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Objective: Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms

(SNPs) associated with estimates of body fat distribution. Using predefined risk allele scores, the correla-

tion of these scores with precisely quantified body fat distribution assessed by magnetic resonance (MR)

imaging techniques and with metabolic traits was investigated.

Methods: Data from 4,944 MR scans from 915 subjects of European ancestry were analyzed. Body fat

distribution was determined by MR imaging and liver fat content by 1H-MR spectroscopy. All subjects

underwent a five-point 75-g oral glucose tolerance test. A total of 65 SNPs with reported genome-wide

significant associations regarding estimates of body fat distribution were genotyped. Four genetic risk

scores were created by summation of risk alleles.

Results: A higher allelic load of waist-to-hip ratio SNPs was associated with lower insulin sensitivity,

higher postchallenge glucose levels, and more visceral and less subcutaneous fat mass.

Conclusions: GWAS-derived polymorphisms estimating body fat distribution are associated with distinct

patterns of body fat distribution exactly measured by MR. Only the risk score associated with the waist-

to-hip ratio in GWAS showed an unhealthy pattern of metabolism and body fat distribution. This score

might be useful for predicting diseases associated with genetically determined, unhealthy obesity.
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Introduction
The prevalence of obesity is increasing globally, leading to substan-

tial metabolic and cardiovascular morbidity (1,2). However, obesity

itself does not necessarily cause cardiovascular morbidity, while

accumulation of fat in specific depots does (3,4). In particular,

increased visceral adipose tissue (VAT) mass and an elevated liver

fat content represent profound cardiometabolic risk factors and have

been found to be associated with increased mortality independent of

overall obesity (5-7). In contrast, subcutaneous adipose tissue

(SCAT) mass is less consistently associated with cardiovascular

morbidity and is therefore believed to cause less adverse effects (8).

Furthermore, organ-attributed fat depots such as perivascular fat

(9,10), renal sinus fat (11), pericardial fat (12), and ectopic lipid

deposition in the liver (13) could each have a specific impact on

metabolic disease and organ function (14,15).

There are several methods for quantification of adipose tissue within

the body. Body fat distribution is easily estimated by clinical anthro-

pometric measurements, including waist circumference, hip circum-

ference, and waist-to-hip ratio (WHR). Because these measurements

are relatively imprecise and influenced by several confounders, the

gold standard for determination of body composition is tomographic

imaging. Different fat depots can be accurately distinguished, and

their volumes can be calculated with appropriately weighted magnetic

resonance imaging (MRI) or computed tomography (16-18).

The pathogenesis of obesity is mainly driven by complex interactions

between environmental and genetic determinants. Heritability esti-

mates for body fat distribution range from 36% to 56% for VAT and

42% to 57% for SCAT (19,20). However, fat distribution follows a

complex polygenic inheritance. With genome-wide association studies

(GWAS), hundreds of thousands of common genetic variants have
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been investigated. This unbiased approach searches for statistically

significant associations of single-nucleotide polymorphisms (SNPs)

with anthropometric traits that allow estimation of body fat distribu-

tion. Using data from several meta-analyses, the Genetic Investigation

of Anthropometric Traits consortium identified 1 and 14 WHR-

associated loci, respectively, reaching genome-wide significance

(21,22). More recently, 36 additional SNPs were found to be associ-

ated with WHR in a large-scale meta-analysis, mostly involving par-

ticipants of European ancestry (23). Many of the discovered loci

showed sexual dimorphisms, with larger effects in females for most of

the polymorphisms (23).

Some of the SNPs associated with anthropometric traits also are asso-

ciated with fasting insulin or adiponectin levels. Pathway analyses

have suggested adipogenesis, angiogenesis, transcriptional regulation,

and insulin resistance as potential underlying mechanisms (23).

Nevertheless, the biology behind the identified variants that associate

with estimates of body fat distribution remains largely unknown.

We investigated how variants associated with anthropometric esti-

mates in GWAS correlate with precisely quantified body fat distribu-

tion and ectopic lipid deposition in the liver as assessed by MRI and
1H-MR spectroscopy. We also analyzed the associations of SNPs with

metabolic traits determined during the oral glucose tolerance test

(OGTT).

