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Abstract 
A	matched	molecular	pair	(MMP)	analysis	was	used	to	examine	the	change	in	melting	point	(MP)	
between	pairs	of	similar	molecules	in	a	set	of	ca.	275k	compounds.	We	found	many	cases	where	the	
change	of	MP	(ΔMP)	of	compounds	correlates	with	respect	to	changes	in	functional	groups.	In	line	
with	a	previous	study	of	Schultes	et	al,	correlations	between	ΔMP	and	simple	molecular	descriptors,	
such	as	the	number	of	hydrogen	bond	donors	were	identified.	In	using	a	larger	dataset,	covering	a	
wider	chemical	space	and	range	of	melting	points,	we	observed	that	this	method	remains	stable	and	
scales	well	with	larger	datasets:	This	MMP	based	method	presents	the	opportunity	for	its	use	as	a	
simple	privacy-preserving	technique	to	analyse	large	proprietary	databases	and	share	findings	
between	participating	groups.	
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Introduction 
Quantitative	Structure	Property	Relation	(QSPR)	models	for	predicting	the	melting	point	of	an	
arbitrary	compound	are	useful	tools	in	drug	discovery	as	the	melting	point	of	a	compound	strongly	
correlates	with	its	solubility,	and	hence	could	be	used	to	guide	the	optimisation	of	compound	ADME	
(Absorption,	Distribution,	Metabolism,	and	Excretion)	properties.	One	of	the	first	equations	relating	
aqueous	solubility	to	the	MP	was	developed	by	Yalkowsky	et	al	in	1980[1]	and	since	then	further	
improvements	have	been	made	to	the	relationship[2,3].		

The	revised	General	Solubility	Equation	(GSE)	is	as	follows	

log !!". =  −0.01 !" − 25 − log!!"# !"# + 0.5	 	 	 (1)	

where	log !!" 	is	the	aqueous	solubility	of	the	molecule	(!!" 	in	mol/L),	!"	is	the	compound	melting	
point	(in	°C),	and	log!!"# !"#	is	the	octanol/water	partition	coefficient.	The	term	!" − 25,	which	
represents	the	crystallinity	of	the	solute,	is	set	to	zero	if	the	compound’s	melting	point	is	less	than	
25°C.	

Various	other	methods	have	been	developed	for	predicting	aqueous	solubility[4–8],	however	most	of	
these	methods	require	using	many	parameters,	and	a	large	training	set	to	build	the	model.	In	
contrast,	the	GSE	requires	only	two	physicochemical	properties,	and	is	based	on	deductive	
modelling.	

Numerous	methods	exist	to	predict	compound	melting	points,	roughly	falling	into	two	groups:	
physics-based	methods	and	statistical	methods.	Physics	based	methods	can	be	further	divided	into	
two	categories:	direct	methods,	and	free	energy	methods[9].	Direct	methods	dynamically	simulate	
the	melting	process	and,	whilst	relatively	straightforward,	have	generally	poor	accuracy.	Free	energy	
methods	attempt	to	satisfy	phase	equilibrium	conditions	are	more	accurate	and	computationally	
expensive	to	apply.[10]	

However,	in-silico	prediction	of	the	melting	point	by	these	methods	is	nontrivial,	as	all	of	these	
methods	require	a	crystal	structure	to	be	applied,	negating	their	usefulness	in	the	prediction	of	MPs	
of	compounds	that	lack	a	crystal	structure,	e.g.	virtual	compounds.	Zhang	and	Maginn	attempted	to	
circumvent	this	by	using	predicted	crystal	structures	to	predict	the	MP	of	two	compounds	and	
achieved	predictions	with	an	error	of	15-25°C,	despite	the	predicted	crystal	structures	differing	from	
the	experimental	ones.[11]	

Statistical	methods	have	existed	since	as	early	as	1881,	when	Mills	derived	an	accurate	MP	model	for	
hydrocarbons	using	fitted	constants	and	the	number	of	methyl	groups,	but	the	model	is	only	
applicable	to	that	particular	chemical	class.[12]	Many	similar	studies	have	been	performed	since[13],	
each	devoted	to	a	particular	chemical	series,	often	trained	on	tens	to	hundreds	of	compounds.	
However	larger	datasets	have	been	employed	as	well,	such	as	the	study	performed	by	Karthikeyan	
et	al.[14]	who	used	neural	networks	on	a	set	of	4173	diverse	compounds	to	train	various	models,	
producing	a	final	model	with	mean	absolute	errors	in	the	range	33-40°C.	The	largest	MP	prediction	
model	to	date	was	published	by	Tetko	et	al.[15],	who	used	ca	275,000	compounds	and	non-linear	
methods	to	build	models	whose	prediction	error	is	close	to	the	estimated	experimental	error	of	the	
source	data,	i.e.	33°C	for	compounds	in	the	drug-like	range	(50-250°C).	

