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Abstract

Background: Elevated temperature and reduced water availability are frequently linked abiotic stresses that may
provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic
measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in
different drought and heat scenarios as well as relationships between molecular players of stress response.

Results: In combined drought-heat stress, the majority of single stress responses are maintained. However,
interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid
biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress,
respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor
pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important
component of heat stress, specifically being responsible for hormone-related responses to water deprivation.
Remarkably, this “dry air effect” is the primary trigger of the metabolomic response to heat. In contrast, the
transcriptomic response has a substantial temperature component exceeding the dry air component and including
up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of
prior knowledge on pathways and condition labels reveals shared drought and heat responses between
transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic
compounds, suggesting novel players in abiotic stress response pathways.

Conclusions: Drought and heat stress interact both at transcript and at metabolite response level. A
comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken
into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome
may respond with different extent to individual stress components. Their contrasting behavior in response to
temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress.
Disentangling the complex relationships between transcriptome and metabolome in response to stress is an
enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large
dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for
future mechanistic analyses.
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Background
Abiotic stresses and stress combinations impact agri-
cultural production by reducing plant growth and
yield [1]. A molecular understanding of plant re-
sponses and adaptations to various abiotic stress sce-
narios is crucial for developing breeding and farming
strategies that can sustain crop output under chan-
ging climate conditions. Drought and heat phases
occur frequently – both in separate and in overlap-
ping scenarios. The physiological consequences for
plant leaves are partly similar, partly contrary between
drought and heat [1]. Therefore, studying drought
and heat interactions at the molecular level is rele-
vant for identifying stress components and relation-
ships between stress types. These insights will in turn
help adjusting strategies to improve plant stress toler-
ance to different geographic and climatic situations
and making appropriate trade-offs regarding benefits
and disadvantages of specific genetic traits for typical
stress profiles.
A rise in temperature leads to a decreased relative hu-

midity of the ambient air and an increased vapor pres-
sure deficit (VPD). Some previous heat stress
experiments controlled the relative air humidity [2, 3].
Instead of sticking to a specific relative air humidity set-
ting, we make a systematic comparison between an in-
crease in temperature at constant absolute air humidity,
hence with increased VPD, and higher temperature with
compensatory air humidity supplementation to maintain
the same VPD as before the heat stress. This allows for a
clear separation of solely temperature-dependent and air
humidity-dependent components of heat stress. Further-
more, both heat stress air humidity settings are also
combined with preceding drought stress to study how
relative air humidity effects under heat are modulated by
drought.
Our study uses the model plant Arabidopsis thali-

ana, for which comprehensive knowledge about gene
function, regulation and expression as well as meta-
bolic pathways is available [4]. Numerous studies have
investigated transcriptomic responses of A. thaliana
plants to abiotic stress scenarios [2, 5–8] as well as
metabolomic stress responses [9, 10]. However, even
for this well-studied species the metabolome content
of cells, the interplay between transcriptome and me-
tabolome and the mechanistic processes underlying
single and combined stress responses are still largely
unknown. Here, we characterize responses to drought,
heat and combined stress scenarios by non-targeted
metabolome profiles of 103 samples in parallel to
whole-genome transcriptomics of 135 samples, ex-
tending the scope beyond predefined metabolites in
contrast to targeted approaches used by the vast ma-
jority of previous studies [2, 5, 10].

On the one hand, our study features a model de-
composing responses to combined drought-heat stress
relative to single stress responses. While previous re-
search also considered molecular responses to the
combination of drought and heat [2, 5, 11] or heat
combined with salt, osmotic, cold, light or pathogen
stress scenarios [2, 7, 8], we systematically dissect
both transcriptomic and metabolomic variables ac-
cording to their combinatorial response patterns
across stress situations and we explicitly show addi-
tive vs. interactive effects. Rasmussen et al. [7] pur-
sued a similar goal for transcriptomic data by
assigning variables to a set of predefined patterns,
whereas our approach assesses additivity by linear
modeling. Moreover, since drought and heat are key
climatic stress factors affecting plant water relations
and have partly opposite regulatory effects on the ex-
pression of aquaporin water channels located at the
plasma membrane [12, 13], we include loss-of-
function mutants of multiple major aquaporins into
the analysis in addition to wild-type plants.
On the other hand, we integrate metabolomic and

transcriptomic measurements at the data level to explore
transcriptome-metabolome relationships across environ-
mental conditions. While previous analyses in the con-
text of abiotic stress combinations focused on sample
clustering and condition comparisons [2, 5], data-driven
integrated analysis of heterogeneous measurement types
has been recognized as a valuable tool in plant sciences
and is widely applied [14, 15]. Network-based represen-
tations and analysis methods are highly instructive in
such systems biology studies [16]. For instance, Hannah
et al. [17] looked at correlations between genes and me-
tabolites to identify metabolite mediators of gene regula-
tion; they used different growth conditions including
abiotic stresses but no stress combinations. Module or
community analysis is a popular approach for exploring
gene co-expression networks [18, 19] and is also applic-
able to correlation networks of heterogeneous entities
[20]. The used module finding methods range from net-
work partitioning via hierarchical clustering or label
propagation algorithms to the detection of fully con-
nected subgraphs (cliques) [19, 21, 22]. Since correlation
networks from omics measurements contain an over-
whelming number of variables, an overview of the over-
all correlation between two measurement types is
helpful in identifying experimental factors that drive co-
variation as well as the main molecular players that are
involved. This is provided by canonical correlation ana-
lysis (CCA), which detects the major directions of inter-
dataset correlation in an unsupervised and symmetric
manner using linear combinations of the original vari-
ables, similar as principal component analysis (PCA)
[23]. CCA approaches have been performed for various
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species to investigate transcriptome-metabolome rela-
tionships [24, 25] and other data relations [26]. Our
study evaluates integrative data exploration both by
CCA and by correlation network connections, commu-
nities and cliques as a first hypothesis generation step
towards discovery of new pathways and functional anno-
tation of uncharacterized metabolic compounds.

Results
Different environmental conditions have characteristic
expression profiles, which are independent of the
presence of major aquaporins
Design of drought and heat stress experiments
To analyze molecular responses to abiotic stresses affect-
ing water relations, we collected leaf samples of four-
week-old Arabidopsis thaliana plants representing six
environmental conditions and three genotypes. Environ-
mental conditions were designed to investigate
temperature and relative air humidity effects in heat stress
as well as combined effects of drought and heat stress. Be-
side the well-watered control condition (22 °C), we in-
cluded two variants of heat stress with and without
supplemented air humidity (6 h, 33 °C), drought stress
(one week without watering), and the combinations of
drought stress with each of the two heat stress variants
(one week of drought followed by 6 h of heat stress). The
samples of a condition were obtained from up to three in-
dependent experiments with up to five biological repli-
cates from each genotype (Methods). The genotypes were
selected to assess the role of aquaporin water channels in
control and stress scenarios and comprised wild-type
plants (Col-0) as well as two loss-of-function mutants of
major aquaporins from the plasma membrane intrinsic
protein (PIP) subfamily, a pip2;1 pip2;2 double mutant
and a pip2;1 pip2;2 pip2;4 triple mutant (Methods); PIP2;1
(AT3G53420) and PIP2;2 (AT2G37170) are highly abun-
dant aquaporins in both roots and leaves, whereas PIP2;4
(AT5G60660) is a highly expressed root-specific isoform.

Analysis of transcriptomic variation
For transcriptomic analysis, microarray measurements
were performed (Methods) and give an overview of reg-
ulations of 24,603 genes under the different environmen-
tal scenarios. The principal component analysis (PCA)
visualization of all 135 microarray samples forms clearly
separated clusters according to the six environmental
conditions; the first two principal components explain
more than 40% of the variation (Fig. 1a; Additional file
1: Figure S1). In contrast, genotypes do not show any di-
vergent characteristics (Fig. 1b). Regarding differentially
expressed genes between mutants and wild type, the
comparatively few changes under the control condition
show only a small overlap between pip double mutant
and pip triple mutant (Additional file 1: Figure S2); GO

enrichment analysis does not point to any significantly
changed biological processes. Differential expression was
determined by applying the limma R package [27, 28] on
log-transformed data (Methods). Throughout the manu-
script, the terms up- and down-regulation imply an ab-
solute log2 fold change greater than 1 and an FDR-

a

b

Fig. 1 Principle component (PC) analysis-based visualization of
transcriptomic data. Projected on the top two PCs (covering 27%
and 15% of total variation, respectively), samples are well separated
according to environmental condition (a) but not according to
genotype (b). The considered environmental conditions are control,
drought (D), heat with low relative air humidity (H_LrH), heat with high
relative air humidity (H_HrH), drought stress combined with low
air humidity heat stress (DH_LrH) and drought stress combined
with high air humidity heat stress (DH_HrH). The considered genotypes
are Col-0 wild type (WT), pip2;1 pip2;2 double mutant (DM) and pip2;1
pip2;2 pip2;4 triple mutant (TM). PIP2;1 and PIP2;2 are the major
aquaporins in leaf tissue
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adjusted p-value (p.adj; FDR, false discovery rate) smaller
than 0.05.

Transcriptional profiles of aquaporin mutants
Notably, no other gene from the major intrinsic protein
family including PIP, tonoplast intrinsic protein (TIP),
NOD26-like major intrinsic protein (NIP) or small and
basic intrinsic protein (SIP) genes shows a compensatory
effect for the loss of PIP2;1 and PIP2;2 at the transcrip-
tional level, neither for the control condition nor for the
stress conditions (Additional file 1: Figure S3). This
could indicate that compensation for the loss of aquapo-
rins mainly happens at other levels (e.g., translational or
posttranslational levels), in specific tissues blurred in the
whole leaf extract, in expressed genes missed by the
microarray analysis or through redundant water path-
ways provided by the plant. Interestingly, our analysis re-
veals that the transcriptomic response profiles to water-
related stresses are not affected by the knockout of the
aquaporins, although the impact of PIP2;1 or PIP2;2 on
water relocation or on developmental processes has been
demonstrated [29–31]. Therefore, the mutant samples
are included in all condition comparisons without expli-
cit distinction of genotypes. In that way, the (genotype-
independent) stress response analysis is strengthened
enormously, making the results reliable for follow-up
studies due to the large sample basis.

Plants under combined drought and heat stress maintain
major single stress responses but exhibit significant
interaction effects
Focus of stress combination analysis
To investigate relationships between different abiotic
stress conditions, we first decompose the response to a
combined drought-heat scenario relative to single stress
responses. In particular, we report on interaction effects
between drought and heat, which indicate specific regu-
lations in combined stress that deviate from the sum of
single stress effects. An interaction with respect to a spe-
cific variable means that applying heat stress to well-
watered plants does not produce the same change of the
variable as applying heat stress to drought-treated plants.
While similar investigations have previously been done
for phenotypic traits of stressed plants [32], our analysis
focuses on molecular responses. In addition to the tran-
scriptomic data from the previous section, we used
metabolomic measurements by Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS) on
103 leaf samples; for statistical modeling, we took the
663 masses confirmed by isotope peaks and multiple
spectra (Methods). All given m/z values refer to the [M-
H] ion of negative mode FT-ICR-MS measurements.

Differential stress response patterns of transcriptomic and
metabolomic variables
Categorizing each gene or mass variable according to
two criteria, we obtain ten major groups of variables
(Fig. 2; Additional file 2). One criterion addresses the
specificity of single stress regulation, distinguishing be-
tween drought-only, heat-only and shared regulation.
The other criterion considers the presence and sign of
an interaction effect to describe combined stress re-
sponse relative to the single stress responses: “additive”
response to combined stress corresponds to the combin-
ation of drought response and heat response, “enhanced”
response indicates a significantly stronger response in
combined stress than the additive response, and “re-
duced” response indicates a significantly weaker re-
sponse; “specific” response means no significant
regulation in single stresses but interaction response in
combined stress. Heat conditions with supplemented air
humidity are not included in these results; the air hu-
midity aspect will be addressed in the following section.

Overall group membership statistics
According to our data, the majority of single stress re-
sponses are maintained during combined stress. For
drought-only single stress response (groups marked in
yellow, Fig. 2), 4% of the genes and 20% of the masses
have reduced relevance in combined stress (group 1.1);
for heat-only single stress response (groups marked in
red), 13% of the genes and 19% of the masses show re-
duced response in combined stress (group 1.3). Among
the 1901 genes having a prominent role in combined
stress response (groups bounded by purple line), 55%
are additively maintained from single stresses (groups
2.1, 2.2, 2.3), 13% are enhanced (groups 3.1, 3.2, 3.3) and
32% are specific (group 4). Likewise, the percentages for
the 222 masses are 72%, 4% and 24%, respectively.
Among the single stress response variables that maintain
a role in combined stress (additively maintained or en-
hanced), drought-only players make up a much larger
portion (83% of genes, 73% of masses; groups 2.1, 3.1)
than heat-only players (8% of genes, 21% of masses;
groups 2.3, 3.3), indicating a dominance of the drought
contribution.

