
compute

K̄ [` (1, 1) − ` (3, 1)] − 1 − K̄ [` (2, 1) − ` (3, 1)]

= K̄ [` (1, 1) − ` (3, 1) − ` (2, 1) + ` (3, 1)] − 1

= K̄ [1 − ` (2, 1)] − 1

= K̄` (2, 2) − 1

and

− K̄` (3, 2) − K̄ [` (2, 2) − ` (3, 2)] + 1

= K̄ [−` (3, 2) − ` (2, 2) + ` (3, 2)] + 1

= 1 − K̄` (2, 2) .

Recall that `(2, 2) = p̄. To obtain the claim, consider that according to lemma 4.1 the
denominators in (12) and (13) are positive and negative, respectively.
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