Methods
Participants
We retrospectively analyzed data from 2,774 individuals of Euro-

pean ancestry who were enrolled in the T€ubingen Family, T€ubingen

Lifestyle Intervention, and Nutritional Prevention of Diabetes stud-

ies. Of these, 915 subjects underwent MRI measurements. Some of

these individuals participated in an ongoing prospective follow-up

study with repeated visits every 2 to 4 years. Including all follow-up

visits that were not within 1 year after a lifestyle intervention, a

total of 4,825 participant visits for metabolic traits and 4,944

participant visits for MR phenotypes were available. Details of the

study population are presented in Supporting Information Table S1.

Informed written consent was obtained from all subjects, and the

local Ethics Committee of the Medical Faculty of the Eberhard

Karls University of T€ubingen, Germany, approved the protocol.

Measurements and analytical procedures
Height, weight, waist circumference, and hip circumference were

measured at every visit. Waist circumference was measured at the

narrowest point of the waist between the hip and rib bones in the

standing, undressed participant after light exhalation. Hip circumfer-

ence was measured at the widest gluteal protuberance. A stretch-

resistant tape measure was wrapped around the hip and waist line

parallel to the ground.

Whole-body fat percentage was measured by bioelectrical imped-

ance (BIA-101; RJL Systems, Detroit, Michigan). Body fat distribu-

tion variables, i.e., total adipose tissue, VAT, and SCAT, were deter-

mined by whole-body T1-weighted MRI and liver fat content by

volume selective 1H-MR spectroscopy (16,24). To estimate the rela-

tive proportion of body fat depots, volumes were measured in liters

and adjusted for the total adipose tissue volume.

All participants underwent a standardized 75-g OGTT with sampling

at fasting and 30, 60, 90, and 120 minutes after the OGTT was

started. The glucose-oxidase method was used to determine plasma

glucose (Yellow Springs Instrument Co., Inc., Yellow Springs,

Ohio). Plasma insulin was measured by a chemiluminescence assay

for ADVIA Centaur (Siemens Medical Solutions, Erlangen, Ger-

many). The insulin sensitivity index was calculated as proposed by

Matsuda and DeFronzo (25).

Genotyping
We selected 65 SNPs that showed genome-wide significant associa-

tions with estimated body fat distribution in GWAS (Supporting

Information Table S2). DNA was extracted from peripheral blood

by cell lysis, protein precipitation, and a washing protocol. All SNPs

were genotyped using the MassARRAY platform (Sequenom, San

Diego, California). Four SNPs (DCST2, MSC, NKX2-6, PDXDC1)

were excluded from the analysis, as they were not in Hardy-

Weinberg equilibrium (P< 0.05).

Calculations and statistical analyses
Two approaches were employed to detect genotype-phenotype

associations. In the first approach, we used linear regression mod-

els for cross-sectional data, taking the first measurements when

multiple measurements were available. In the second approach,

taking repeated measurements into account, we employed linear

mixed models, as proposed by Fan et al. (26). In brief, single

measurement variation and correlations between multiple meas-

urements were modeled with a variance-covariance structure

based on the elapsed time between measurements. All models

were adjusted for sex and age. Metabolic traits were additionally

adjusted for BMI.

In addition to separate tests for each SNP, genetic risk scores (GRS)

were calculated based on the aggregate number of risk alleles associ-

ated with the given trait. We clustered the 65 genotyped SNPs into

groups according to their discovery phenotype. Four scores were cre-

ated: the hip circumference score (including SNPs associated with hip

circumference and hip circumference adjusted for BMI), the waist

circumference score (including SNPs associated with waist circumfer-

ence and waist circumference adjusted for BMI), the WHR score, and

a score with SNPs associated with WHR adjusted for BMI (Figure 1).

Missing SNPs in the GRS were imputed from mean genotype values.

As a sensitivity analysis, we then performed a GRS analysis including

only participants with complete genotyping (Supporting Information

Tables S3 and S4).

For the individual SNPs, P< 0.0008 was considered statistically sig-

nificant, and for the scores, P< 0.05 was considered statistically sig-

nificant. Because the tested phenotypes were predefined according

to our biological hypothesis and several of the traits are correlated,

we did not perform further correction on the number of investigated

phenotypes. All P values are shown uncorrected throughout the

paper.

Calculations were performed with R version 3.2.2 (The R Founda-

tion, https://www.r-project.org/) and JMP 12 (SAS Institute, Cary,

North Carolina).
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Results
First, each SNP was evaluated independently. For the risk alleles

described in the GWAS, no statistically significant association with

waist circumference, hip circumference, WHR, or MR-derived body

fat distribution was detected after correction for multiple testing (all

P� 6 3 1025) (Supporting Information Table S5).