Drought-specific response without heat interaction
The distinct regulation patterns across stresses of the
groups in Fig. 2 go along with particular cellular pro-
cesses, as revealed by GO term enrichment among the
up- or down-regulated genes and the functional context
of putative metabolic compounds. For the “additive re-
sponse” groups (groups 2.1, 2.2, 2.3) stress combination
does not induce additional regulation. In the drought-
only group (group 2.1), up-regulated genes are signifi-
cantly enriched for many GO terms with previously
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established connections to drought stress, e.g., response
to water deprivation, response to abscisic acid (ABA)
stimulus and response to osmotic stress. Five out of the
nine clade A protein phosphatases type 2C (PP2Cs), core
components of ABA signaling, are in this gene group,
two other PP2Cs are shared with heat stress (group 2.2),
indicating a partial water deprivation response in heat
stress (see discussion of group 2.2 below and next sec-
tion), and the remaining two members are lowly
expressed in leaves (Additional file 1: Table S1); for one
of them, ABA-hypersensitive germination 1 (AHG1;
AT5G51760), previous work suggests insensitivity to
ABA [33]. The down-regulated genes are enriched in
processes related to cell division, cell growth, response
to auxin and auxin biosynthesis. The 90 up-regulated
masses in the group 2.1 include the mass annotated as

sucrose (negative mode [M-H] m/z 341.1089,
C12H22O11) and sorbitol or isomeric sugar alcohols (m/z
181.0718, C6H14O6) [34], which may act as osmoprotec-
tants in response to water deficit [9]. Rizhsky et al. [5]
also observed up-regulation of sucrose in drought stress
and combined drought-heat stress, and Prasch and Son-
newald [2] showed up-regulation in drought stress and
in the more extreme heat stress (see next section) with
an additive behavior in combined stress. Furthermore,
the up-regulated masses putatively include coniferyl al-
cohol (m/z 179.0714, C10H12O3) and its feruloyl malate
coupling product (m/z 505.1351, C24H26O12). The accu-
mulation of these lignin biosynthesis-related metabolites
is consistent with the transcriptional up-regulation of
cinnamyl alcohol dehydrogenase (CAD) genes CAD5
and CAD6 (AT4G34230 and AT4G37970) as well as the

Fig. 2 Decomposition of combined drought-heat stress response relative to single stress responses. The ten major response groups of genes and
metabolic masses found by linear modeling of transcriptomic and metabolomic data are arranged as a table according to the specificity of single
stress responses (columns) and the interaction of single stress responses in combined stress (rows). Each response group consists of two subgroups:
the up-regulation part and the down-regulation part. For each subgroup, an arrow code indicates the direction of regulation in the single stresses (D
denotes drought, H denotes heat), and a + or - sign denotes a significant positive or negative interaction term (D:H), respectively, which describes the
difference between the observed response to combined stress and the combined additive response to single stresses. In the “additive” response
groups, there is no significant interaction term, in the “reduced” response groups, the interaction term counteracts the single stress regulation, and in
the “enhanced:” response groups, the interaction term enhances the single stress regulation; the specific response group has no single stress regulation
but significant interaction. Opposite regulation between drought and heat occurs only in rare cases and is discussed in the main text. For each group,
the numbers of up- and down-regulated genes and masses as well as the top significantly enriched processes summarizing the abiotic stress response
functions of up- and down-regulated genes are given. For full lists of genes and enriched GO terms and for classification of each variable,
see Additional file 2
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gene encoding cinnamoyl CoA reductase CCR2
(AT1G80820) and contrasts with the down-regulation of
other cell wall-related genes (Additional file 2).

Shared drought and heat effects without interaction
In the additive response group showing the same regula-
tion both in drought and in heat stress (group 2.2), the
up-regulated genes are enriched in responses to light
intensity, reactive oxygen species (ROS), temperature
stimulus and water deprivation. Response to
temperature also plays a role in drought stress because
stomata closure reduces cooling by transpiration, result-
ing in elevated leaf temperatures [35]. Response to water
deprivation also plays a role in heat stress because heat
goes along with enhanced transpiration. Enriched func-
tions down-regulated in both stresses are primarily re-
lated to biotic stress response, which is in accordance
with previous findings on opposite regulations of abiotic
and biotic stress responses [2, 36]. Among the five
masses down-regulated in response to both heat and
drought, m/z 367.3582 (C24H48O2) is annotated as a pu-
tative fatty acid: tetracosanoic acid (24:0), a precursor of
cuticular waxes, suberin, sphingolipids and phospho-
lipids [37, 38]. A putative increase in wax production is
consistent with the cumulative increase of the transcript
encoding the Myb domain protein MYB96 (AT5G62470)
by drought and heat (Additional file 3); the transcription
factor induces cuticular wax biosynthesis, which has
been related to drought stress [39, 40]. Three genes of
the “additive response” class show contrary regulation
between drought and heat (Additional file 2, not shown
in Fig. 2). Two of them are up-regulated under drought
and down-regulated under heat; they are known as cold-
and drought-regulated genes, LOW TEMPERATURE-
INDUCED 30 (LTI30; AT3G50970) and RESPONSIVE
TO DESICCATION 29A (RD29A; AT5G52310) [41].
Among the five masses exhibiting contrary regulation
between drought and heat, m/z 213.1860 (C13H26O2) is
annotated as a putative tridecanoic acid (13:0) [34]; our
data indicate down-regulation in drought and up-
regulation in heat.

Enhanced combined stress response
Groups of genes and masses responding to combined
stress in a non-additive manner are of special interest
since they point to an adaptation of the stress responses
that is specific for the combined scenario. In essence, it
means that there is a significant contrast in heat re-
sponse between control plants and plants pretreated
with drought. Our model explicitly elucidates which
stress response variables undergo such modulation by a
simultaneous other stress. The “enhanced response”
groups represent synergistic effects of drought and heat,
potentially reflecting a highly elevated stress level in the

combined scenario that goes beyond the combined effect
of single stresses. For example, the drought-induced re-
sponse to ROS and oxidative stress concentrates in the
“enhanced response” category (group 3.1) and not in the
“additive response” category (group 2.1), indicating
strongly enhanced oxidative stress by additional heat
stress, whereas there is no comparable effect in single
heat stress. Furthermore, protein folding-related func-
tions are enriched among genes induced by both single
stresses and significantly further induced in combined
stress (group 3.2). While protein folding is also enriched
among genes induced by both single stresses with addi-
tive accumulation effect in combined stress (group 2.2),
the analysis suggests that many players require particular
regulation in the combined stress setting. This could re-
late to a strong temperature increase by drought-
induced stomatal closure in combination with heat
treatment.

Specific combined stress response
In the “specific response” group (group 4), regulation hap-
pens only in combined stress by a drought-heat interaction
effect; this excludes accumulation of single stress effects,
which dilutes combination-specific genes in stress-versus-
control comparisons. Among the up-regulated genes, ribo-
nucleotide biosynthesis-related functional categories are
enriched. Among the down-regulated genes, cell division
and chromatin silencing functions are enriched. Thus, add-
itional leaf growth-related players are down-regulated as
compared to the less severe single drought stress (group
2.1). Consistent with the transcriptional down-regulation
of cell division, the induced masses in group 4 assigned to
putative plant compounds include the glucoside of methyl
cucurbate (m/z 387.2024, C19H32O8), a growth inhibitor
[42], and tryptophan (m/z 203.0826, C11H12N2O2), a pre-
cursor of the growth hormone auxin [43, 44]. Accordingly,
expression of the gene encoding the tryptophan-converting
cytochrome P450 79B2 (CYP79B2; AT4G39950) is stron-
ger down-regulated in combined stress than in drought
stress (Additional file 3). The up-regulated masses further
include two putative glucose-related metabolites, anhydro-
glucose (m/z 161.0455, C6H10O5) and acetyl-glucose (m/z
221.0667, C8H14O7), which might relate to the reduced ac-
cumulation of putative glucose (m/z 179.0561, C6H12O6)
in combined stress as compared with drought stress, being
part of the “reduced response” group 1.1 described in the
following paragraph.

Reduced combined stress response
The “reduced response” class contains molecular players
where the single stress effects are weakened or completely
lost under combined stress. For the drought-only response
group (group 1.1), the up-regulated genes are enriched for
flavonoid and, in particular, for anthocyanin biosynthesis.
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Interestingly, four out of the six non-additive genes that
have opposite regulation in the single stresses (up-regulated
in drought, down-regulated in heat, negative interaction
term; Additional file 2, omitted from Fig. 2) also play a role
in flavonoid biosynthesis, among them three genes encod-
ing the key enzymes involved in the formation of the fla-
vonoid backbone: chalcone synthase (CHS; AT5G13930),
chalcone isomerase (CHI; AT3G55120) and flavanone 3-
hydroxylase (F3H; AT3G51240). The expression regulation
pattern of these genes nicely integrates the gene regulation
patterns of two separate downstream pathways, anthocya-
nin and flavonol biosynthesis (Additional file 1: Figure S4).
Our transcriptomic observations confirm previous findings
that anthocyanins accumulate under drought stress but not
at high temperatures [45–47]. In the negative ionization
mode MS measurements with the used m/z range
(Methods), anthocyanins were not detected, only two puta-
tive flavones (m/z 371.1136, C20H20O7, and m/z 487.1246,
C24H24O11) could be identified in group 1.1. In agreement
with our observations, expression of the anthocyanin-
related transcription factor PAP1/MYB75 (production of
anthocyanin pigment 1; AT1G56650) was repressed by add-
itional heat compared with sole drought in the results re-
ported by Rizhsky et al. [5] (applying a similar drought/heat
regime like in our study). The shared response between
drought and heat (group 1.2) contains mostly down-
regulated genes, which are enriched for defense response
functions, in particular response to the hormones salicylic
acid (SA) and jasmonic acid (JA). Relative to the control,
the regulation in combined stress is similar to each single
stress, suggesting that the default response to the additional
stress is suppressed, perhaps to keep immune response at a
sufficient level. Consistent with the down-regulation of
defense response, a negative regulator of plant immunity,
LIPID TRANSFER PROTEIN 3 (LTP3; AT5G59320), is
among the genes up-regulated in single stresses; LTP3 also
has been shown to enhance ABA biosynthesis [48]. The
masses up-regulated in single stresses include the putative
raffinose (m/z 503.1618, C18H32O16), enabling osmotic ad-
justment, and the putative aliphatic glucosinolate 6-MSOH
(6-methylsulphinylhexyl glucosinolate; m/z 464.0725,
C14H27NO10S3). Previously, a general increase of aliphatic
glucosinolates was observed in salinity stress, although 6-
MSOH was not detected; aliphatic glucosinolates play a
role in plant-herbivore interactions and are correlated with
plant water relations [49].

Dry air is an important component of heat stress and
combined drought-heat stress and the primary trigger of
metabolomic response
The role of air humidity in heat stress
A heat episode enhances the VPD of the ambient air
provoking a water deficit (“low air humidity” setting:
33 °C/ 37% relative humidity, 3.17 kPa VPD). To

better understand the components of heat stress re-
sponses and their modulation by precedent drought
stress, air humidity was supplemented in a parallel set
of heat experiments to keep the VPD constant and
thereby avoiding a parallel water deficit in the ambi-
ent air (“high air humidity” setting: 33 °C/ 84% rela-
tive humidity, 0.79 kPa VPD). Thus, the components
of heat stress can be dissected in a systematic way
into a temperature-related and into a humidity-
dependent part by comparing the molecular responses
to heat between high and low air humidity settings
(Fig. 3a; Additional file 4). In addition to changes in
the ambient air, heat will also affect soil evaporation.
However, in contrast to the strong effects on VPD,
the enhanced temperature led to small differences in
evaporation of water from soil during the short 6 h
heat episode with different air humidity settings (Add-
itional file 1: Figure S5a). With regard to leaf water
content, samples of control plants were close to the
heat-treated specimen except for the rosette leaves
after the drought-heat episode with low air humidity
(DH_LrH), which showed a reduction by about 10%
(Additional file 1: Figure S5b).

Transcriptional up-regulation related to low air humidity
The first group consists of genes that are up-regulated
in the low air humidity heat stress but not in the high
air humidity heat stress. This group represents a compo-
nent of heat stress that cannot be attributed to ambient
temperature (which was the same in both settings) but is
due to the decreased relative air humidity during heat
(“dry air” effect). Increased transpiration by dry air is ex-
pected to induce a water deficit in leaves, compared with
the high air humidity setting (Additional file 1: Figure
S5b). Indeed, the genes in this group are significantly
enriched in functions related to drought, namely hyper-
osmotic salinity response (p.adj = 0.00289) and response
to water deprivation (p.adj = 0.00474). The down-
regulation of the same stress responses after eliminating
the dry air effect (i.e., in the high air humidity-only
group) further supports this relationship. JA-related pro-
cesses are transcriptionally up-regulated in the dry air-
specific group and down-regulated at supplemented air
humidity (Additional file 4). While JA biosynthesis and
response have previously been associated with heat stress
response and thermotolerance in Arabidopsis [50–52], our
data indicate that this relates to the dry air component
under heat stress.

