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ABSTRACT

Objective: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic con-
sequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSCY transgenic
pigs, a model of mutant /NS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates.

Methods: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5).
Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted
metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues
was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot
proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics.

Results: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were
undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY
pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ~1900 samples of different body fluids
(blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ~ 17,000 samples from ~ 50 different tissues and organs were

Tinstitute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinérstr. 13, D-80539 Munich, Germany 2Chair for Molecular Animal
Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-
81377 Munich, Germany German Center for Diabetes Research (DZD), Ingolstédter Landstr. 1, D-85764 Neuherberg, Germany “Laboratory for Functional Genome Analysis
(LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany >German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum
Miinchen, Ingolstadter Landstr. 1, D-85764 Neuherberg, Germany 5Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum Miinchen,
Ingolstédter Landstr. 1, D-85764 Neuherberg, Germany "Paul Langerhans Institute Dresden of the Helmholtz Zentrum Miinchen at the University Hospital and Faculty of
Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany ®Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Universitétsstr. 2,
CH-8092 Zurich, Switzerland °Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterindrstr. 13, D-80539 Munich,
Germany '°Experimental Ophthalmology, Philipps University of Marburg, Baldingerstr., D-35033 Marburg, Germany "'Institute for Infectious Diseases and Zoonosis, LMU
Munich, Veterinarstr. 13, D-80539 Munich, Germany 2Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 OberschleiBheim,
Germany "®Munich Center of NeuroSciences — Brain & Mind, GroBhaderner Str. 2, D-82152 Planegg-Martinsried, Germany '“Bavarian State Research Center for Agriculture
— Institute for Animal Breeding, Prof.-Diirrwaechter-Platz 1, D-85586 Grub-Poing, Germany '®Chair for Animal Physiology, Department of Veterinary Sciences, LMU Munich,
Veterindrstr. 13, D-80539 Munich, Germany "8|nstitute of Pathology, LMU Munich, Thalkirchner Str. 36, D-80337 Munich, Germany 7Chair of Experimental Genetics, School
of Life Science Weihenstephan, Technische Universitét Miinchen, Ingolstédter Landstr. 1, D-85764 Neuherberg, Germany '®MWM Biomodels GmbH, Hauptstr. 41, D-84184
Tiefenbach, Germany

"9 Riidiger Wanke and Eckhard Wolf contributed equally to this work.

*Corresponding author. Gene Center, Feodor-Lynen-Str. 25, D-81377 Munich, Germany. E-mail: ewolf@Imu.de (E. Wolf).

Abbreviations: CE, cholesterol ester; CPT1, carnitine O-palmitoyltransferase 1; ER, endoplasmic reticulum; FFA, free fatty acids; MIDY, mutant /NS gene-induced diabetes of
youth; PC, phosphatidylcholine; PCA, principal component analysis; SM, sphingomyelin; TAG, triacylglycerol; WT, wild-type

Received May 5, 2017 » Revision received June 5, 2017 « Accepted June 6, 2017 « Available online xxx

http://dx.doi.org/10.1016/j.molmet.2017.06.004

MOLECULAR METABOLISM M (2017) 1-10 © 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1
www.molecularmetabolism.com


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:ewolf@lmu.de
http://dx.doi.org/10.1016/j.molmet.2017.06.004
http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and
lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples.
Conclusions: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community

provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.
© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords MIDY; Hyperglycemia; Insulin insufficiency; Pig model; Biobank; Random systematic sampling; Transcriptomics; Proteomics;

Metabolomics; Stereology

1. INTRODUCTION

Diabetes mellitus is a complex metabolic disease with markedly
increasing prevalence worldwide (http://www.diabetes.org/diabetes-
basics/statistics/). Acute hyperglycemia may lead to life-threatening
diabetic ketoacidosis, chronic hyperglycemia is associated with
macrovascular complications, increasing the risk for myocardial
infarction and stroke, and microvascular complications leading to
diabetic nephropathy, retinopathy, and neuropathy (reviewed in
Ref. [1]). The molecular disease mechanisms behind these multi-organ
changes are only partially understood.

Molecular profiling techniques on the transcriptome, proteome, and
metabolome levels facilitate the investigation of intermediate molec-
ular phenotypes in disease-related cells, tissues, and organs (reviewed
in Ref. [2]). Systems biology approaches such as integrative analyses
of multi-omics data sets aim to provide novel mechanistic insights and
to identify therapeutic targets and biomarkers.