We next created genetic risk scores through summation of the risk

alleles (Figure 1). Based on the respective GWAS results, we com-

puted four distinct scores: hip circumference score (hip score), waist

circumference score (waist score), WHR score, and WHR adjusted

for BMI score (WHR-adj-BMI score).

We next assessed the association of these scores with MR-derived

body fat distribution from 915 individual participants (cross-sec-

tional) and from 4,944 MRI measurements using a mixed-model

approach on repeated measurements. We analyzed these scores’ rela-

tionships with glucose and lipid metabolism (Tables 1 and 2).

The waist score showed a significant correlation only with liver fat

content (P 5 0.006 in the cross-sectional analysis, P 5 0.01 in the

mixed model). A higher number of waist circumference risk alleles

were associated with elevated liver fat content. Further evaluation

revealed an interaction with gender (P 5 0.02) (Table S6); the asso-

ciation of the waist score was present in females but not in males

(Figure 2). The waist score was not associated with insulin

sensitivity or any of the other investigated metabolic traits in

females or males.

For the hip score, an association with lower SCAT mass was

detected (cross-sectional P 5 0.04, mixed model P 5 0.04). Again,

no significant associations of the hip score with metabolic traits

were present.

The WHR score was associated with more VAT mass (cross-sectional

P 5 0.01, mixed model P 5 0.03) and less SCAT mass (cross-sectional

P 5 0.02, mixed model P 5 0.1), resulting in an elevated VAT-to-

SCAT ratio (cross sectional P 5 0.001, mixed model P 5 0.0009). The

WHR score was also associated with lower insulin sensitivity (cross-

sectional P 5 0.05, mixed model P 5 0.002), and with higher fasting

(cross-sectional P 5 0.01, mixed model P 5 0.01) and postchallenge

glucose levels during the OGTT (cross-sectional P 5 0.2, mixed model

P 5 0.0004). It also was associated with increased cholesterol (cross-

sectional P 5 0.04, mixed model P 5 0.4) and decreased high-density

lipoprotein cholesterol levels (cross-sectional P 5 0.6, mixed model

P 5 0.003).

In terms of body fat distribution, the WHR-adj-BMI score was associ-

ated with higher WHR adjusted for BMI (cross-sectional P 5 0.01,

mixed model P 5 0.1). An inverse association of the WHR-adj-BMI

score with SCAT mass was detected (P 5 0.005, mixed model

P 5 0.01), while a positive association was seen for the VAT-to-SCAT

Figure 1 Assignment of single-nucleotide polymorphisms (SNPs) to genetic risk scores. The four genetic risk
scores are depicted as circles containing the names of the assigned SNPs, each represented by the name of the
nearest gene. Each depicted SNP was assigned to at least one of the four scores. Five SNPs were concomi-
tantly assigned to the WHR-adj-BMI and the WHR scores. Abbreviations: WAIST, waist circumference score;
HIP, hip circumference score; WHR, waist-to-hip ratio; WHR-adj-BMI, WHR adjusted for BMI.
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TABLE 1 Cross-sectional results

Genetic risk score Trait Estimate 6 SE b P value

Waist SNPs Waist circumference (cm) 0.208 6 0.267 0.026 0.4

VAT (L) 20.033 6 0.027 20.024 0.2

Liver fat content (%) 0.378 6 0.136 0.092 0.006
SCAT (L) 20.047 6 0.044 20.015 0.3