Transcriptional up-regulation related to temperature
The overlap between high and low air humidity heat stress
responses can be considered as purely temperature-
related effect for the ambient condition of 33 °C. The top
enriched processes among the up-regulated genes are
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response to heat (p.adj = 3.36e-29), responses to hydrogen
peroxide and ROS (p.adj = 3.72e-24 and p.adj = 1.23e-20),
and protein folding (p.adj = 5.58e-19). The genes mainly
include heat-induced transcription factors such as MUL-
TIPROTEIN BRIDGING FACTOR 1C (MBF1C;
AT3G24500) and heat shock factor (HSF) genes of the A
and the B subfamilies. Further members are genes encod-
ing heat shock proteins (HSPs) and other protein chaper-
ones. According to previous studies, these are major
players in response to heat stress; MBF1C is required for
elevated expression of HSFs of the B family, salicylic acid-
and ethylene-responsive genes as well as the trehalose
pathway, and HSFs of the A family are linked to HSPs and
ascorbate peroxidase-related heat stress responses
[53–55]. HSPs prevent protein misfolding and aggre-
gation [56, 57]. In line with that, our analysis suggests

that induced expression of MBF1C, HSFs and genes
encoding protein chaperones is mainly dependent on
the high temperature component of heat stress.

Transcriptional up-regulation related to high air humidity
The remaining third group represents a response that is
specific to heat with high relative air humidity. The in-
duced genes include additional HSFs and HSPs, which
were also detected in previous heat stress experiments
using higher temperatures (Additional file 1: Table S2).
A plausible reason for the more severe temperature re-
sponse at maintained VPD is an elevation of the leaf
temperature caused by lower transpiration relative to the
dry air-inducing heat application. The molecular re-
sponse highlights that air humidity is a relevant factor
influencing the temperature response in addition to the

Fig. 3 Effects related to ambient air humidity in heat stress and combined drought-heat stress. Venn diagrams of up- and down-regulated variables
between low (LrH) and high air humidity (HrH) settings and major enriched GO terms in each group are shown for heat stress (H; a) and combined
stress (DH; b). In addition, the total number of differentially regulated variables under each stress condition relative to the control condition is depicted
for transcriptomic (c) and metabolomic data (d). The relatively smaller number of down-regulations as compared with up-regulations in the metabolic
data is related to the data acquisition: low abundances cannot be detected and are therefore not accurately quantified but set close to
the detection threshold
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ambient temperature. Our observation agrees with the
different extent of heat shock responses under mild and
severe heat stress reported by Prasch and Sonnewald [2]
and the accumulation of ROS and heat shock proteins
reported by Yang et al. [58]. Remarkably, all responses to
high relative air humidity are temperature-related.

Transcriptional down-regulation related to heat stress
components
All three groups show down-regulation of biotic stress
defense genes, confirming the increased pathogen sus-
ceptibility often observed under abiotic stress [36]. The
down-regulated genes both in the second and third
group are enriched for biosynthetic processes of
anthocyanin-containing compounds (p.adj = 9.76e-8), in
accordance with the lack of a drought response (which
would induce anthocyanin biosynthesis, see above).

Air humidity-related transcriptional up-regulation in combined
drought-heat scenarios
To check whether preceding drought stress modulates
the air humidity effects under heat, an equivalent com-
parative analysis of air humidity effects is shown for the
combined drought-heat stress (Fig. 3b, Additional file 4).
Compared with the heat stress scenario, the gene ex-
pression response we observed in the drought-heat com-
bination is larger for the low air humidity-specific part
and smaller for the high air humidity-specific part. The
genes up-regulated in both air humidity settings are
enriched in central drought categories including re-
sponse to water deprivation and response to ABA stimu-
lus as well as the central high temperature categories
that already occurred in the heat stress comparison (Fig.
3a). For the up-regulated genes unique to the low air hu-
midity setting, biological processes related to water
deprivation, ABA stimulus and JA response are leading,
which is similar to the dry air effect in heat stress re-
sponse. However, more than six times as many key regu-
lators are detected, including the PP2C gene E
GROWTH-REGULATING 1 (EGR1; AT3G05640), SU-
CROSE NONFERMENTING1-RELATED PROTEIN KIN-
ASE 2.6/ OPEN STOMATA 1 (SnRK2.6/ OST1;
AT4G33950), ABA-RESPONSIVE ELEMENT BINDING
FACTOR 4 (ABF4; AT3G19290) and other genes encod-
ing ABA-induced transcription factors, the JA biosyn-
thesis gene ACYL-CoA OXIDASE 1 (ACX1; AT4G16760)
as well as the JA response genes encoding the
jasmonate-zim-domain proteins JAZ1 and JAZ4
(AT1G19180 and AT1G48500) and JA-ASSOCIATED
MYC2-LIKE 1 (JAM1; AT2G46510). The transcriptional
pattern of JAZ1 and SnRK2;6/OST1 was independently
verified by RT-qPCR to validate the microarray data
(Additional file 1: Figure S6). These results suggest that
preceding drought stress aggravates the dry air-induced

drought effect with respect to ABA- and JA-related bio-
logical processes under heat stress. The up-regulated
genes unique to the high air humidity setting are
enriched with respect to protein folding and response to
heat, which is consistent with the heat stress analysis,
but the unique response is less pronounced than in heat
stress, indicating an interaction with the drought stress
response. Indeed, approximately 42% of the high air
humidity-specific up-regulated genes in heat stress are
not at all up-regulated in combined stress with high air
humidity; thus, preceding drought stress has partly
counteracting effects on the heat response. GO enrich-
ment analysis of these genes yielded significant processes
related to heat response, cell wall, hexose stimulus re-
sponse, extracellular region and water channel activity.
The water channel genes that are transcriptionally up-
regulated in single heat stress but not in combined stress
include TIP1;1, TIP2;1, PIP1;5 and PIP2;7. During
drought, these genes are down-regulated, supposedly to
reduce water flow through membranes and maintain leaf
turgor [12]; apparently, this effect dominates in the com-
bined stress scenario.

Air humidity-related transcriptional down-regulation in
combined drought-heat scenarios
The down-regulated genes shared between both humid-
ity settings are strongly enriched in cell cycle functions,
probably reflecting reduced growth due to drought. The
genes specifically down-regulated in low air humidity are
dominated by photosynthesis-related functions, which
confirms that drought stress hampers photosynthesis
through stomatal closure and dehydration of mesophyll
cells. The fact that transcriptional down-regulation of
photosynthesis genes manifests itself under combined
stress but is not yet visible under drought stress at con-
trol temperature (Additional file 2) confirms the obser-
vation by Zhao et al. [59] that high temperature sooner
leads to a negative carbon balance in trees under
drought; our analysis suggests that this is particularly
relevant for heat with low relative air humidity. In sum-
mary, the comparison of the different air humidity set-
tings in heat and combined stresses illustrates the
temperature and dry air effects associated with heat
stress.

Comparison of transcriptomic and metabolomic air
humidity effects in abiotic stress responses
Interesting parallelisms and differences between tran-
scriptomics and metabolomics regarding the air humid-
ity effects under different stress conditions are revealed
considering the overall extent of stress responses, quan-
tified by the number of differentially regulated genes or
masses relative to the control condition (Fig. 3c and d).
In both data types, without supplementary air humidity,
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drought stress induces a larger response than heat stress
and combined stress induces a larger response than sin-
gle stresses. With increased air humidity, the extent of
the transcriptomic response is increased in heat stress
but reduced in combined drought-heat stress (Fig. 3c).
The latter could reflect an alleviated drought effect by
reduced transpiration; the smaller overlap between
drought stress and high air humidity combined stress
relative to the overlap between drought stress and low
air humidity combined stress additionally confirms this
assumption (Additional file 1: Figure S7) [60]. Further-
more, as indicated above, the heat effect is partially
counteracted by preceding drought. However, the com-
bined stress response under high air humidity still ex-
ceeds the single stress responses. The metabolomic
response is reduced by increased air humidity both in
combined stress and in single heat stress (Fig. 3d). While
the former agrees well with the finding from transcrip-
tomic data, the latter is opposite to the transcriptomic
data. These observations stay the same when varying the
preprocessing or fold change thresholds for the metabo-
lomic data. In fact, no mass is specifically up-regulated
and only one mass is specifically down-regulated in heat
with high air humidity, in contrast to a large number of
low air humidity-specific regulations (Fig. 3a). The re-
sults suggest that the dry air effect by far exceeds the
temperature effect in metabolomic response to heat
stress.

Correlated changes between transcriptomics and
metabolomics reveal putative players in abiotic stress
responses
Transcriptome-metabolome data integration
Both transcriptomic and metabolomic data have shown
significant responses to stress scenarios, revealing the in-
volvement of known, annotated metabolic pathways and
biological processes. In contrast to the previous sections,
we now aim at investigating relationships between the
transcriptome and the metabolome in a data-driven
manner without relying on prior knowledge of cellular
processes and metabolite-gene connections. For that
purpose, we perform data level integration of transcrip-
tomic and metabolomic measurements across all envir-
onmental conditions, using those 56 samples where both
measurement types are available. We explore major in-
trinsic variability components shared between the tran-
scriptome and the metabolome as well as fine-grained
co-regulatory relationships between gene expression and
metabolite abundance.

Shared variation between transcriptome and metabolome
A well-known approach to find common variation be-
tween two data types is CCA, a dimension reduction
method that generalizes PCA to two data sources with

two different feature spaces. It finds projection direc-
tions of the two feature spaces such that the projected
data show maximal correlation between the two data
sources. To be able to handle feature spaces with more
variables than the number of paired samples, we used
the regularized CCA method implemented in the mixO-
mics R package [23, 61]. Similar to PCA, the result is a
sequence of components in the order of decreasing cor-
relation. Each component consists of a pair of canonical
variates, one for each feature space. Each canonical vari-
ate is a linear combination of variables in the original
feature space, and it is uncorrelated to canonical variates
earlier in the sequence. Fig. 4a shows the projection of
the metabolomics data onto the first two components
obtained from regularized CCA for the top 100 variables
with largest variance from each data type. Interestingly,
the first component separates drought from non-
drought samples and the second component separates
heat from non-heat samples, with high transcriptome-
metabolome correlations (Fig. 4b, c). Since the condition
labeling was not available to the method, this result indi-
cates in an unbiased way that transcriptome and metab-
olome mainly correlate with respect to the drought and
heat response; in contrast, air humidity response differs
between data types (see also previous section).

Main drought response players relating transcriptome and
metabolome
To interpret the CCA components regarding potential
functional connections between genes and metabolic
compounds, we consider correlations between the ca-
nonical variates and each original variable of the two
data types. For the first component (Fig. 4b), the top
metabolic mass positively associated with drought is
the putative sucrose (m/z 341.1089; correlation with
first component: −0.972, p.adj = 6.05e-33). The top
gene encodes the cell wall/vacuolar inhibitor of fruc-
tosidase C/VIF1 (AT1G47960), a putative inhibitor of
cell wall and vacuolar invertases [62] (correlation
−0.981; p.adj = 2.38e-38). Another top gene encodes
the cell wall invertase CWINV5 (AT3G13784; correl-
ation −0.968, p.adj = 1.01e-32). The enzyme catalyzes
the conversion of sucrose into glucose and fructose
and is predicted to be located in the cell wall [63].
Overexpression of a cell wall invertase gene from
Chenopodium rubrum in tomato has been shown to
increase water use efficiency and drought tolerance
[64]. Prasch and Sonnewald [2] observed up-
regulation of sucrose and CWINV5 in combined
drought and heat stress; in mild drought stress, only
sucrose was up-regulated. Sucrose or CWINV5 them-
selves are sufficient to separate drought from non-
drought samples in our data (Additional file 1: Figure
S8, left panel).
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Sucrose inversion networks
To check how these top variables relate to the three
other known cell wall invertases and the other cell wall
invertase inhibitor annotated in TAIR, we computed
correlations based on our paired dataset. Interestingly,
there are two anti-correlated submodules, each of which
consists of strongly positively correlated variables (Fig.
5a), whereas the genes CWINV2 (AT3G52600) and
CWINV4 (AT2G36190) did not show absolute correla-
tions stronger than 0.75 to any of the other variables.
Remarkably, this structure of sucrose-gene and gene-
gene relationships is exactly reproduced in an independ-
ent analysis of targeted sucrose content data (from
validation measurements using gas chromatography
mass spectrometry, GC-MS) of drought-treated and
control samples and their corresponding transcriptomes,
although less than 50% of the samples overlapped with
the large FT-ICR-MS-based integration study (Methods,
Additional file 5, Availability of data). One submodule
consists of sucrose, CWINV5 and C/VIF1. The other
submodule comprises CWINV1 and C/VIF2. The co-
regulation of CWINV5 and C/VIF1 across conditions
suggests that C/VIF1 is a specific inhibitor to CWINV5,
necessary to fine-tune the activity of the intrinsically
stable cell wall invertase proteins [62]. Likewise, C/VIF2
might be specific to CWINV1. An alternative hypoth-
esis in line with the observed correlations could link the
anti-correlated invertase/ invertase inhibitor pairs as
functional, interacting entities. Eventually, the anti-
correlation of such two submodules could indicate
complementary roles of invertases in drought stress and
control conditions. Consistently with our finding on the
transcriptional regulation of CWINV1 and CWINV5 per
se, Prasch and Sonnewald [2] had reported strong down-
regulation of CWINV1 in conjunction with the above-
mentioned up-regulation of sucrose and CWINV5 in
combined stress.