Central gene expression data repositories such as NCBI Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and
EMBL-EBI ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/)
are important sources for capturing transcriptome alterations in dia-
betic patients (e.g. Ref. [3]), but are mostly limited to one or few tissues
per study (e.g. blood cells and adipose tissue in Ref. [4]). Recently, the
Human Diabetes Proteome Project (HDPP) was launched with an initial
focus on islets of Langerhans, insulin-producing cell lines, and blood
samples from diabetes-related patient cohorts [5]. Moreover, targeted
and non-targeted metabolomics approaches are available for diabetes
research and have been used for analyzing human samples and
samples from model organisms (reviewed in Ref. [6]).

Although cross-tissue networks with a limited spectrum of tissues
have been constructed in several studies, integration of multi-omics
data with expanded tissue coverage would markedly benefit
disease-related network analyses on an organism-wide scale [2]. This
is particularly true for metabolic diseases such as diabetes and obesity,
for which multiple tissues/organs may be causally involved in and/or
affected by disease-relevant tissue crosstalk (reviewed in Ref. [7]).
For ethical reasons, the spectrum of tissues available from diabetic
patients is limited. In addition, confounding factors such as age,
comorbidities, and variance introduced by tissue sampling and storage
procedures may complicate the analysis and interpretation of omics
data from human samples. Samples from diabetic rodent models are
less variable, but the amount of tissue available for multi-omics an-
alyses is limited.

Pigs are interesting models for diabetes and obesity research and can
be genetically engineered to mimic human disease mechanisms
(reviewed in Ref. [8]). Transgenic pigs expressing the mutant insulin
C94Y are a model for permanent neonatal diabetes [9], now termed
mutant /NS gene-induced diabetes of youth (MIDY) (reviewed in
Ref. [10]). Corresponding INS/Ins2 mutations that disrupt the C(B7)-
C(A7) interchain disulfide bond of the insulin molecule exist also in
humans and in the widely used Akita mouse model (reviewed in
Ref. [10]). Expression of the mutant INS/Ins2 leads to impaired

trafficking of normal proinsulin by formation of high-molecular weight
complexes with misfolded (pro)insulin, accumulation of misfolded in-
sulin in the endoplasmic reticulum (ER), and ER stress, which finally
triggers beta-cell apoptosis (reviewed in Ref. [10]). Accordingly, MIDY
pigs are characterized by impaired insulin secretion, increased fasting
glucose levels, and progressively decreasing beta cell mass [9].

To generate a unique resource for studying consequences of chronic
insulin insufficiency and hyperglycemia in a multi-tissue, multi-omics
approach, we generated a complex biobank of more than 50 different
tissues and body fluids from two-year-old MIDY pigs and WT littermate
controls (highlighted in Ref. [11]). A comprehensive standardized
protocol, taking the principles of systematic uniform random sampling
into account, was established [12] to ensure uniform high quality of
representative samples for a broad spectrum of analyses, including
molecular profiling as well as qualitative and quantitative morpho-
logical investigations.

2. MATERIAL AND METHODS

2.1. MIDY pig model

A cohort of 4 female MIDY pigs and 5 female WT littermates was
maintained for two years. Animals were housed under controlled
conditions and had a once-daily feeding regimen (Supplementary
Figure 1a) and free access to water. Treatment of MIDY pigs with a
combination of long-acting insulin (Lantus®; Sanofi) and short-acting
insulin (NovoRapid®; NovoNordisk) was started at age 2 months
aiming for moderate hyperglycemic levels to mimic suboptimal insulin
treatment (Supplementary Figure 1b). Blood glucose levels were
determined once or twice daily using a Precision Xceed® glucometer
and Precision XtraPlus® test stripes (Abbott) to control treatment [9]
(Supplementary Figure 1c). WT and MIDY sows were estrus syn-
chronized [13] and inseminated 12 days prior to necropsy to exclude
estrous cycle related effects on molecular profiles of tissues and body
fluids and to facilitate collection of conceptuses. All experiments were
performed according to the German Animal Welfare Act with permis-
sion from the responsible authority (Government of Upper Bavaria),
following the ARRIVE guidelines and Directive 2010/63/EU for animal
experiments.

2.2. Metabolic characterization, clinical chemistry, targeted
metabolomics, and lipidomics

Blood samples were taken regularly using EDTA coated tubes (Mon-
ovette® blood collection system, Sarstedt). Plasma was separated by
centrifugation and stored at —80 °C. Plasma insulin, C-peptide and
glucagon levels were determined using specific RIAs (Merck Millipore)
or ELISAs (Mercodia). Clinical chemical parameters in plasma were
determined using an AU400 (Olympus) or AU480 autoanalyzer
(Beckman—Coulter) and adapted reagent kits from Olympus, Beck-
man—Coulter, or Sentinel (fructosamine).