VAT-to-SCAT ratio 20.001 6 0.003 20.008 0.7

OGTT-derived insulin sensitivity index (AU) 0.056 6 0.117 0.015 0.6

Fasting glucose (mmol/L) 20.004 6 0.011 20.011 0.7

Glucose 120 min (mmol/L) 0.064 6 0.038 0.058 0.1

Cholesterol (mg/dL) 0.329 6 0.722 0.016 0.6

LDL cholesterol (mg/dL) 0.967 6 0.654 0.052 0.1

HDL cholesterol (mg/dL) 20.264 6 0.232 20.036 0.3

Fasting triglycerides (mg/dL) 22.543 6 1.649 20.053 0.1

Hip SNPs Hip circumference (cm) 20.164 6 0.355 20.017 0.6

VAT (L) 20.002 6 0.040 20.001 1.0

Liver fat content (%) 0.308 6 0.199 0.052 0.1

SCAT (L) 20.130 6 0.064 20.028 0.04
VAT-to-SCAT ratio 0.004 6 0.004 0.021 0.4

OGTT-derived insulin sensitivity index (AU) 20.239 6 0.171 20.045 0.2

Fasting glucose (mmol/L) 0.018 6 0.017 0.036 0.3

Glucose 120 min (mmol/L) 0.106 6 0.056 0.066 0.1

Cholesterol (mg/dL) 21.138 6 1.061 20.037 0.3

LDL cholesterol (mg/dL) 20.746 6 0.962 20.027 0.4

HDL cholesterol (mg/dL) 0.111 6 0.342 0.010 0.7

Fasting triglycerides (mg/dL) 22.671 6 2.427 20.038 0.3

WHR SNPs WHR 0.001 6 0.001 0.041 0.1

VAT (L) 0.045 6 0.018 0.048 0.01
Liver fat content (%) 0.011 6 0.092 0.004 0.9

SCAT (L) 20.066 6 0.029 20.031 0.02
VAT-to-SCAT ratio 0.006 6 0.002 0.074 0.001

OGTT-derived insulin sensitivity index (AU) 20.157 6 0.078 20.064 0.05

Fasting glucose (mmol/L) 0.019 6 0.008 0.081 0.01
Glucose 120 min (mmol/L) 0.031 6 0.026 0.042 0.2

Cholesterol (mg/dL) 0.976 6 0.486 0.069 0.04
LDL cholesterol (mg/dL) 0.506 6 0.442 0.040 0.3

HDL cholesterol (mg/dL) 20.081 6 0.157 20.016 0.6

Fasting triglycerides (mg/dL) 1.487 6 1.113 0.046 0.2

WHR-adj-BMI SNPs WHR-adj-BMI 0.002 6 0.001 0.059 0.01
VAT (L) 0.028 6 0.015 0.037 0.1

Liver fat content (%) 0.095 6 0.076 0.042 0.2

SCAT (L) 20.06 6 0.024 20.039 0.005
VAT-to-SCAT ratio 0.004 6 0.002 0.050 0.03

OGTT-derived insulin sensitivity index (AU) 20.064 6 0.065 20.031 0.3

Fasting glucose (mmol/L) 0.009 6 0.006 0.045 0.2

Glucose 120 min (mmol/L) 0.014 6 0.021 0.023 0.5

Cholesterol (mg/dL) 0.515 6 0.404 0.044 0.2

LDL cholesterol (mg/dL) 0.479 6 0.367 0.046 0.2

HDL cholesterol (mg/dL) 0.002 6 0.130 0.001 1.0

Fasting triglycerides (mg/dL) 20.373 6 0.926 20.014 0.7

Statistically significant P values are in bold.
Abbreviations: AU, arbitrary units; HDL, high-density lipoprotein, LDL, low-density lipoprotein; OGTT, oral glucose tolerance test; SCAT, subcutaneous adipose tissue; SE,
standard error; SNP, single-nucleotide polymorphism; VAT, visceral adipose tissue; WHR, waist-to-hip ratio; WHR-adj-BMI, WHR adjusted for BMI.
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TABLE 2 Repeated measures results (mixed model)

Genetic risk score Trait Estimate 6 SE b P value

Waist SNPs Waist circumference (cm) 0.040 6 0.405 0.002 0.9

VAT (L) 20.012 6 0.024 20.009 0.6

Liver fat content (%) 0.270 6 0.106 0.072 0.01
SCAT (L) 20.062 6 0.038 20.020 0.1