Main heat response players relating transcriptome and
metabolome
For the second CCA component, associated with heat
(Fig. 4c), the top gene is of unknown function
(AT2G31560, correlation 0.923), and the second one
(AT1G55960, correlation 0.916) encodes a polyketide

a

b

c

Fig. 4 Canonical correlation analysis (CCA) integrating transcriptomic
and metabolomic data. Projection of metabolomic samples onto the
first two CCA components shows a clear separation of drought, heat,
drought-heat and control conditions (a). The first CCA component
shows a high correlation between transcriptomic and metabolomic
projections (Pearson coefficient 0.990) and separates drought samples
from non-drought samples (b). The second CCA component also
shows a high correlation between transcriptomic and metabolomic
projections (Pearson coefficient 0.959) and separates heat samples from
non-heat samples (c)
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cyclase/dehydrase and lipid transport superfamily pro-
tein putatively involved in the myo-inositol hexakispho-
sphate biosynthetic process (GO:0010264); phospho-
inositide signaling has been linked to heat stress [65, 66].
Projecting the data on the topmost functionally anno-
tated gene of the first and the second component already
yields a condition separation that is almost as good as
the CCA projection (Additional file 1: Figure S8, right
panel; Fig. 4a), suggesting these genes as suitable bio-
markers for drought and heat scenarios. The top

correlated metabolic mass of the second component is
m/z 259.0590 (correlation 0.884). The observed data
suggest that this metabolic feature and the un-annotated
gene AT2G31560 have a so far unknown functional role
in heat stress response.

Global correlation network for metabolite characterization
To characterize more metabolic masses with respect to
putative biological contexts, we investigated a global net-
work of the strongest mass-gene correlations from our

a

c

e

d

b

Fig. 5 Correlation networks between genes (boxes) and metabolomic features from FT-ICR-MS data (ellipses). Positive correlations >0.75 (solid
lines) form two groups of sucrose inversion-related entities (marked in yellow and gray, respectively); members from different groups are negatively
correlated (dashed lines; a). The global network of topmost positive correlations (>0.85) between genes and metabolomic masses from the
non-targeted metabolomics measurements consists of five communities (b). Red and blue colors indicate up- and down-regulation under
drought stress, primarily occurring in the communities C3 and C5, respectively. The marked metabolomic mass, a putative glycerophosphoinositol, is
the most connected mass within community C4, which in contrast to other communities mainly represents heat-related response (c). The mass and its
top correlated gene together separate different environmental conditions, with gradually more induction from control to drought, heat and combined
stress (d). A subnetwork of closely interconnected genes and masses (black edges; the ellipses mark fully connected groups) suggests drought-related
functions of unassigned masses and unknown genes (e). Known genes related to response to water deprivation are annotated by yellow color, known
genes having functions as transport and membrane proteins are annotated by blue color. Gray edges indicate correlations >0.85 to metabolites from
GC-MS data; only metabolites with at least ten gene connections are shown. The heatmap shows that stress response profiles are quite homogeneous
for all subnetwork members
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data (Fig. 5b). It contains all genes and masses with
gene-mass correlations greater than 0.85 (893 genes, 31
masses). The visualization further includes and utilizes
all mass-mass and gene-gene correlations with correl-
ation coefficients greater than 0.85 and adjusted p-values
smaller than 1.0e-5. The community structure of the
network was determined by the label propagation algo-
rithm implemented in the igraph R package [67, 68] and
yielded five groups, each consisting of densely connected
entities. Interestingly, these five network communities
reflect characteristic condition-specific regulation pat-
terns (Fig. 5c). The largest community, C3, is dominated
by genes and masses up-regulated in response to
drought-related stresses, including the dry air effect of
heat application, whereas down-regulation of genes
dominates in heat stress with high relative air humidity.
In contrast, community C4 includes a large fraction of
genes that are up-regulated in heat stress with high rela-
tive air humidity and other heat-related stresses but
rarely in single drought stress. Two masses of the C4
community are linked to the C3 community; they show
an up-regulation in response to all stresses. The C5
community shows the opposite pattern to C3, namely
down-regulation in drought-related stresses (Fig. 5b).
The functional analysis of community genes is in line
with the stress response profiles, with response to water
deprivation being the top enriched GO category in com-
munity C3 (p.adj = 2.74e-24) and photosynthesis light
reaction the top category in community C5
(p.adj = 1.72e-6; Additional file 6). Community C4
shows the most significant enrichment in response to ra-
diation (p.adj = 4.11e-4) and mRNA metabolic process
(p.adj = 0.0024). Specifically, the C4 community genes
that are up-regulated under heat with high air humidity
are enriched in RNA splicing and heat response genes
(including heat shock factors, transcription factors and
enzymes).

Investigation of a putative metabolite related to heat stress
response
In addition to the putative sucrose, which has the lar-
gest number of edges in the correlation network and
is part of the C3 community, only one of the masses
yielded potential matches to known metabolites from
KEGG via the MassTRIX platform [34], namely m/z
333.0592 in community C4, which represents heat-
related response. Interestingly, m/z 333.0592 was
assigned to be a putative glycerophosphoinositol
(GroPIns; C9H19O11P; KEGG:C01225) or one of three
other isomers differing in the arrangement of phos-
phate, glycerol and sugar group. GroPIns and its de-
rivatives are involved in gene expression and
transcription factor activation controlling cell prolifer-
ation and inducing cell differentiation in mammals

[69–71]. In plants, GroPIns function has not been
investigated yet, although myo-inositol and
phosphatidyl-inositol signaling has been related to en-
vironmental stress [65, 66]. The genes positively cor-
related with m/z 333.0592 are involved in mRNA
processing and transcriptional regulation, suggesting
that m/z 333.0592 might play a role in Arabidopsis
gene expression resembling GroPIns in mammals.
The top positively correlated gene is AT1G23860
(correlation 0.888), which encodes a serine-arginine
rich protein involved in nuclear precursor mRNA
processing. Remarkably, the correlated changes be-
tween m/z 333.0592 and AT1G23860 together allow a
clear separation of different environmental conditions,
with gradually more induction from control to
drought, heat and combined stress (Fig. 5d). This sug-
gests that the mass-gene pair could be used to dis-
criminate these abiotic conditions, potentially
indicating the extent of transcriptional regulation of
specific heat response processes. Both the mass and
the gene transcript are present at high levels in cells:
the mean level of the mass is among the top 5% of
all masses in the FT-ICR-MS dataset, the mean level
of the gene transcript is among the top 15% of all
genes in the microarray dataset.

Dense modules of drought response players
Finally, we investigated dense modules in the network
with the aim to determine candidates with potentially
stress-relevant functions among the yet uncharacterized
masses. To reduce the overload of genes to the most
relevant ones, we included only the top three correlated
genes for each mass as nodes in the network (Additional
file 1: Figure S9). Based on the positive correlation edges
(correlation >0.85, p.adj < 1.0e-5), fully connected sub-
networks (cliques) that are not contained in other cli-
ques were detected; 27 of these cliques contained
metabolic masses. For additional information, we also
computed correlations between the genes of a clique
and the variables from our targeted metabolomics data-
set, building another set of network edges (Additional
file 5). One of the cliques consists of four masses from
the non-targeted analysis and eleven genes; it overlaps
with another clique of three masses and five genes, shar-
ing one mass and four genes (Fig. 5e). Since all genes
with available annotation in these overlapping cliques
have roles in transport or in response to water
deprivation (e.g., as transcriptional regulator, signaling
regulator or dehydrin chaperone), we propose that the
included masses and the unknown gene AT5G40790 are
closely related to drought response processes, which is
further supported by the stress response profiles of
clique members shown in the heatmap (Fig. 5e). Accord-
ing to ChemSpider [72], the mass overlapping between
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the two cliques, m/z 339.1409, could be a disaccharide
from two amino sugars derived from glucose
(C12H24N2O9). Like the other nodes in the two cliques,
this metabolic feature is up-regulated in all stresses
having a drought component, including a slight up-
regulation in heat stress with dry air; it is down-
regulated in heat stress with high air humidity. In agree-
ment with that, the node shares its gene connections
with carbohydrate osmolytes from the targeted metabo-
lomics data (glucose, mannose, sucrose, inositol, glycer-
aldehyde) and the putative sucrose mass from the non-
targeted metabolomics dataset (m/z 341.1089). This
suggests the possibility of osmotic stress response func-
tion for that mass. Furthermore, the branched-chain
amino acids (leucine, isoleucine and valine) and 3-
phenyl lactic acid involved in phenylalanine metabolism
are connected to all or all but one gene of the subnet-
work (Fig. 5 e). The accumulation of branched-chain
amino acids under drought stress has been observed
previously [73].

Dense module down-regulated under drought stress
Another clique has the opposite stress regulation pattern to
the cliques in Fig. 5e: strong down-regulation in drought-
related stresses, slight down-regulation under heat with dry
air, slight up-regulation or no regulation under heat with
high air humidity (Additional file 1: Figure S10). It consists
of seven genes and two masses, m/z 449.1121 and m/z
549.2300; six genes are annotated with functions in the
extracellular compartment and in transport; the seventh
gene encodes a transmembrane protein of unknown func-
tion. Unambiguous annotation of the masses is not pos-
sible; the data propose some (potentially indirect)
relationship to membrane processes required under heat
stress and normal growth conditions but not under drought
stress. The most correlated metabolite from the targeted
metabolomics data is galactinol, having correlation >0.85 to
four out of the seven genes and correlation >0.75 to all
seven genes; the top correlation is to AT4G16980, a mem-
ber of the (extracellular) arabinogalactan-protein family
(Additional file 5). Accumulation of galactinol has been de-
scribed as a heat stress response [74].
The results exemplify how a data-driven joint analysis

of transcriptomic and metabolomic profiles substantiates
current knowledge and leads to new hypotheses regard-
ing abiotic stress responses in Arabidopsis plants.

Discussion
Simultaneous heat stress affects flavonoid biosynthesis,
oxidative stress and protein folding in response to
drought stress but not ABA signaling and osmotic
regulation
Decomposition of combined stress responses revealed
interactions between drought and heat responses both at

transcript and at metabolite level, suggesting that single
stress responses are partly adjusted during the combined
stress situation. The molecular response to drought
stress is characterized by ABA signaling, osmolyte bio-
synthesis, macromolecule protection, cuticular wax syn-
thesis, reactive oxygen species detoxification and
flavonoid accumulation [75, 76]. All these response pro-
cesses were observed in our experiments, and we add-
itionally investigated whether and how they are changed
by simultaneous application of heat stress (Fig. 2; main
text). In particular, flavonoid biosynthesis is adversely af-
fected by the stress combination, whereas many oxida-
tive stress response and protein folding genes are
specifically induced. In contrast, ABA signaling and
osmolyte regulation (including accumulation of sucrose
and putative sugar alcohols) in response to drought
stress are not altered by addition of heat stress. These
findings have implications in stress tolerance breeding.
The gene categorization resulting from our analysis gives
hints on the suitability of a gene target regarding toler-
ance in a range of climatic scenarios. For instance,
optimization of osmoprotection seems more promising
than optimization of flavonoid biosynthesis in areas
where drought is often accompanied by heat waves.
Likewise, it might be useful to consider the enhanced
relevance of oxidative stress response and protein fold-
ing under combined stress. A clean distinction between
enhanced, additive and reduced response groups is re-
quired for such considerations. Therefore, an interaction
analysis of stress combination has been employed here,
complementing the relations provided by classical Venn
diagrams. However, the basic molecular response pat-
terns we observed are consistent with previous stress
combination studies, as elaborated in the case of sucrose
and different cell wall invertases, for instance [2, 5].

Combination-specific stress regulatory effect suggests
decoupling of ribosome biogenesis and growth
Regarding transcriptomic effects occurring only in the
severe condition of combined stress, we observed an up-
regulation of ribonucleotide biosynthesis and a down-
regulation of cell division processes (Fig. 2, group 4).
The simultaneous occurrence of ribonucleotide biosyn-
thesis, including ribosome biogenesis, and cell division
inhibition might suggest that plants prepare the transla-
tional machinery for the recovery phase where more
protein biosynthesis will be needed [77]; a recent study
in a maize population also showed a negative correlation
between leaf growth and transcript levels of genes en-
coding for ribosomal proteins, which indicates that the
energy-consuming process of ribosome biogenesis is
minimized for growth [78]. In agreement with this, a
transcriptional down-regulation but unchanged protein
abundance for the majority of ribosomal proteins was
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observed during Arabidopsis leaf growth, suggesting im-
proved ribosomal protein stability [79]. This is con-
firmed by a decrease of ribosome protein degradation
rates with increasing growth rates in Arabidopsis [80].
Similar to our finding, Noir et al. reported elevation of
ribosomal gene expression in conjunction with
jasmonate-inhibited cell proliferation and leaf growth in
Arabidopsis and interpreted it as a stand-by mode of the
cell [81]. Thus, our finding corroborates previous results;
proteomic, transcriptomic and genomic evidence fit to-
gether. Our metabolomic data additionally suggest rela-
tionships to metabolic pathways involving growth
hormones and growth inhibitors.