Targeted metabolomics analysis of plasma samples was done by liquid
chromatography-electrospray ionization-tandem mass spectrometry
and flow injection analysis-electrospray ionization tandem mass
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spectrometry measurements using the Absolute/DQ™ p180 Kit (Bio-
crates Life Sciences AG, Innsbruck, Austria). Out of 10 uL plasma 188
metabolites were quantified (for details, see Ref. [14] and
Supplementary Table 2). Concentrations of all metabolites were
calculated using internal standards and are reported in pM. Lipid
extraction and shotgun mass spectrometry analysis was performed by
Lipotype GmbH as described [15].

2.3. Establishment of the Munich MIDY Pig Biobank

Two-year-old MIDY (n = 4) and WT pigs (n = 5) were clinically
examined the day before necropsy. Thereby general condition, nutri-
tional status, body posture, body temperature, skin, hair coat, mucus
membranes, conjunctiva, and feces were evaluated. Additionally,
auscultation was performed to determine heart and breathing fre-
quency and exclude pathological heart and respiratory noises. Over-
night fasted pigs were anesthetized by intramuscular injection of
ketamine (Ursotamin®, Serumwerk Bernburg) and azaperone
(Stresnil®, Elanco Animal Health) followed by intravenous application
of ketamine and xylazine (Xylazin 2%, Serumwerk Bernburg). Blood
samples were taken by cardio puncture. Animals were then euthanized
under anesthesia by intravenous injection of T61® (Intervet) and
immediately subjected to necropsy. Body weight and length (tip of nose
to base of tail) as well as weights and dimensions of internal organs
were determined. To ensure generation of representative, high-quality
tissue samples, suitable for a broad range of analyses, standardized
sampling procedures [12] were used. From complex organs with
several morphologically and/or functionally distinct compartments,
such as brain or heart, reproducible samples were taken from stan-
dardized, deliberately chosen, anatomic locations in defined orienta-
tions. For parenchymatous organs, such as lungs, liver, spleen, kidney,
or pancreas, systematic random sampling regimes [12] were
employed. Samples taken from the selected locations were fraction-
ated and differentially processed according to the demands of various
analytical methods (Table 1). Samples designated for molecular
profiling analyses were collected and shock frozen to —80 °C within a
period of maximal 20 min after death of the animal.

2.4. Quantification of beta cell volume

Pancreas samples were chosen by systematic random sampling and
routinely processed for paraffin histology [16]. Beta cells were visu-
alized using polyclonal guinea pig anti-porcine insulin antibodies
(1:500; Dako), peroxidase-labeled rabbit anti-guinea pig antibodies
(1:50; Dako), and diaminobenzidine as chromogen. Volume density
and the total volume of beta cells within the pancreas were determined
as described previously [16]. Multicolor immunofluorescence analysis
was performed using mouse monoclonal anti-human insulin (1:3000,
12018, Sigma—Aldrich) and rabbit polyclonal anti-porcine glucagon
(1:2000, BML-GA1181, Enzo) antibodies. All secondary antibodies
were produced in donkey and coupled to AlexaFluor488 or Cy3 (Dia-
nova). Embedding of slides was done with Vectashield antifade solu-
tion (Vector Laboratories) containing DAPI as a nuclear counterstain.
Fluorescence analyses were performed using a confocal laser scan-
ning microscope (LSM 710, Zeiss).

2.5. RNA extraction and RNA quality indices

RNA was extracted using TRIzoI™ according to the manufacturer’s
instructions. In brief, frozen samples (80—150 mg) were crushed
immediately after addition of 2 ml of pre-cooled TRIzoI™ (Thermo
Fisher Scientific) with a homogenizer (Silent Crusher M, Heidolph).
Unlysed debris was removed by centrifugation, and 1 ml of the clear
supernatant was mixed with 0.2 ml chloroform to induce phase
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separation. The aqueous phase was carefully recovered and cleared by
centrifugation. RNA was precipitated by addition of 0.5 volumes of
isopropanol to the aqueous phase and sedimented by centrifugation.
Residual TRIzoI™ was removed by two consecutive washing steps
with 1 ml of 75% ethanol each. RNA was air dried for 5 min at room
temperature and solved in DNase/RNase free water to a final con-
centration of 100—200 ng/pl. Each RNA solution was quantified by UV/
VIS spectrometry (Nanodrop ND1000), and the 260/280 ratio was
determined. The subsequent analysis of RNA integrity was performed
on an Agilent Bioanalyzer 2100 (Agilent). If the automatic assignment
of the RNA Integrity Number (RIN) failed, RIN was estimated by visual
comparison of the RNA profile with those obtained from various RNA
qualities.