VAT-to-SCAT ratio 0.002 6 0.003 0.013 0.5

OGTT-derived insulin sensitivity index (AU) 0.020 6 0.075 0.004 0.8

Fasting glucose (mmol/L) 20.001 6 0.007 20.003 0.8

Glucose 120 min (mmol/L) 0.004 6 0.019 0.004 0.8

Cholesterol (mg/dL) 0.025 6 0.376 0.001 0.9

LDL cholesterol (mg/dL) 0.345 6 0.330 0.019 0.3

HDL cholesterol (mg/dL) 0.017 6 0.127 0.002 0.9

Fasting triglycerides (mg/dL) 21.609 6 1.361 20.024 0.2

Hip SNPs Hip circumference (cm) 0.262 6 0.419 0.012 0.5

VAT (L) 20.013 6 0.035 20.007 0.7

Liver fat content (%) 0.167 6 0.154 0.030 0.3

SCAT (L) 20.112 6 0.056 20.025 0.04
VAT-to-SCAT ratio 0.004 6 0.004 0.021 0.3

OGTT-derived insulin sensitivity index (AU) 0.112 6 0.113 0.015 0.3

Fasting glucose (mmol/L) 20.007 6 0.010 20.012 0.5

Glucose 120 min (mmol/L) 0.015 6 0.028 0.009 0.6

Cholesterol (mg/dL) 20.396 6 0.566 20.012 0.5

LDL cholesterol (mg/dL) 20.495 6 0.497 20.018 0.3

HDL cholesterol (mg/dL) 0.283 6 0.191 0.025 0.1

Fasting triglycerides (mg/dL) 21.870 6 2.052 20.018 0.4

WHR SNPs WHR 0.001 6 0.009 0.001 0.9

VAT (L) 0.035 6 0.016 0.040 0.03
Liver fat content (%) 0.041 6 0.070 0.017 0.6

SCAT (L) 20.045 6 0.025 20.023 0.1

VAT-to-SCAT ratio 0.005 6 0.002 0.067 0.0009
OGTT-derived insulin sensitivity index (AU) 20.146 6 0.046 20.049 0.002

Fasting glucose (mmol/L) 0.011 6 0.004 0.043 0.01
Glucose 120 min (mmol/L) 0.041 6 0.012 0.059 0.0004

Cholesterol (mg/dL) 0.181 6 0.233 0.014 0.4

LDL cholesterol (mg/dL) 0.264 6 0.204 0.023 0.2

HDL cholesterol (mg/dL) 20.236 6 0.079 20.050 0.003
Fasting triglycerides (mg/dL) 0.690 6 0.844 0.016 0.4

WHR-adj-BMI SNPs WHR adjusted for BMI 0.014 6 0.008 0.029 0.1

VAT (L) 0.024 6 0.013 0.031 0.1

Liver fat content (%) 0.060 6 0.059 0.029 0.3

SCAT (L) 20.054 6 0.021 20.031 0.01
VAT-to-SCAT ratio 0.003 6 0.001 0.042 0.03

OGTT-derived insulin sensitivity index (AU) 20.077 6 0.042 20.028 0.1

Fasting glucose (mmol/L) 0.005 6 0.004 0.022 0.2

Glucose 120 min (mmol/L) 0.016 6 0.010 0.026 0.1

Cholesterol (mg/dL) 0.226 6 0.211 0.019 0.3

LDL cholesterol (mg/dL) 0.241 6 0.185 0.023 0.2

HDL cholesterol (mg/dL) 20.102 6 0.071 20.024 0.2

Fasting triglycerides (mg/dL) 0.832 6 0.765 0.022 0.3

Statistically significant P values are in bold.
Abbreviations: AU, arbitrary units; HDL, high-density lipoprotein; LDL, low-density lipoprotein; OGTT, oral glucose tolerance test; SCAT, subcutaneous adipose tissue; SE,
standard error; SNP, single-nucleotide polymorphism; VAT, visceral adipose tissue; WHR, waist-to-hip ratio; WHR-adj-BMI, WHR adjusted for BMI.

Original Article Obesity
EPIDEMIOLOGY/GENETICS

www.obesityjournal.org Obesity | VOLUME 25 | NUMBER 7 | JULY 2017 1281



ratio (cross-sectional P 5 0.03, mixed model P 5 0.03). For the other

fat depots, no significant associations were present. The score also did

not associate with any of the analyzed metabolic traits.

In addition, MR-derived body fat distribution traits correlated with the

OGTT-derived insulin sensitivity index. VAT mass (P 5 3 3 10222),

liver fat content (P 5 1 3 10224), and the VAT-to-SCAT ratio

(P 5 4 3 10216), all adjusted for total adipose tissue mass, gender,

and age, were negatively associated with insulin sensitivity, whereas

adjusted SCAT mass was positively associated with insulin sensitivity

(P 5 8 3 10215) (Supporting Information Table S7).