Relative air humidity modulates the relative extent of
drought and temperature components in heat stress
responses
The response to heat stress is of major interest for cli-
mate change scenarios and has been extensively studied
at the transcriptome level [2, 3, 52, 54, 56, 57]. The in-
corporation of varying air humidity as an experimental
factor in our study revealed a prominent drought com-
ponent of heat stress responses in leaves (Fig. 3a and b),
explaining in particular JA- and ABA-related responses
[52]. This heat-related drought effect also led to a clear
dominance of drought responses under combined
drought-heat stress when no supplementary air humidity
is added (Fig. 2). The majority of gene up- or down-
regulations in combined stress relative to the control
condition come from cumulative effects of modest
drought and heat regulations, reflected by the larger
number of genes in comparison to control conditions
(Fig. 3c) than in the respective groups of the decompos-
ition model (Fig. 2). Nevertheless, the drought contribu-
tion is stronger than the heat contribution: among the
genes up-regulated in combined stress relative to the
control, 75% are higher expressed in drought than in
heat; among the genes down-regulated in combined
stress, 77% are lower expressed in drought than in heat
(Additional files 3 and 4).
On the other hand, relative air humidity may also have

an influence on the temperature component of the heat
stress response. We showed that high air humidity has
no significant other effect than increased temperature
response (Fig. 3a and b). For combined stress, the role of
air humidity can be summarized as follows: low air hu-
midity enhances the transcriptomic drought response
and high air humidity enhances the transcriptomic heat
response. Our data also contribute to explaining discrep-
ant observations in previous transcriptomic studies on
drought-heat combinations: while Rizhsky et al. [5] used
settings close to our low air humidity condition and
found a dominance of drought-related effects in com-
bined stress, Prasch and Sonnewald [2] observed a

dominance of heat responses after applying a longer but
less extreme heat stress than Rizhsky et al. and main-
taining the relative air humidity at 60%, which makes
the setting closer to our high air humidity condition.
From a physiological perspective, an increase in relative
air humidity gradually reduces transpiration (Additional
file 1: Figure S11). As a consequence, cooling is less ef-
fective, aggravating heat effects, but excessive water loss
is prevented, alleviating drought effects. Taken together,
the results support the hypothesis that air humidity
modulates the prevalence of drought and temperature
components of the response to heat stress. The air hu-
midity aspect is inherently connected with heat stress
due to the temperature-dependent change of the vapor
pressure of water in air. Our analysis shows that molecu-
lar responses in the plant are clearly affected by this
change, resulting either in enhanced temperature re-
sponse or in activation of drought response.

Metabolism is sensitive to drought but remains largely
unaffected by temperature stress due to massive
transcriptomic measures for protein protection
Comparing the relative responses to low and high air
humidity heat stresses between metabolome and tran-
scriptome, the most striking observation is that the me-
tabolome primarily responds to the enhanced drought
due to lower air humidity, whereas the transcriptome
mainly responds to temperature increase at high air hu-
midity conditions (Fig. 3a; Additional file 1: Figure S12).
Such a finding would not be detectable from separate
studies, emphasizing the potential and importance of a
side-by-side analysis of different omics levels. The results
suggest that a temperature heat episode requires massive
transcriptional changes but per se has comparatively lit-
tle effect on metabolite levels. A huge part of the tran-
scriptomic up-regulation concerns proteins that ensure
proper protein folding (e.g., chaperones), which – if
working well – would not have consequences on meta-
bolic pathways. Thus, a possible biological interpretation
is that protein protection as a major temperature re-
sponse allows for a close-to-normal metabolism. In con-
trast, the heat-associated increase in VPD (dry air)
accounts for the majority of metabolomic heat stress re-
sponses. Since dry air might provoke drought in leaves,
we expect that the metabolomic response partly resem-
bles that of a drought stress scenario. Indeed, 21% of the
masses up-regulated only in heat with low air humidity
and not in heat with high air humidity are also up-
regulated in drought (Additional Files 2 and 4). Among
them, we find m/z 353.1031, putatively a lignan
(C20H18O6) that is synthesized from coniferyl alcohol;
putative coniferyl alcohol is also accumulated in drought
(Results). Some drought-induced osmoprotectants like
the putative raffinose (m/z 503.1618) are shared between
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the low and high air humidity responses both in heat
stress and in combined stress, indicating that high
temperature may also induce osmotic responses. In fact,
accumulation of raffinose has previously been observed
both after heat shock and after cold shock [82],
highlighting its general role. In summary, our results
support a hypothesis of drought sensitivity and
temperature insensitivity of the metabolome. Still, com-
bined stress shows a substantial number of regulated
metabolites under high air humidity only (Fig. 3b),
among them putative lignans, flavonoids and glucosino-
lates (Additional file 4). Their role could potentially be
related to differences in drought responses between the
two air humidity settings.

Putative glycerophosphoinositol is an mRNA processing-
related biomarker of heat stress and may be metabolized
via mammal-like pathways
A substantial part of the Arabidopsis metabolome is still
uncharacterized [83]. By exploring data-driven relation-
ships between metabolomic and transcriptomic features, it
is possible to develop hypotheses on the nature of un-
known compounds or to suggest stress-related biomarkers
(e.g., drought and heat biomarkers: Fig. 4; Additional file
1: Figure S8). Using a global correlation network primarily
based on strong gene-mass correlations, we identified m/z
333.0592 together with the mRNA processing gene
AT1G23860 as a biomarker of abiotic stress, separating
drought, heat and combined scenarios (Fig. 5d) and repre-
senting in particular heat response (Fig. 5b, c). We
employed correlation analysis as a tool to identify candi-
date genes potentially involved in the metabolism of m/z
333.0592. Database search with MassTRIX [34] suggested
that m/z 333.0592 may be sn-glycero-3-phospho-1-inosi-
tol (GroPIns; KEGG:C01225) or an isomeric molecule. In
mammals, the degradation of GroPIns is catalyzed by the
GroPIns phosphodiesterases (GDEs) GDE1 or GDE3, pro-
ducing either myo-inositol and glycerol phosphate or
myo-inositol phosphate and glycerol. Negatively corre-
lated candidate genes are AT4G34930 (correlation
−0.863), encoding a phosphodiesterase of the phospholip-
ase C (PLC)-like superfamily to which mammalian GDE3
also belongs, as well as AT5G63990 (correlation −0.859)
and AT4G05090 (correlation −0.847), both encoding in-
ositol monophosphatases that could further convert myo-
inositol phosphate to myo-inositol. Among the 12 PLC-
like phosphodiesterases annotated in TAIR [4], we find
only strong anti-correlations with m/z 333.0592, no strong
positive correlations. Taken together, a two-step pathway
from GroPIns to myo-inositol could exist in Arabidopsis
thaliana, and its down-regulation under stress could con-
tribute to the accumulation of GroPIns.
Interestingly however, the targeted metabolomics data

show that myo-inositol is up-regulated in drought vs.

the control condition (Additional file 1: Figure S13).
This suggests that other pathways than the GDE3-like
pathway lead to an accumulation of myo-inositol under
stress. One option would be an equivalent to the mam-
malian GDE1 pathway, which produces myo-inositol in
a single step directly from GroPIns, releasing sn-
glycerol-3-phosphate (PLD-like phosphodiesterase activ-
ity). A TAIR search [4] yielded 39 phosphodiesterases,
among them 13 glycerophosphodiester phosphodiester-
ases which could catalyze a GDE1-type reaction (EC
3.1.4.44). Two of them, the glycerophosphodiester phos-
phodiesterases GDPD4 and GDPD3 (AT1G71340 and
AT5G43300), are significantly positively correlated with
m/z 333.0592 (0.827 and 0.708, respectively), indicating
that a GDE1-like pathway potentially exists in Arabidop-
sis and is induced upon abiotic stresses, in contrast to
the putative GDE3-like pathway, where down-regulation
is observed (Additional file 1: Figure S14). Another path-
way to myo-inositol production is the conversion of
glucose-6-phosphate via myo-inositol-3-phosphate (EC
5.5.1.4, 3.1.3.25; KEGG:00562). The myo-inositol-
phosphate synthase (MIPS) genes MIPS1 (AT4G39800),
MIPS2 (AT2G22240), MIPS3 (AT5G10170) catalyze the
first step. MIPS3 is anti-correlated to m/z 333.0592, so
this pathway is supposedly less active under stresses and
does not contribute to myo-inositol accumulation. In
drought stress however, MIPS1 and MIPS2 are up-
regulated and glucose-6-phosphate is depleted whereas
glucose levels go up, in agreement with a hypothetical
GroPIns-independent myo-inositol production (Add-
itional file 1: Figure S13; Additional file 2).
In summary, the data support the potential existence

of both mammalian pathways from GroPIns to myo-
inositol in Arabidopsis, but only the putative GDE1-like
pathway seems to be activated in stress response. The
accumulation of GroPIns under stress may influence
transcriptional regulation. Here we discussed putative
degradation pathways of GroPIns. It is unclear whether
biosynthesis genes also contribute to the accumulation
of putative GroPIns in stress. There is no close correl-
ation between m/z 333.0592 and the phospholipase A
genes annotated in TAIR [4]; the known GroPIns bio-
synthetic enzyme in mammals belongs to this gene
family.

Conclusions
Analyzing a large dataset along different axes, the study
addressed effects of genotypes, stress combination and
air humidity as well as relationships between transcrip-
tomic and metabolomic responses in Arabidopsis thali-
ana leaves. While the molecular response to drought
and heat stresses surprisingly was not affected by the
loss of major aquaporin water channels with prior asso-
ciation to abiotic stress responses [12, 13, 29, 31],
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drought and heat induced shared and unique response
features both at the transcriptomic and at the metabolo-
mic level; drought response involved more differential
regulation than heat response. Most of the drought or
heat regulations were also present during combined
drought-heat stress, where the drought response conse-
quently dominated the heat response. Beyond that, a
substantial fraction of molecular drought and heat re-
sponses influenced each other negatively or positively,
resulting in reduced or enhanced response effects in
combined stress, which were functionally explored to
give hints whether the strengthening of specific bio-
logical processes could improve stress tolerance in all
stress scenarios, only in specific stresses or only in cer-
tain combined stress situations. Although the extent and
nature of stress responses varies with duration and se-
verity of drought and heat conditions, the findings are of
interest for further stress interaction studies, including
susceptibility to pathogen attack during different abiotic
stress situations [2, 36].
On the other hand, already a single stress trigger can

evoke a combination of stress factors, reflected by a het-
erogeneous molecular response and modulated by other
climatic factors. An explicit variation of these external
factors makes it possible to identify contributions of dif-
ferent stress components to the plant responses. For in-
stance, investigating heat stress with and without air
humidity supplement suggested that increased vapor
pressure deficit is an important component of heat stress
that can be separated from a solely temperature-related
component. In our case it appeared to be the primary
trigger of metabolomic response, whereas the transcrip-
tomic response was clearly dominated by temperature
effects focusing on protein folding. This could mean that
ensuring correct protein folding during temperature
avoids major disturbances or reorganization of the me-
tabolism. In combined stress, our evidence indicated a
larger drought effect and a smaller temperature effect
than for heat stress, resulting in parallel effects between
the transcriptome and the metabolome, with a reduced
response for higher air humidity.
In addition to global or knowledge-based coherency

checks between transcriptomic and metabolomic features,
the measurements collected in this study allow to explore
transcriptome-metabolome correlations across multiple
stress conditions with distinct responses in a purely data-
driven manner. Certainly, transcriptomic and metabolo-
mic stress responses can differ in their dynamics [84],
therefore a single sampling time point per condition can-
not capture all dependencies between transcriptome and
metabolome in detail. Nevertheless, the case studies pre-
sented in this paper show that stress-associated correlated
features and combined transcriptome-metabolome bio-
markers could be successfully identified. Beyond that, the

predictions derived from our correlation networks assist
in clarifying functional complementarity and putative
stress response roles of known compounds and genes
(such as sucrose, cell wall invertases and invertase inhibi-
tors) and in hypothesizing potential functions or meta-
bolic pathways of uncharacterized metabolite compounds,
which constitute starting points for future research. More-
over, integrating comprehensive gene expression and non-
targeted metabolomics measurements across multiple
single and combined abiotic stress conditions as well as
selected targeted metabolomics measurements, the dataset
produced in this study may serve as a resource to query
candidate genes or metabolic features before investigating
specific response mechanisms, with the ultimate goal to
sustain crop production in variable climate conditions.

Methods
Plant materials
The study was performed with wild-type plants and in-
sertion lines from the Arabidopsis thaliana ecotype
Columbia (Col-0). Wild-type Columbia seeds were ori-
ginally obtained in the 1990s from George Redei (Col-0),
and thereafter propagated in the research group of
Anton Schäffner. The loss-of-function mutants pip2;1–2
(SM_3_35928), pip2;2–3 (SAIL_169A03) and pip2;4–1
(SM_3_20853) [85–87] were obtained from the Notting-
ham Arabidopsis Stock Center [88] and had been char-
acterized previously [29, 30]. The double mutant pip2;1
pip2;2 and the triple mutant pip2;1 pip2;2 pip2;4 used in
this study were generated by crossing the above-
mentioned single mutants.