2.6. Protein extraction and label free proteomics

Frozen tissue samples from pancreas, liver, and kidney cortex were
homogenized as described previously [17]. Pierce 660 nm assay
(Thermo Scientific) was used for total protein quantitation. From each
sample, 100 g of protein was reduced in 4 mM dithiothreitol (DTT) for
30 min at 56 °C and cysteine residues were blocked with 8 mM
iodoacetamide (IAA) during a 30 min incubation in the dark. DTT to a
final concentration of 10 mM was added to quench residual IAA during
another 15 min incubation in the dark. Proteins were digested in two
consecutive steps with 2 pg Lys-C (Wako) for 4 h at 37 °C and after
dilution with water to a concentration of 1 M urea, with 2 ng porcine
trypsin (Promega) overnight at 37 °C. LC-MS/MS analyses were per-
formed on a TripleTOF 5600+ mass spectrometer (Sciex) as described
[18]. Briefly, 1 ng of peptides were separated at 200 nl/min in
consecutive linear gradients from 1 to 25% solvent B (0.1% formic acid
in acetonitrile) in 120 min and from 25 to 50% solvent B in 10 min.
Mass spectra were acquired using a data-dependent top 70 CID
method. MS data processing was performed as published [18]. For
database search, the sus scrofa subset of the UniProt database
extended by the MaxQuant common contaminants database was used.

3. RESULTS

3.1, MIDY pigs with limited insulin treatment represent a model of
poorly controlled diabetes mellitus

Fasting plasma glucose levels of MIDY pigs were distinctly elevated
(Figure 1A), although insulin treatment resulted in similar fasting in-
sulin levels as in WT pigs (Figure 1B). Plasma C-peptide levels of MIDY
pigs decreased with age and were undetectable at 2 years (Figure 1C).
Plasma fructosamine levels were markedly elevated in MIDY pigs and
increased with age (Figure 1D). Plasma glucagon levels were also
increased in MIDY pigs (Figure 1E), as were beta hydroxybutyrate
concentrations (Figure 1F).

Histological and stereological analyses of pancreas showed a signifi-
cantly reduced volume density of beta cells in the pancreas (—72%;
p < 0.01) and a significantly reduced total beta cell volume (—82%;
p < 0.01) in MIDY compared to WT pigs (Figure 1G—I). In WT islets,
beta cells are the most prevalent cell type. As in human islets [19],
alpha cells are not only located in the periphery but also distributed
inside the islets (Figure 1J). In MIDY islet profiles the proportion of
alpha cells is markedly increased (Figure 1K).

Clinical-chemical analysis of terminal plasma samples revealed
increased levels of total bilirubin (1.73 + 0.44 pmol/l vs.
0.86 4+ 0.21 pmol/l; p = 0.0224), increased alkaline phosphatase
activity (106.00 + 27.78 U/l vs. 36.00 + 7.62 U/l; p = 0.0124), and
reduced concentrations of creatinine (148 + 14 pmol/l vs.
177 + 14 pmol/l; p = 0.0151) and chloride (97.33 & 1.41 mmol/l vs.
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Table 1 — Overview of samples collected in the Munich MIDY Pig Biobank.

Organ system

Organ/tissue

Number samples per organ/tissue
compartment

Samples

Downstream analyses

Cardiovascular system

Respiratory tract (RT)

Hepato-pancreatic system

Gastro-intestinal tract

Uro-genital system

Immune and hematopoietic
system

Endocrine system

Nervous system

Integument

Adipose tissue

Musculo-skeletal system

Special senses

Body fluids

Heart

Blood vessels
Upper RT
Lung

Liver

Pancreas

Tongue, salivary
glands, esophagus

Stomach

Intestine

Ingesta/feces

Kidney

Lower urinary tract
Genital tract

Spleen, thymus, bone
marrow, tonsil, peripheral
lymph nodes

Thyroid gland, pituitary

gland, adrenal gland
Brain

Nerves

Spinal cord

Skin

Mammary gland
Subcutaneous and
visceral adipose tissue

Skeletal muscles

Bones and joints

Eyes

Right and left ventricular (38) and atrial (20)
myocardium, heart valves (8)

Thoracic and abdominal aorta (24), carotid arteries
(12), jugular veins (12), coronary vessels (20)

Nasal septum (2), larynx (1), trachea (4 2 samples of
the proximal, medial, and distal part)

Lung parenchyma (90), main bronchi (8)

Liver parenchyma (74), gall bladder (1)

Pancreas parenchyma (100), pancreaticoduodenal
lymph node (2)

Tongue (4), mandibular gland (2), parotid gland (2),
esophagus (& 4 samples of the proximal and distal
part)

Cardiac portion, fundus, and pyloric portion (& 56
samples)

Jejunum (70), duodenum, ileum, cecum, colon (& 35
samples), ileal papilla (1), mesenteric (2) and lleocolic
(2) lymph nodes

Stomach, duodenum, jejunum, ileum, cecum, colon (&
10 samples).