Discussion
When investigating genetic variants associated with estimates of body

fat distribution in GWAS (21-23), we identified differential associa-

tions of these SNPs with MR-derived body fat distribution. While

none of the investigated SNPs showed statistically significant correla-

tions with fat distribution patterns when tested alone (after correction

for multiple testing), the summation of alleles into genetic risk scores

indeed revealed such associations. For most of the scores, those asso-

ciations were not as expected from the GWAS results. In particular,

the genetic risk scores composed of SNPs associated with waist cir-

cumference and WHR adjusted for BMI were not statistically signifi-

cantly associated with the expected fat compartment, i.e., VAT vol-

ume. On the other hand, increased liver fat content was detected in

subjects with a higher waist circumference score. Of note, elevated

liver fat content is known to result in a larger liver volume (27,28)

that might then be detected as a larger waist circumference. Despite

this, while increased liver fat content generally associates with

impaired glucose metabolism (29), no association of the waist circum-

ference score with any of the investigated metabolic traits was

detected. This is in line with recent data indicating that increased liver

fat content is not always associated with impaired glucose metabo-

lism. Under some conditions, hepatic steatosis appears to be metabol-

ically inert (30). This appears to be the case with the rs738409 C>G

p.I148M variation in the PNPLA3 gene (31,32). Hence, genetic

variants that behave this way could be enriched among the SNPs

included in the waist circumference score, potentially explaining why

the waist circumference score was associated with liver fat content

but not with insulin sensitivity. This appears to be gender specific,

with genetic background having a stronger effect on liver fat accumu-

lation in women. While sexual dimorphisms have previously been

detected for several of the tested polymorphisms (23), the underlying

biology is still unclear and needs further research.

No correlation of the hip score with any other fat compartment was

present in our study. In contrast to most other fat compartments,

subcutaneous fat is generally believed to represent a healthy fat

depot with preventive effects on obesity-related diseases (33). The

lack of an association of the genetic hip score with metabolic traits

in the present study suggests that such effects, at least if genetically

determined, may be small.

The results of the WHR score point toward an association with an

adverse body fat distribution pattern also yielding signals for

expected metabolic correlates such as insulin resistance and lower

high-density lipoprotein cholesterol. Thus, the genetic variants

included in this score may indeed predispose individuals to diabetes

and related diseases by promoting unhealthy body fat distribution.

Of note, there was only very limited overlap between the SNPs that

are GWAS-derived risk variants for WHR (unadjusted) and those

identified in GWAS investigating WHR adjusted for BMI (see also

Figure 1). This suggests that both strategies detect distinct pheno-

types. In line with this, our WHR adjusted for BMI genetic risk

score was associated with SCAT mass but not with any other fat

depot or metabolic trait. Therefore, in contrast to the SNPs included

in the WHR score that were associated with unfavorable fat accumu-

lation, these variants seem not to have a major impact on adverse

fat distribution or metabolism.

While easy to obtain anthropometric measurements such as waist or

hip circumference are established predictors for individual cardiome-

tabolic risk (34), our results underscore that they are not necessarily

precise measures to assess body fat distribution and related metabolic

traits. For example, the genetic variants associated with waist circum-

ference in the GWAS did not determine the amount of VAT mass as

expected, but rather were associated with liver fat content. Thus, fur-

ther studies on genetic determinants of body fat distribution should

focus on a more precise quantification thereof, preferably using imag-

ing techniques for phenotyping.

Limitations of our current work include the sample size of 915 sub-

jects, which is much smaller than GWAS discovery populations.

Presumably, a small effect size of individual SNPs precluded a

detection of associations between individual SNPs and phenotypes

in our cohort. Therefore, the use of these polymorphisms for indi-

vidual risk prediction does not seem to be feasible. The small effects

of the single polymorphisms also impeded the identification of the

SNPs that contributed most to the observed effects. Such variants

would be candidates for experimental follow-up studies aiming to

dissect the underlying pathomechanisms. As we only studied indi-

viduals of Caucasian origin, we cannot exclude different relation-

ships in other populations.

In conclusion, we detected associations of GWAS-derived risk poly-

morphisms with distinct patterns of body fat distribution in healthy

Figure 2 Liver fat content in males and females of the cohort. Violin plots showing
the distribution of liver fat content (%, log scale) stratified by sex and quartiles of
genetic waist circumference score. The number of participants per quartile is pre-
sented below the figure.
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humans. Single genetic risk variants that associated with waist circum-

ference, hip circumference, and WHR adjusted for BMI in larger

GWAS studies did not associate with precisely quantified fat depots in

our study. The genetic risk score for WHR was associated with an

unhealthy body fat distribution pattern with elevated VAT mass and

metabolic disturbances, including insulin resistance and impaired glu-

cose tolerance. This score might therefore be useful for predicting dis-

eases associated with genetically determined unhealthy obesity.O
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