Plant growth and environmental stress conditions
The plants were grown on soil (peat moss-based Flora-
gard B seed (Floragard Vertriebs GmbH, Oldenburg,
Germany) mixed with quartz sand (0.6–1.2 mm grit size;
Gebrüder Dorfner GmbH, Hirschau, Germany) at a ratio
of 8:1) in cultivation trays (PL 2838/48, Pöppelmann,
Lohne, Germany) with individual pot size of 4 × 4 cm
inner dimensions and 66 ml volume. The cultivation
plates were subdivided into aggregates combining six
(arranged as 2 × 3) pots. Each six-pack was filled with
the same amount of substrate by weight. Later weighting
was used to monitor uniform watering or to assess the
water content of the soil (see below). One plant was
grown per pot. Plants were raised in two 4 × 4 m, walk-
in climate simulation chambers with 11 h/13 h light/
dark cycle, 200 μmol m−2 s−1 photosynthetic photon flux
density, 22 °C air temperature and 0.79 kPa vapor pres-
sure deficit (VPD), corresponding to 70% relative air hu-
midity. Plants were regularly watered by an automatic
flooding system raising the water level up to 60% of the
pot height for 15 min; water was completely drained
afterwards. For drought (drought (D) and combined
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drought and heat stresses (DH)) three-week-old plants
were finally flooded with water. After one week without
watering the soil water content dropped to approxi-
mately 30% of the initial water content constituting
drought conditions. Control samples had a relative water
content of approximately 70% at harvest. Heat stress (H)
was applied to both well-watered plants and drought-
treated plants, raising the temperature to 33 °C for 6 h
from 11:00 a.m. to 5:00 p.m.. For one set of plants, the
absolute air humidity was kept unchanged during the
temperature increase, resulting in 37% relative air hu-
midity and 3.17 kPa VPD; this condition is labeled “LrH”
(low relative air humidity). For another set of plants, the
heat treatments were done with supplemented air hu-
midity to maintain the VPD at 0.79 kPa (at 84% relative
air humidity); the condition is labeled “HrH” (high rela-
tive air humidity).
Five replicates of each genotype were generated for

each environmental scenario; they were randomly dis-
tributed in the chambers to exclude position effects.
Each replicate consisted of seven or eight rosettes that
were harvested after treatment, collected into plastic
bags (4 oz. 118 mL, Whirl-Pak sampling bags, Sigma-
Aldrich, Germany), immediately frozen in liquid nitro-
gen and stored at −80 °C until use. Control samples
were harvested at the same time as treated samples. All
samples were collected at 5 p.m. within 15 min. For
microarray and FT-ICR-MS analyses, samples were
ground at 2500 rpm for 2.5 min using the mixer mill
MM 400 (Retsch, Haan, Germany), and aliquots of
100 mg powder were used for RNA or metabolite ex-
traction, respectively.

Supportive physiological measurements and meta data
Transpiration of four-week-old plants grown on soil was
measured using a GFS-3000 portable gas-exchange sys-
tem fitted with a special cuvette for Arabidopsis 3010-A
(Walz, Effeltrich, Germany). The air flow to the cuvette
was set at 700 mmol s−1. During the measurements, the
absolute CO2 concentration, cuvette temperature, and
light intensity in the cuvette were set at 390 ppm, 23 °C
and 350 μmol m−2 s−1 photosynthetic photon flux dens-
ity, respectively. The relative air humidity was progres-
sively changed to 20%, 40%, 60% and 75%. The
transpiration rate of the rosettes was recorded every 30 s
for a total time of 8 min and the values of the last 3 min
at each relative humidity setting were averaged (Add-
itional file 1: Figure S11).
To assess the water content of rosette leaves upon har-

vesting after the heat and drought-heat scenarios, a de-
fined amount of fresh material ground in liquid nitrogen
was completely dried. The water content was calculated
as difference of fresh weight minus dry weight (Add-
itional file 1: Figure S5). The water content of fully

watered and drained substrate was regarded as saturated.
After complete drying in an oven the residual weight
was 35%. These two extremes defined the water content
of our substrate as 100% (fully watered, highest weight)
to 0% (completely dried, 35% of the starting weight).
During growth and in control conditions, approximately
70% water content was maintained by regular watering.
Drought treatment reduced the water content to ap-
proximately 30% during a week after stopping the regu-
lar watering. To monitor the soil evaporation rate under
the different heat stress scenarios, six-packs filled with
soil/sand mixture were prepared as indicated above, and
placed in climate chambers.

Microarray analysis
Total RNA was extracted using the RNeasy plant mini kit
(Qiagen, Hilden, Germany). RNA quality and quantity was
checked with an Agilent Bioanalyzer 2100 (Agilent Tech-
nologies, Waldbronn, Germany) and a Nanodrop ND-
1000 spectrophotometer (Kisker-Biotech, Steinfurt,
Germany). Transcriptomic analysis was performed using
Agilent At8✕60K one-color microarrays (Design ID:
29132, A-GEOD-16892) according to the manufacturer’s
instructions. After 17 h hybridization at 65 °C and wash-
ing, slides were scanned using the Agilent Microarray
Scanner, and data were extracted using the Agilent
Feature Extraction Software with the template
GE1_1010_Sep10. The preprocessing including back-
ground correction, quantile normalization, log2 transform-
ation and averaging across probes of the same gene was
done with the Bioconductor 2.13 software package limma,
version 3.18.13 [27, 28]. Batch effects of the three inde-
pendent experimental rounds were corrected using the
nlme package in R, version 3.1–115 [89]. One experimen-
tal round included all six conditions, one included five
conditions (without D) and one included four conditions
(without LrH conditions). For each genotype, three out of
five replicates were selected for microarray analysis (FT-
ICR-MS measurements were done with all five replicates,
see below). In summary, this yielded 135 microarray sam-
ples. The transcriptional data related to the genes PIP2;1,
PIP2;2 and PIP2;4 (AT3G53420, AT2G37170 and
AT5G60660), which were eliminated in the loss-of-
function mutants, were excluded from further analysis.
Apart from that, all genes and arrays from the measure-
ment were kept in the analysis.
The quality of the microarray-based transcriptome

analyses was further assessed. There is a good correl-
ation between biological replicates from all rounds, with
an average of 0.9916 across all biological groups (Add-
itional file 1: Figure S15). The arrays cluster according to
abiotic stress conditions (Additional file 1: Figure S16;
Fig. 1a). To independently verify individual results from
the microarray analyses, JA- and ABA-responsive genes
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were assessed by RT-qPCR. One μg of isolated total
RNA was reverse transcribed using a QuantiTect Re-
verse Transcription Kit (Qiagen, Hilgen Germany) ac-
cording to the manufacturer’s instructions. Gene-specific
primer pairs were designed using the Primer Express 3.0
software. Primer pairs are listed in the supplemental ma-
terial (Additional file 1: Table S3). All primer pairs were
evaluated for amplification specificity and efficiency [90].
The qPCR was performed using SYBR Green Sensimix
(Bioline, Luckenwalde, Germany) on a 7500 real-time
PCR system (Applied Biosystems). Individual PCR reac-
tion mixtures contained 4 μL of diluted cDNA, 10 μL of
SYBR Green, and 250 nM of each primer in a final vol-
ume of 20 μL. The expression levels of target genes were
normalized with the abundance of the constitutive
UBQ5 and S16 genes [91]. The RT-qPCR experiments
were performed with two technical replicates per each
biologically independent sample.

FT-ICR-MS analysis
Metabolite extraction was performed as described previ-
ously [92] with slight modifications. Forty-four μg/mL
loganin were added to the extraction buffer 1 (metha-
nol/chloroform/H2O 2.5:1:1 v/v/v) as an internal stand-
ard for calibration. Two mL pre-cooled extraction buffer
1 (−20 °C) was added to 100 mg plant material and
mixed at 4 °C for 30 min. After centrifugation (10 min,
14,000 rpm, 4 °C), 1 mL of the supernatant was trans-
ferred into a fresh 2 mL Eppendorf tube and the
remaining pellet was extracted in a second step with
1 mL pre-cooled (4 °C) methanol/chloroform (1:1 v/v).
After a second centrifugation, 500 μL were taken off and
both supernatants were combined. The extract was di-
vided into several 200 μL aliquots and dried completely
using a Speed-Vac. For MS analysis, the pellet was redis-
solved in 200 μl 70% methanol and diluted 1:100 in 70%
methanol containing 35 pmol/mL di-alanine as another
internal standard and for monitoring the ionization.
A Solarix FT-ICR mass spectrometer (Bruker

Daltonics, Bremen, Germany) coupled to a 12 Tesla
magnet (Magnex, UK) was used for the experimental
study. All ion excitations were performed in broadband
mode (frequency sweep radial ion excitation). 300 scans
were accumulated for each mass spectrum. Ions were ac-
cumulated in the collision cell for 300 ms for
thermalization and enrichment prior to ICR ion detec-
tion. The instrumental mass range m/z 147–1000 amu
was scanned. The electrospray ionization source (Apollo
II, Bruker Daltonics, Bremen, Germany) was used in the
negative ionization mode to ionize the studied analytes
in 50% methanolic solution (Lichrosolv, Sigma-Aldrich,
Schnelldorf, Germany). The sample solutions were
injected directly to the ionization source by the use of a
microliter pump at a flow rate of 2 μL/min. A source

heater temperature of 200 °C was maintained and no
nozzle-skimmer fragmentation was performed in the
ionization source. The instrument was previously cali-
brated by the use of arginine negative cluster ions start-
ing from a methanolic arginine solution of 5 mg/L.
The measurements were performed for all five repli-

cates of each genotype from the two experimental
rounds with four and five conditions, respectively, de-
scribed in the microarray analysis section. This yielded
135 FT-ICR-MS samples in total. Mass calibration was
based on two internal standards (see above) and 18 en-
dogenous metabolites (Additional file 1: Table S4). After
quality control of calibrated spectra, two subsequent
measurement batches and an outlier were removed and
103 samples were left, for which we performed 13C iso-
tope filtering, retaining only peaks where a correspond-
ing isotope peak was detected. Then the noise-cleaned
spectra were merged across samples with an error toler-
ance of 1 ppm. The intensities in each sample were nor-
malized by total ion current. To focus on reliably
detected masses, we selected the 663 masses detected in
at least two thirds of the samples in at least one condi-
tion. The missing values were set to the lower detection
threshold (5e+05) and the data were log2 transformed.
Finally, the data were corrected for experimental round
effects and replicate measurement order using the nlme
package in R [89]. Mapping of masses to metabolites
was performed with MassTRIX [34] and with ChemSpi-
der [72] using the metabolism data sources ChEMBL,
BioCyc, AraCyc, MassBank, KEGG and Golm Metabo-
lome Database and a maximum deviation of 2 ppm;
matching results were ranked according to increasing
monoisotopic mass distance.

GC-MS analysis
GC-TOF-MS measurements were done at the Faculty of
Biology of Ludwig-Maximilians-Universität München
(Martin Lehmann). The metabolites were extracted from
100 mg frozen plant material by adding 900 μL 80%
methanol (−20 °C) and heating to 70 °C for 15 min, and
derivatized for GC-MS analysis [93–95]. Samples were
injected into a GC-TOF-MS system (Pegasus HT, Leco,
St Joseph, USA). The transfer line, connecting the GC
and the TOF-MS, was set to 250 °C, as well as the ion
source where the metabolites got ionized and fraction-
ated by an electron pulse of 70 eV. Mass spectra were
recorded at 20 scans per second with an m/z 35–800
scanning range. Chromatograms and mass spectra were
evaluated using ChromaTOF 4.5 and TagFinder 4.1 soft-
ware [96]. Measurements were done for two conditions
(D and control), two genotypes (wild-type and pip2;1
pip2;2 double mutant) and five replicates each in two ex-
perimental rounds (one experimental round overlapping
with FT-ICR-MS measurements, both rounds
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overlapping with microarray measurements). The total
number of samples is 38 (two D mutant samples were
missed in one round). The features include 112 metabo-
lites and 51 unknown analytes. The data were log2 trans-
formed and corrected for experimental round effect with
the nlme package [89].

Statistical analysis
The statistical data analysis was performed with R, ver-
sion 3.0.3. Principal Component Analysis was done using
the prcomp function. For Canonical Correlation
Analysis, the rcc function of the mixOmics R package
version 5.0-1 [23, 61] was applied on the 56 paired sam-
ples from microarray and FT-ICR-MS measurements;
the regularization parameters were estimated according
to Schäfer and Strimmer [97]. Pearson correlation coeffi-
cients were computed by cor.test. The GC-MS data
shared 23 samples with the microarray data and 18 sam-
ples with the FT-ICR-MS data (all three datasets share
11 samples). Network communities were determined
by label.propagation.community and visualized by
plot.communities from the igraph package, version
0.7.1 [67, 68]; cliques were detected with the maximal.-
cliques function from the same package. Subnetworks
were drawn with Graphviz, version 2.36, and Cytoscape,
version 3.1.1. For differential analysis between conditions
or genotypes, linear models were fitted on each omics
dataset separately (including all the samples) using the
Bioconductor 2.13 package limma, version 3.18.13
[27, 28]; the log2 fold change threshold was set to 1
and the adjusted p-value threshold was set to 0.05
with FDR as the adjustment method. In the combined
stress analysis omitting high air humidity scenarios,
conditions were represented by two binary factors
(drought/non-drought and heat/non-heat) including
an interaction term, otherwise by one multi-valued factor.
For GO enrichment analysis of gene lists, the function
fisher.test was employed and multiple testing correction
by FDR was done with p.adjust; the GO annotation was
taken from the org.At.tair.db package, version 2.10.1.