Fresh- and perfusion-fixed tissue: cortex (55), outer-
(50), and inner zone of the renal medulla (50)

Ureter (a 2 samples of the proximal, medial, and distal
part), urinary bladder (corpus: 4, trigone: 2 samples),
urethra (2)

Ovary (6), uterus (24), vagina (9)

Spleen (24), thymus (2), sternal bone marrow (2),
tonsil (2), superficial inguinal lymph nodes (7), axillary
lymph nodes (2)

Thyroid gland (20), pituitary gland (2), adrenal gland
M

Neocortex (2), cerebellar cortex (2), caudate nucleus
(2), thalamus (2), hippocampus (2), hypothalamus (2),
pons (2), frontal brain standard histology sections (6),
trigeminal ganglia (2)

Vagus nerve, sciatic nerve, common fibular nerve,
radial nerve (proximal and distal part), ulnar nerve
(proximal and distal part), tibial nerve (4 11 samples),
sympathetic trunk (5)

Cervical spinal cord, thoracic intumescence region,
lumbar intumescence region (& 12 samples), dorsal
root ganglia (DRG, & 9 samples of thoracic and lumbar
DRG)

Inner thigh (18), perineum (9), snout (9), hoofs (a 1
sample of the medial and lateral hoofs of the front and
hind legs)

Cranial and penultimate complex (& 8 samples)
Subcutaneous adipose tissue (& 18 samples of the
abdomen and back), visceral adipose tissue (& 18
samples of the mesenteric and perirenal adipose
tissue)

Triceps brachii muscle, (gluteo)biceps muscle,
longissimus lumborum muscle, tibialis cranialis
muscle, diaphragm (& 17 samples)

Femoral bone (1), radial bone (1), ulna (1, olecranon),
tibial bone (1), synovial membrane of the knee joint (1)
Vitreous body (1), frontal portion of the globe (3), lens
(3), retina (3), ocular fundus (2).

Urine (60), blood serum (60), blood plasma (60),
cerebrospinal fluid (10), synovial fluid (4)

PE, EL, CRYO, —80 °C
PE, EL, CRYO, —80 °C
PE

PE, EL, CRYO, —80 °C
PE, EL, CRYO, —80 °C
PE, EL, CRYO, —80 °C

PE

PE, PIE, EL, CRYO, —80 °C

PE, PIE, EL, CRYO, —80 °C

—80°C
PE, PIE, EL, CRYO, —80 °C

PE

PE, EL, CRYO
PE, CRYO, —80 °C

PE, CRYO, —80 °C

PE, —80 °C

PE, EL, —80 °C

PE, CRYO, —80 °C

PE, PIE, EL, CRYO, —80 °C

PE, —80 °C
PE, CRYO, —80 °C

PE, PIE, EL, CRYO, —80 °C

PE
PE, —80 °C

PE, PIE, EL, CRYO, —80 °C
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The indicated numbers of samples refer to the total numbers of individually collected specimen. As appropriate, samples were either taken from deliberately determined locations, or
sampling locations were determined by systematic random sampling. Sample processing: Samples for morphologic analyses were fixed, using either 4% formaldehyde-solution, or
2.5%—6.25% glutaraldehyde solution, or Methacarn solution, or 96% ethanol. PE: Paraffin-embedding; PIE: Plastic embedding in GMA/MMA (glycolmethacrylate/methyl-
methacrylate); EL: Embedding in Epon-resin (glycid-ether) for preparation of semi-thin sections for (quantitative) morphological analyses and ultrathin sections for electron mi-

croscopy; CRYO: Preparation of frozen samples for cryo-histology;

Biobank samples and the numbers of sampled locations per organ/tissue compartment is provided in Supplementary Table 3.

—80 °C: Cryopreservation of samples for molecular analyses. A detailed list of all individual Munich MIDY-Pig

Downstream analysis pictograms: i: Microscopy; L: Electron microscopy; /\: (Quantitative) morphological analyses; U§ : Molecular analyses (e.g. RNA-, protein-,