Additional files

Additional file 1: Supplementary figures and tables. The supplementary
figures and tables, combined into a single document, support the
findings described in this study and are cited at appropriate places in the
main text. (PDF 3152 kb)

Additional file 2: Result lists for stress combination analysis. Mass and
gene classifications are provided according to the combined stress
model depicted in Fig. 2. Classification is carried out with respect to the
regulation in drought stress (D), the regulation in heat stress (H) and the
drought:heat interaction term (D:H). The resulting groups are named
according to Fig. 2; in addition, the table contains three tiny groups with
opposite regulation between drought and heat, which are omitted from
Fig. 2. For each gene group, functional annotation and enriched GO
terms are additionally provided in separate sheets. (XLSX 312 kb)

Additional file 3: Result lists of condition-specific gene expression and
metabolomic mass levels estimated by linear modeling across the whole
dataset. Tables show mean log2 gene expression values and log2me-
tabolomic mass levels for each of the six environmental conditions: con-
trol, drought (D), heat with low relative air humidity (H_LrH), heat
with high relative air humidity (H_HrH), drought stress combined with low
air humidity heat stress (DH_LrH) and drought stress combined with high
air humidity heat stress (DH_HrH). Values of all individual samples are
available in the processed data file deposited at the ArrayExpress and
MetaboLights databases, respectively (Availability of data and materials).
(XLSX 2264 kb)

Additional file 4: Result lists for air humidity analysis. Mass and gene
lists as well as enriched GO terms are given for the Venn groups in Fig.
3a and b, distinguishing low air humidity-specific variables (LrH only),
high air humidity-specific variables (HrH only) and overlapping variables
(overlap) for the heat stress setting (H) or the combined drought-heat
stress setting (DH). Up-regulated and down-regulated subgroups are
shown in separate sheets. (XLSX 409 kb)

Additional file 5: Correlations of targeted metabolites from GC-MS dataset
used for evaluation. Pearson correlations between GC-MS-measured
metabolites and variables of the main study datasets are given. The
first sheet contains correlations of the sucrose inversion variables
from Fig. 5a. The second sheet contains correlations between GC-MS
metabolites and the network genes from Fig. 5b, including metabolite-
gene, gene-gene and metabolite-metabolite correlations. The third sheet
contains correlations between GC-MS metabolites and FT-ICR-MS
mass variables. (XLSX 15496 kb)

Additional file 6: Results lists for network communities of correlated
genes and metabolic masses. The graph structure of each network
community shown in Fig. 5b and c is given in dot format readable by
Graphviz (http://www.graphviz.org), and significantly enriched GO terms
for each community are provided as lists. (XLSX 1518 kb)

Abbreviations
6MSOH: 6-methylsulphinylhexyl glucosinolate; ABA: Abscisic acid; ABF4: ABA-
responsive element binding factor 4; ACX1: Acyl-CoA oxidase 1; AHG1: ABA-
hypersensitive germination 1; C/VIF: Cell wall/vacuolar inhibitor of
fructosidase; CAD: Cinnamyl alcohol dehydrogenase; CCA: Canonical
correlation analysis; CCR2: Cinnamoyl CoA reductase; CHI: Chalcone
isomerase; CHS: Chalcone synthase; CWINV: Cell wall invertase;
CYP79B2: Cytochrome P450, family 79, subfamily B, polypeptide 2;
D: Drought stress; DH_HrH: Combined drought-heat stress with high relative
air humidity; DH_LrH: Combined drought-heat stress with low relative air hu-
midity; F3H: Flavanone 3-hydroxylase; FDR: False discovery rate; FT-ICR-
MS: Fourier transform ion cyclotron resonance mass spectrometry; GC-
MS: Gas chromatography mass spectrometry; GDE: GroPIns
phosphodiesterase; GDPD: Glycerophosphodiester phosphodiesterase;
GO: Gene ontology; GroPIns: Glycerophosphoinositol; H_HrH: Heat stress
with high relative air humidity; H_LrH: Heat stress with low relative air
humidity; HSF: Heat shock factor; HSP: Heat shock protein; JA: Jasmonic acid;
JAM1: JA-associated MYC2-like 1; JAZ: Jasmonate-zim-domain protein;
LTI30: Low temperature-induced 30; LTP3: Lipid transfer protein 3;
MBF1C: Multiprotein bridging factor 1C; MIPS: Myo-inositol-phosphate
synthase; MYB: Myb domain protein; NIP: NOD26-like major intrinsic protein;
OST1: Open stomata 1; p.adj: FDR-adjusted p-value; PAP1: Production of
anthocyanin pigment 1; PC: Principal component; PCA: Principal component
analysis; PIP: Plasma membrane intrinsic protein; PLC: Phospholipase C;
PLD: Phospholipase D; PP2C: Clade A protein phosphatases type 2C;
RD29A: Responsive to desiccation 29A; ROS: Reactive oxygen species;
S16: Ribosomal protein S5 domain 2-like superfamily protein; SA: Salicylic
acid; SIP: Small and basic intrinsic protein; SnRK2.6: Sucrose nonfermenting 1-
related protein kinase 2.6; TIP: Tonoplast intrinsic protein; UBQ5: Ubiquitin 5;
VPD: Vapor pressure deficit

Acknowledgements
We would like to thank Martin Lehmann (Ludwig-Maximilians-Universität
München) for his help with the GC-MS measurements, and Birgit Geist and
Susanne Stich (Helmholtz Zentrum München) for technical assistance. We are
very grateful to Theresa Faus-Kessler (Helmholtz Zentrum München) for

Georgii et al. BMC Plant Biology  (2017) 17:120 Page 20 of 23

dx.doi.org/10.1186/s12870-017-1062-y
dx.doi.org/10.1186/s12870-017-1062-y
dx.doi.org/10.1186/s12870-017-1062-y
dx.doi.org/10.1186/s12870-017-1062-y
dx.doi.org/10.1186/s12870-017-1062-y
dx.doi.org/10.1186/s12870-017-1062-y
http://www.graphviz.org


her initial help with the data processing. We gratefully acknowledge the
specified funding sources.

Funding
EG and ARS were supported by the German Plant Phenotyping Network
funded by the German Federal Ministry of Education and Research [DPPN,
no. 031A053C], JBW by the European Plant Phenotyping Network funded by
the FP7 Research Infrastructures Programme of the European Union [EPPN,
no. 284443], MJ by the China Scholarship Council and all authors by the
German Research Center for Environmental Health in the Helmholtz
Association. The funding bodies were not engaged in the design or
interpretation of the study.

Availability of data and materials
The microarray data generated in the current study are available in the
ArrayExpress database, http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
4867. Both non-targeted and targeted metabolomics data are deposited in the
MetaboLights repository, http://www.ebi.ac.uk/metabolights/MTBLS355.

Authors’ contributions
ARS conceived and supervised the study. EG, MJ, JZ, AA, JBW and ARS designed
the analysis and interpreted the results. MJ and JZ performed and organized
most of the experiments; MJ carried out microarray experiments; JZ carried out
metabolite extraction, and BK and PS-K did FT-ICR-MS measurements; JZ, EG, BK
and PS-K preprocessed the FT-ICR-MS data. EG performed the computational
data analyses. AA and JBW provided and supported the use of climate
simulation chambers. EG wrote the article with contributions of JZ, MJ,
BK and ARS. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Helmholtz Zentrum München, Department of Environmental Sciences,
Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764
Neuherberg, Germany. 2Helmholtz Zentrum München, Department of
Environmental Sciences, Research Unit Analytical Biogeochemistry,
Ingolstädter Landstr, 1, 85764 Neuherberg, Germany. 3Helmholtz Zentrum
München, Department of Environmental Sciences, Research Unit
Environmental Simulation, Ingolstädter Landstr, 1, 85764 Neuherberg,
Germany.

Received: 14 November 2016 Accepted: 25 June 2017

References
1. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic

stress combinations. New Phytol. 2014;203:32–43.
2. Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and

virus to Arabidopsis plants reveals significant shifts in signaling networks.
Plant Physiol. 2013;162:1849–66.

3. Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring
P. The heat stress transcription factor Hsf A2 serves as a regulatory amplifier
of a subset of genes in the heat stress response in Arabidopsis. Plant Mol
Biol. 2006;60:759–72.

4. Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, et al. The
Arabidopsis information resource: Making and mining the “gold standard”
annotated reference plant genome. Genesis. 2015;53:474–85.

5. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When
defense pathways collide. The response of Arabidopsis to a combination of
drought and heat stress. Plant Physiol. 2004;134:1683–96.

6. Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, et al. Genome-
wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res.
2010;20:45–58.

7. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P,
Costantino P, et al. Transcriptome responses to combinations of stresses in
Arabidopsis. Plant Physiol. 2013;161:1783–94.

8. Sewelam N, Oshima Y, Mitsuda N, Ohme-Takagi M. A step towards
understanding plant responses to multiple environmental stresses: a
genome-wide study. Plant Cell Environ. 2014;37:2024–35.

9. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic
rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608.

10. Obata T, Fernie AR. The use of metabolomics to dissect plant responses to
abiotic stresses. Cell Mol Life Sci. 2012;69:3225–43.

11. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, et al.
Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis
thaliana to stress combination. J Biol Chem. 2008;283:34197–203.

12. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson
M, et al. Whole gene family expression and drought stress regulation of
aquaporins. Plant Mol Biol. 2005;59:469–84.

13. Christou A, Filippou P, Manganaris GA, Fotopoulos V. Sodium hydrosulfide
induces systemic thermotolerance to strawberry plants through
transcriptional regulation of heat shock proteins and aquaporin. BMC Plant
Biol. 2014;14:42.

14. Radomiljac JD, Whelan J, van der Merwe M. Coordinating metabolite
changes with our perception of plant abiotic stress responses: emerging
views revealed by integrative-omic analyses. Meta. 2013;3:761–86.

15. Tohge T, Scossa F, Fernie AR. Integrative Approaches to Enhance
Understanding of Plant Metabolic Pathway Structure and Regulation. Plant
Physiol. 2015;169:1499–511.

16. Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr. Plant systems biology
comes of age. Trends Plant Sci. 2008;13:165–71.

17. Hannah MA, Caldana C, Steinhauser D, Balbo I, Fernie AR, Willmitzer L.
Combined transcript and metabolite profiling of Arabidopsis grown under
widely variant growth conditions facilitates the identification of novel
metabolite-mediated regulation of gene expression. Plant Physiol. 2010;152:2120–9.

18. Bai Y, Dougherty L, Cheng L, Zhong GY, Xu K. Uncovering co-expression
gene network modules regulating fruit acidity in diverse apples. BMC
Genomics. 2015;16:612.

19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinform. 2008;9:559.

20. Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, et al.
Systems biology of tomato fruit development: combined transcript, protein,
and metabolite analysis of tomato transcription factor (nor, rin) and
ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant
Physiol. 2011;157:405–25.

21. Acharya L, Judeh T, Zhu D. A survey of computational approaches to
reconstruct and partition biological networks. In: Dehmer M, Basak SC,
editors. Statistical and Machine Learning Approaches for Network Analysis.
Hoboken: John Wiley & Sons, Inc.; 2012.

22. Aittokallio T, Schwikowski B. Graph-based methods for analysing networks
in cell biology. Brief Bioinform. 2006;7:243–55.

23. Le Cao KA, Gonzalez I, Dejean S. integr Omics: an R package to unravel
relationships between two omics datasets. Bioinformatics. 2009;25:2855–6.

24. Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L. Methyl jasmonate
dramatically enhances the accumulation of phenolic acids in Salvia
miltiorrhiza hairy root cultures. Physiol Plant. 2009;137:1–9.

25. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A,
Steinhauser D, et al. Metabolomic and transcriptomic stress response of
Escherichia coli. Mol Syst Biol. 2010;6:364.

26. da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, et
al. Characterizing the grape transcriptome. Analysis of expressed sequence
tags from multiple Vitis species and development of a compendium of
gene expression during berry development. Plant Physiol. 2005;139:574–97.

27. Smyth GK. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol.
2004;3:Article 3.

28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43:e47.

29. Da Ines O, Graf W, Franck KI, Albert A, Winkler JB, Scherb H, et al. Kinetic
analyses of plant water relocation using deuterium as tracer - reduced

Georgii et al. BMC Plant Biology  (2017) 17:120 Page 21 of 23

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4867
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4867
http://www.ebi.ac.uk/metabolights/MTBLS355


water flux of Arabidopsis pip 2 aquaporin knockout mutants. Plant Biol
(Stuttg). 2010;12(Suppl 1):129–39.

30. Peret B, Li G, Zhao J, Band LR, Voss U, Postaire O, et al. Auxin regulates
aquaporin function to facilitate lateral root emergence. Nat Cell Biol. 2012;
14:991–8.

31. Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C.
Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-
Mediated Phosphorylation. Plant Cell. 2015;27:1945–54.

32. Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, et al.
Arabidopsis growth under prolonged high temperature and water deficit:
independent or interactive effects? Plant Cell Environ. 2012;35:702–18.

33. Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA,
Rodriguez PL. Selective inhibition of clade A phosphatases type 2C by PYR/
PYL/RCAR abscisic acid receptors. Plant Physiol. 2012;158:970–80.

34. Suhre K, Schmitt-Kopplin P. Mass TRIX: mass translator into pathways.
Nucleic Acids Res. 2008;36:W481–4.

35. Niinemets U, Kannaste A, Copolovici L. Quantitative patterns between plant
volatile emissions induced by biotic stresses and the degree of damage.
Front Plant Sci. 2013;4:262.

36. Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses:
from genes to the field. J Exp Bot. 2012;63:3523–43.

37. Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation
by epidermal cells. Annu Rev Plant Biol. 2008;59:683–707.

38. Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, et al. Arabidopsis 3-
ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic
acids as precursors of cuticular waxes, suberins, sphingolipids, and
phospholipids. Plant Physiol. 2013;162:567–80.

39. Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubes J, et al. The
impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant
Physiol. 2009;151:1918–29.

40. Bernard A, Joubes J. Arabidopsis cuticular waxes: advances in synthesis,
export and regulation. Prog Lipid Res. 2013;52:110–29.

41. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome
changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant
Physiol. 2002;130:2129–41.

42. Fukui H, Koshimizu K, Usuda S, Yamazaki Y. Isolation of plant growth
regulators from seeds of Cucurbita pepo L. Agric Biol Chem. 1977;41:175–80.

43. Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, et al. Auxin
biosynthesis inhibitors, identified by a genomics-based approach, provide
insights into auxin biosynthesis. Plant Cell Physiol. 2010;51:524–36.

44. Zhao Y. Auxin biosynthesis. Arabidopsis Book. 2014;12:e0173.
45. Lovdal T, Olsen KM, Slimestad R, Verheul M, Lillo C. Synergetic effects of

nitrogen depletion, temperature, and light on the content of phenolic
compounds and gene expression in leaves of tomato. Phytochemistry.
2010;71:605–13.

46. Misyura M, Colasanti J, Rothstein SJ. Physiological and genetic analysis of
Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic
adverse environmental conditions. J Exp Bot. 2013;64:229–40.

47. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, et al. Plant
flavonoids–biosynthesis, transport and involvement in stress responses. Int J
Mol Sci. 2013;14:14950–73.

48. Gao S, Guo W, Feng W, Liu L, Song X, Chen J, et al. LTP3 contributes to
disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA)
biosynthesis. Mol Plant Pathol. 2016;17:412–26.

49. Martinez-Ballesta M, Moreno-Fernandez DA, Castejon D, Ochando C,
Morandini PA, Carvajal M. The impact of the absence of aliphatic
glucosinolates on water transport under salt stress in Arabidopsis thaliana.
Front Plant Sci. 2015;6:524.

50. Larkindale J, Knight MR. Protection against heat stress-induced oxidative
damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic
acid. Plant Physiol. 2002;128:682–95.

51. Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of
Arabidopsis mutants implicate multiple signaling pathways in the
acquisition of thermotolerance. Plant Physiol. 2005;138:882–97.

52. Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA.
Jasmonates act with salicylic acid to confer basal thermotolerance in
Arabidopsis thaliana. New Phytol. 2009;182:175–87.

53. Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R. Enhanced
tolerance to environmental stress in transgenic plants expressing the
transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol.
2005;139:1313–22.

54. Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R. The transcriptional co-
activator MBF1c is a key regulator of thermotolerance in Arabidopsis
thaliana. J Biol Chem. 2008;283:9269–75.

55. Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R. Identification of the MBF1
heat-response regulon of Arabidopsis thaliana. Plant J. 2011;66:844–51.

56. Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, et al. Heat stress
response in plants: a complex game with chaperones and more than
twenty heat stress transcription factors. J Biosci. 2004;29:471–87.

57. Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD.
Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007;
10:310–6.

58. Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, et al. Comparative proteomic
analysis of the thermotolerant plant Portulaca oleracea acclimation to
combined high temperature and humidity stress. J Proteome Res. 2012;11:
3605–23.

59. Zhao J, Hartmann H, Trumbore S, Ziegler W, Zhang Y. High temperature
causes negative whole-plant carbon balance under mild drought. New
Phytol. 2013;200:330–9.

60. Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, et al.
VirtualPlant: a software platform to support systems biology research. Plant
Physiol. 2010;152:500–15.

61. Gonzalez I, Le Cao KA, Dejean S. mixOmics: Omics data integration project.
2011. http://www.mixomics.org.

62. Su T, Wolf S, Han M, Zhao H, Wei H, Greiner S, et al. Reassessment of an
Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed
germination and early seedling growth. Plant Mol Biol. 2016;90:137–55.

63. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM. Roles of cell-wall
invertases and monosaccharide transporters in the growth and
development of Arabidopsis. J Exp Bot. 2003;54:525–31.

64. Albacete A, Cantero-Navarro E, Grosskinsky DK, Arias CL, Balibrea ME, Bru R,
et al. Ectopic overexpression of the cell wall invertase gene CIN1 leads to
dehydration avoidance in tomato. J Exp Bot. 2015;66:3431–2.

65. Mishkind M, Vermeer JE, Darwish E, Munnik T. Heat stress activates
phospholipase D and triggers PIP accumulation at the plasma membrane
and nucleus. Plant J. 2009;60:10–21.

66. Munnik T, Vermeer JE. Osmotic stress-induced phosphoinositide and inositol
phosphate signalling in plants. Plant Cell Environ. 2010;33:655–69.

67. Csardi G, Nepusz T. The igraph software package for complex network
research. InterJournal. 2006. Complex Systems:1695.

68. Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect
community structures in large-scale networks. Phys Rev E. 2007;76

69. Corda D, Kudo T, Zizza P, Iurisci C, Kawai E, Kato N, et al. The
Developmentally Regulated Osteoblast Phosphodiesterase GDE3 Is
Glycerophosphoinositol-specific and Modulates Cell Growth. J Biol Chem.
2009;284:24848–56.

70. Corda D, Zizza P, Varone A, Filippi BM, Mariggio S. The
glycerophosphoinositols: cellular metabolism and biological functions. Cell
Mol Life Sci. 2009;66:3449–67.

71. Patrussi L, Mariggio S, Corde D, Baldari CT. The glycerophosphoinositols:
from lipid metabolites to modulators of T-cell signaling. Front Immunol.
2013;4

72. Pence HE, Williams A. ChemSpider: An Online Chemical Information
Resource. J Chem Educ. 2010;87:1123–4.

73. Joshi V, Jander G. Arabidopsis Methionine gamma-Lyase Is Regulated
According to Isoleucine Biosynthesis Needs But Plays a Subordinate Role to
Threonine Deaminase. Plant Physiol. 2009;151:367–78.

74. Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a
novel function to protect plants from oxidative damage. Plant Physiol. 2008;
147:1251–63.

75. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought
stress response and tolerance. J Exp Bot. 2007;58:221–7.

76. Baldoni E, Genga A, Cominelli E. Plant MYB Transcription Factors:
Their Role in Drought Response Mechanisms. Int J Mol Sci. 2015;16:
15811–51.

77. Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z, et al. The resurrection
genome of Boea hygrometrica: A blueprint for survival of dehydration. Proc
Natl Acad Sci U S A. 2015;112:5833–7.

78. Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M,
et al. Combined Large-Scale Phenotyping and Transcriptomics in Maize
Reveals a Robust Growth Regulatory Network. Plant Physiol. 2016;170:
1848–67.

Georgii et al. BMC Plant Biology  (2017) 17:120 Page 22 of 23

http://www.mixomics.org


79. Baerenfaller K, Massonnet C, Walsh S, Baginsky S, Buhlmann P, Hennig L, et
al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to
water deficit. Mol Syst Biol. 2012;8:606.

80. Li L, Nelson CJ, Trosch J, Castleden I, Huang S, Millar AH. Protein
Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.
Plant Cell. 2017;29:207–28.

81. Noir S, Bomer M, Takahashi N, Ishida T, Tsui TL, Balbi V, et al. Jasmonate
controls leaf growth by repressing cell proliferation and the onset of
endoreduplication while maintaining a potential stand-by mode. Plant
Physiol. 2013;161:1930–51.

82. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, et al. Exploring
the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004;136:
4159–68.

83. Saito K, Matsuda F. Metabolomics for functional genomics, systems biology,
and biotechnology. Annu Rev Plant Biol. 2010;61:463–89.

84. Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, et
al. High-density kinetic analysis of the metabolomic and transcriptomic
response of Arabidopsis to eight environmental conditions. Plant J. 2011;67:
869–84.

85. Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, et al.
Multiple independent defective suppressor-mutator transposon insertions in
Arabidopsis: a tool for functional genomics. Plant Cell. 1999;11:1841–52.

86. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, et al. A high-
throughput Arabidopsis reverse genetics system. Plant Cell. 2002;14:2985–94.

87. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al.
Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science.
2003;301:653–7.

88. Scholl RL, May ST, Ware DH. Seed and molecular resources for Arabidopsis.
Plant Physiol. 2000;124:1477–80.

89. Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. New York:
Springer; 2000.

90. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff
MJB, Moorman AFM. Amplification efficiency: linking baseline and bias in
the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37

91. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A,
Speleman F. Accurate normalization of real-time quantitative RT-PCR data
by geometric averaging of multiple internal control genes. Genome Biol.
2002;3

92. Weckwerth W, Wenzel K, Fiehn O. Process for the integrated extraction,
identification and quantification of metabolites, proteins and RNA to reveal
their co-regulation in biochemical networks. Proteomics. 2004;4:78–83.

93. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, et al.
Metabolic profiling allows comprehensive phenotyping of genetically or
environmentally modified plant systems. Plant Cell. 2001;13:11–29.

94. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography
mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1:
387–96.

95. Erban A, Schauer N, Fernie AR, Kopka J. Nonsupervised construction and
application of mass spectral and retention time index libraries from time-of-
flight gas chromatography-mass spectrometry metabolite profiles. Methods
Mol Biol. 2007;358:19–38.

96. Luedemann A, Strassburg K, Erban A, Kopka J. TagFinder for the quantitative
analysis of gas chromatography–mass spectrometry (GC-MS)-based
metabolite profiling experiments. Bioinformatics. 2008;24:732–7.

97. Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Stat Appl Genet Mol
Biol. 2005;4:Article32.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Georgii et al. BMC Plant Biology  (2017) 17:120 Page 23 of 23


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Different environmental conditions have characteristic expression profiles, which are independent of the presence of major aquaporins
	Design of drought and heat stress experiments
	Analysis of transcriptomic variation
	Transcriptional profiles of aquaporin mutants

	Plants under combined drought and heat stress maintain major single stress responses but exhibit significant interaction effects
	Focus of stress combination analysis
	Differential stress response patterns of transcriptomic and metabolomic variables
	Overall group membership statistics
	Drought-specific response without heat interaction
	Shared drought and heat effects without interaction
	Enhanced combined stress response
	Specific combined stress response
	Reduced combined stress response

	Dry air is an important component of heat stress and combined drought-heat stress and the primary trigger of metabolomic response
	The role of air humidity in heat stress
	Transcriptional up-regulation related to low air humidity
	Transcriptional up-regulation related to temperature
	Transcriptional up-regulation related to high air humidity
	Transcriptional down-regulation related to heat stress components
	Air humidity-related transcriptional up-regulation in combined drought-heat scenarios
	Air humidity-related transcriptional down-regulation in combined drought-heat scenarios
	Comparison of transcriptomic and metabolomic air humidity effects in abiotic stress responses

	Correlated changes between transcriptomics and metabolomics reveal putative players in abiotic stress responses
	Transcriptome-metabolome data integration
	Shared variation between transcriptome and metabolome
	Main drought response players relating transcriptome and metabolome
	Sucrose inversion networks
	Main heat response players relating transcriptome and metabolome
	Global correlation network for metabolite characterization
	Investigation of a putative metabolite related to heat stress response
	Dense modules of drought response players
	Dense module down-regulated under drought stress


	Discussion
	Simultaneous heat stress affects flavonoid biosynthesis, oxidative stress and protein folding in response to drought stress but not ABA signaling and osmotic regulation
	Combination-specific stress regulatory effect suggests decoupling of ribosome biogenesis and growth
	Relative air humidity modulates the relative extent of drought and temperature components in heat stress responses
	Metabolism is sensitive to drought but remains largely unaffected by temperature stress due to massive transcriptomic measures for protein protection
	Putative glycerophosphoinositol is an mRNA processing-related biomarker of heat stress and may be metabolized via mammal-like pathways

	Conclusions
	Methods
	Plant materials
	Plant growth and environmental stress conditions
	Supportive physiological measurements and meta data
	Microarray analysis
	FT-ICR-MS analysis
	GC-MS analysis
	Statistical analysis

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