metabolite profiling).
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Figure 1: Metabolic characterization and beta cell volume of MIDY and WT pigs. (A—F) Age-related differences in fasting plasma concentrations of glucose (A), insulin (B), C-
peptide (C), fructosamine (D), glucagon (E), and beta hydroxybutyrate (F). Fasting times were 18—24 h. Means and standard deviations are shown. Data were statistically
evaluated by analysis of variance (Proc GLM, SAS 8.2), taking the effects of Group (MIDY, WT), Animal within Group, Age, and the interaction Group*Age into account. Significant
differences between MIDY and WT pigs of the same age are indicated by asterisks (*p < 0.05; **p < 0.01; **p < 0.001). Borderline significance (p < 0.08) is indicated by ° (G—
H) Quantification of beta cell volume in MIDY and WT pancreas. Pancreas samples were chosen by systematic random sampling and routinely processed for paraffin histology.
Volume density and the total volume of beta cells within the pancreas were determined as described in Material and methods. Detection of insulin by immunohistochemistry
revealed drastically reduced areas of insulin-positive beta cell profiles in pancreas sections of MIDY pigs, as compared to WT pigs (G). Paraffin sections, chromogen: 3,3'-
diaminobenzidine. Bars = 100 pum (and = 50 um in inset). In MIDY pigs, the volume density (H), as well as the absolute volume of beta cells in the pancreas (1) is significantly
smaller as in WT animals. Means and standard deviations are shown. Data were statistically evaluated by Student’s t-tests. Significant differences between MIDY and WT pigs are
indicated by asterisks (**p < 0.01). (J—K) Representative islets from WT (J) and MIDY pigs (K). Insulin positive beta cells are stained with AlexaFluor488 (green), glucagon positive
alpha cells are stained with Cy3 (red). Nuclei are stained with DAPI (blue). Bars = 50 pm.

MOLECULAR METABOLISM M (2017) 1-10 © 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 5
www.molecularmetabolism.com


http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

100.70 + 1.49 mmol/l; p < 0.0109) in MIDY compared to WT pigs. The
full set of clinical-chemical data is shown in Supplementary Table 1.
Principal component analysis (PCA) of targeted metabolomics data
clearly separated the MIDY and WT pig collectives (Figure 2A). Plasma
samples of MIDY pigs were characterized by significantly increased
levels of hexoses and total phosphatidylcholines (PC), containing a
higher proportion of mono- and polyunsaturated than saturated fatty
acids. The proportion of sphingomyelins (SM) was significantly
reduced. Furthermore, MIDY samples revealed increased concentra-
tions of octadecanoylcarnitine (C18), decanoylcarnitine (C10), and
butenylcarnitine (C4:1). The ratio of long chain acylcarnitines to free
carnitine (CPT1 ratio) was significantly increased. In addition, the
concentrations of branched chain amino acids (valine, leucine,
isoleucine), and of lysine, phenylalanine, and tryptophan were signif-
icantly increased. The ratio of total dimethylated arginine to total un-
modified arginine was significantly decreased in plasma samples from
MIDY pigs (Figure 2B). The full set of targeted metabolomics data is
shown in Supplementary Table 2.
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Since the metabolomics data indicated plasma lipid changes in MIDY
pigs, we decided to perform a detailed lipid analysis using shotgun
mass spectrometry. Overall, the measurement allowed identifying 230
unique lipid species belonging to 13 lipid classes characteristic for the
plasma (the full data can be viewed in Supplementary Table 3). PCA
evidently separated MIDY from WT samples (Figure 2C) and confirmed
the reduction in plasma SM and an increase of PC in the MIDY samples
(Figure 2D). The lipidomics data furthermore showed a decrease in
plasma levels of the storage lipids — cholesterol esters (CE) and tri-
acylglycerols (TAG) — in the MIDY pigs.

3.2. MIDY pigs exhibit distinct changes in body and organ growth
The body weight of two-year-old MIDY pigs was significantly smaller
than that of WT controls (200.3 + 18.2 kg vs. 238.2 + 8.7 kg;
p = 0.0042). The same was true for body length (172.2 4 6.8 cm vs.
196.5 £ 12.0 cm; p = 0.0328).

At necropsy, weights and dimensions of a broad spectrum of organs
were determined (Supplementary Table 4). MIDY pigs revealed

300

250

- N
o =]
=] o

o
t=3

5

=]

O VO >
%@Q @Q@C)@vﬁ@ O\O 0“ N \7\<2“ ,\&\\fov@\o
LT N & Ny (}z
NN ¢ 9
O\ S &>
& &
QQ‘?' S
<
50
40 owr
W MDY

30

mol%

20

0
CE Cer Chol DAG LPC LPE PC PCO PE PEO PI SM TAG

Figure 2: Targeted metabolomics and lipidomics studies of plasma samples from MIDY and WT pigs. (A—B) Targeted metabolomics. (A) Principal component analysis (PCA) is
applied to all metabolite concentrations present in Supplementary Table 2 after they were scaled and centered. The bar graph (B) shows selected significant (p < 0.05) metabolites
and metabolic indicators as a percentage of the WT mean (gray striped line). The SEM for each metabolite and genotype is indicated with error bars. Abbreviations: H1, hexoses;
PC, phosphatidylcholine; SFA, saturated fatty acids; MUFA, mono-unsaturated fatty acids; PUFA, poly-unsaturated fatty acids; SM, sphingomyelins; C18, octadecanoylcarnitine;
C10, decanoylcarnitine; C4:1, butenylcarnitine; CPT1 ratio, ratio of long chain acylcarnitines to free carnitine; DMA, ratio of dimethylated arginine to total unmodified arginine. (C—
D) Shotgun lipidomics of plasma from MIDY and WT pigs detected 230 lipid species from 13 different classes. G) PCA significantly separated MIDY and WT samples (p-
value = 0.016). D) Mol% abundance of lipid classes in MIDY and WT plasma. Abbreviations: CE, cholesterol esters; Cer, ceramides; Chol, cholesterol; DAG, diacylglycerols; LPC,
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phosphatidylinositols; SM, sphingomyelins; TAG, triacylglycerols.
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significantly reduced weights of pancreas (97.0 + 8.3 g vs.
155.2 + 26.6 g; p = 0.0042), heart (4545 + 21.1 g vs.
567.6 = 45.0 g; p = 0.0025) and pars proventricularis of the stomach
(265.0 & 34.2 g vs. 316.0 + 29.7 g; p = 0.0474). In addition, the
lengths of ileum (30.0 & 4.1 cm vs. 43.0 + 4.5 cm; p = 0.0028) and
cecum (27.5 + 5.0 cm vs. 36.0 + 5.5 cm; p = 0.0474) were shorter
in MIDY than in WT pigs. lleum length was also significantly reduced
when related to the cube root of body weight (5.2 4 0.6 cm/kg™® vs.
7.1 + 0.8 cm/kg'®; p = 0.0071). Furthermore, there was a trend of
reduced relative pancreas weight (0.489 + 0.073 g/kg vs.
0.654 £ 0.126 g/kg; p = 0.0539). In contrast, relative brain weight
was significantly increased in MIDY compared to WT pigs
(0.619 + 0.013 g/kg vs. 0.547 + 0.046 g/kg; p = 0.0185).

3.3. The Munich MIDY Pig Biobank: a comprehensive collection of
tissues and body fluids for a broad spectrum of analyses

In total, the Munich MIDY Pig Biobank contains approximately 1,900
redundant samples of different body fluids (blood, serum, plasma,
urine, cerebrospinal fluid and synovial fluid), as well as ~17,000
samples from ~ 50 different tissues and organs. Table 1 provides an
overview of these samples. A detailed list of all individual samples
stored in the Munich MIDY Pig Biobank, including the numbers of
sampled locations per organ/tissue compartment, as well as the
orientation and processing of the specimen is provided in
Supplementary Table 5. For a selected set of tissues, RNA was
extracted and excellent RNA quality was revealed (Supplementary
Figure 2). To demonstrate the suitability of the biobank-tissue sam-
ples for protein studies, a pilot proteome analysis of pancreas, liver,
and kidney cortex was performed. These analyses showed clear dif-
ferences between the tissues (Figure 3A) and clustering of MIDY and
WT samples within tissue (Figure 3B—D).

4. DISCUSSION

Organ crosstalk in diabetes is an area of growing interest [7,20—22],
but so far, only a limited spectrum of potentially involved organsttis-
sues was investigated. In view of marked progress in omics technol-
ogies for systematic molecular profiling, e.g. on the RNA, protein and
metabolite levels, the availability of suitable biological material remains
the major limitation for such studies. We thus established a complex
biobank from a pig model of MIDY caused by expression of an /NS4
transgene in the beta cells [9]. Wild-type littermates served as controls,
providing the best possible genetic control in an outbred large animal
model. Since no sex-related differences in the phenotypic conse-
quences of beta cell specific INSCY expression were noted during the
initial characterization of the MIDY pig model [9] and no sex-specific
effects were described in human patients with /NS mutations, we
used only female pigs for our long-term study. Fully grown female pigs
are much easier to handle compared to adult boars. Expression of
mutant insulin C94Y has clear advantages over using streptozotocin
(STZ) to induce beta cell death. The individual reaction of pigs towards
STZ injection is rather variable leading to a considerable variation in the
severity of beta cell damage and diabetic phenotype. Furthermore,
GLUT2 through which STZ enters the cell is not only expressed in beta
cells but also in liver and kidney tubular cells, resulting in dose-
dependent reversible and irreversible damage in these tissues
(reviewed in Ref. [8]). In contrast genetically modified MIDY pigs exhibit
a stable diabetic phenotype.

Organ-specific, systematic random sampling procedures adapted to
porcine biomedical models were applied to determine the tissue
sampling locations and sample numbers, ensuring reproducible and
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representative samples, as a prerequisite for comparative morphologic
and multi-omics analyses of a broad spectrum of tissues.

Expression of mutant insulin leads to ER stress and apoptosis of the
beta cells. Accordingly, beta cell mass was 70% reduced already in
4.5-month-old MIDY pigs [9] and more than 80% at age two years. In
spite of 20% residual beta cell mass, C-peptide was undetectable in
the final plasma sample. This indicates that — in addition to the
marked reduction of beta cell mass — defective insulin secretion is
part of the pathomechanism in MIDY pigs. While insulin treatment
restored basal insulin in MIDY pigs to the level of WT, fasting plasma
levels of glucose and fructosamine, a valid parameter for the evaluation
of medium-term glucose control over 2—3 weeks (reviewed in
Ref. [8]), were highly elevated. These findings suggest — in accor-
dance with observations in the Akita mouse model [23] — insulin
resistance in MIDY pigs.

Increased plasma glucagon and beta hydroxybutyrate levels as well as
a number of characteristic metabolomic changes characterized the 2-
year-old MIDY pig with limited insulin treatment as a clinically relevant
model of chronic insulin insufficiency and hyperglycemia. Low insulin
levels result in activation of hormone-sensitive lipase that releases free
fatty acids (FFA) from triglyceride stores. FFA are taken up by the liver
and converted to ketone bodies that are released into the circulation
(reviewed in Ref. [24]). Carnitine O-palmitoyltransferase 1 (CPT1)
transfers the acyl group of long-chain fatty acid-CoA conjugates onto
carnitine, a rate-limiting step for mitochondrial uptake of long-chain
fatty acids for beta-oxidation. An increased ratio of long-chain acyl-
carnitines to free carnitine in plasma of MIDY pigs indicates increased
activity of CPT1. In addition, the plasma concentrations of several keto-
or gluco-/ketogenic amino acids were significantly increased in MIDY
pigs. In particular, increased plasma levels of branched-chain amino
acids are associated with poor metabolic health and developing or
established insulin resistance (reviewed in Ref. [25]).

Reduced body weight and body length of MIDY pigs are explained by
their insulin insufficiency, which was not fully compensated by the
limited insulin treatment in our study. Without insulin treatment, the
body weight of 4.5-month-old MIDY pigs was 40% reduced compared
to WT, demonstrating the important anabolic action of insulin. Inter-
estingly, relative brain weight of MIDY pigs was significantly increased,
indicating that brain growth is less insulin dependent than overall body
growth. This is in line with normal brain development in mice with a
neuron-specific inactivation of the insulin receptor (/nsr) gene [26].
To characterize the quality of samples in the Munich MIDY pig biobank,
we extracted and characterized RNA and proteins from a subset of
tissues. These pilot studies revealed excellent sample quality. Future
detailed omics studies will provide insights into tissue specific mo-
lecular changes induced by chronic hyperglycemia and insulin insuf-
ficiency. For several tissues, there is already evidence for
morphological or functional alterations. A recent study of myocardium
showed capillary rarefaction and reduced pericyte investment in 5-
month-old MIDY pigs compared to age-matched WT littermates [27].
Additionally, the retina of MIDY pigs (age: 24 or 40 months) exhibited
several diabetes associated morphologic alterations [28].

A potential limitation of the Munich MIDY pig biobank is that omics
profiles of the samples may be influenced by the drugs used for
anesthesia and euthanasia. For instance, ketamine anesthesia is
known to activate the sympathetic nervous system and to increase
plasma catecholamine concentrations (reviewed in Ref. [29]). Aza-
perone is at high doses a dopamine receptor blocker [30]. Embu-
tramide as component of T61%is a strong opioid agonist that causes
cardiorespiratory depression and can activate opioid receptors in
multiple tissues throughout the body, including the central nervous
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Figure 3: Proteome profiles from a pilot study of pancreas (1574 identified proteins), liver (1263 identified proteins) and kidney cortex (2162 identified proteins) from MIDY and WT
pigs. (A) Unsupervised hierarchical clustering of normalized expression values (z-score) of 827 proteins commonly identified in pancreas, liver and kidney cortex. The heatmap
indicates clustering of the analyzed proteomes according to tissue type and genotype. Missing values were imputed. Heat map legend indicates normalized expression values. (B—
D) Principal component analysis (PCA) of proteomics data from pancreas (B), liver (C) and kidney cortex (D) clearly separated MIDY and WT samples.

system and the gastrointestinal tract [31]. However, we assume that FUNDING

such effects would affect diabetic and control animals in a similar

manner and thus not systematically confound the identification of  This study was supported by the Federal Ministry of Education and
diabetes-related changes. Research (Leading-Edge Cluster m* — Personalized Medicine and
In conclusion, the Munich MIDY Pig Biobank facilitates systematic ~ Targeted Therapies) and by the German Center for Diabetes Research
studies of organ crosstalk in diabetes in a multi-organ, multi-omics  (DZD). M.B and E.L. are supported by DFG fellowships through the
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