In	2012	Schultes	et	al	published	an	analysis	on	the	melting	point	of	ca.	5000	drug-like	compounds[16]	
from	both	public	and	in-house	datasets	based	on	simple	physical	chemical	descriptors.	They	found	
correlation	between	several	molecular	descriptors,	such	as	simple	atom	counts	and	property	
predictions,	and	the	compound	MPs	by	performing	a	matched	molecular	pair	(MMP)	analysis	on	the	
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dataset.	An	MMP	is	a	pair	of	molecules	that	differ	by	only	a	single	minor	structural	change	(Figure	
1).[17]	

Our	current	study	is	aimed	at	validating	Schultes’	analysis	on	a	much	larger	dataset	covering	a	more	
diverse	chemical	space	with	a	wider	range	of	melting	points,	corresponding	to	a	greater	statistical	
power.	Based	on	this	study,	a	large	number	of	MP-related	structural	changes	are	derived,	and	
furthermore	solubility	changes,	predicted	by	applying	ΔMP	data	and	the	GSE	equation,	were	also	
derived	with	a	good	correlation	to	both	the	experimental	solubility	data	and	the	prediction	of	
another	solubility	model.	

Results and Discussion 
Descriptor Analysis 
We	found	that	the	descriptor	with	the	biggest	impact	on	MP	change	is	the	number	of	hydrogen	
bond	donors	(Table	1).	Our	validation	study	with	the	much	larger	dataset	(PATENTS	dataset)	shows	
that	the	findings	of	Schultes	et	al	have	the	same	general	characteristics	as	our	results,	notably	with	
their	public	dataset	part.	An	exception	is	the	halogens,	where	we	found	the	same	general	trend	but	
with	overall	average	changes	to	be	positive,	and	spread	over	a	narrower	range.	It	should	be	noted,	
however,	that	in	halogen	descriptor	analysis,	we	specified	that	the	scale	of	logPcalc	change	should	be	
small	(<0.5),	whereas	in	the	Schultes	study	this	was	unconstrained.	The	Schultes	data	has	been	
adapted	from	their	published	table,	with	standard	deviations	converted	to	standard	errors,	and	their	
reported	mean	ΔTm	values	normalised	according	to	the	mean	descriptor	changes.	

The	increase	in	melting	point	with	the	respective	increase	of	hydrogen	bond	donors	and	acceptors	
can	be	obviously	justified	by	the	increase	in	intermolecular	interactions,	which	lead,	mainly,	to	
crystal	lattice	stabilisation.	Notably,	the	change	in	MP	from	hydrogen	bond	donors	is	almost	twice	
that	of	hydrogen	bond	acceptors.	This	could	be	due	to	the	following	reasons:	

1) Donors	can	interact	with	a	wider	variety	of	systems,	for	example	donor	to	pi-system	
interactions.	Further,	donors	generally	have	more	degrees	of	freedom	from	rigid	scaffolds	
than	acceptors,	as	they	can	be	bound	to	rotationally-unrestricted	acceptors,	meaning	they	
can	potentially	cover	a	larger	volume	of	space	and	are	hence	new	donors	are	more	likely	to	
be	able	to	be	involved	in	interactions	than	new	acceptors.	

2) A	substantial	proportion	of	donors	are	amines,	and	amines	can	sometimes	be	protonated	to	
form	a	positively-charged	group.	This	may	create	ionic	interactions	in	the	lattice,	forming	
strong	intermolecular	interactions	and	hence	increasing	the	lattice	stabilisation	and	thus	
MP.	

The	decrease	in	melting	point	from	increasing	numbers	of	rotatable	bonds	is	likely	due	to	the	
resultant	higher	flexibility	of	the	molecule	resulting	in	a	higher	melting	entropy,	and	hence	a	more	
favourable	molten	state,	as	described	by	Dannenfelser	and	Yalkowsky[18],	and	in	some	molecules	an	
increase	in	the	number	of	rotatable	bonds	can	lead	to	less	efficient	crystal	packing,	also	lowering	the	
MP.	Further,	the	halogen	trend	we	observed	correlates	well	with	the	known	intermolecular	halogen	
bonding	series,	with	MP	increasing	down	the	series.	Interestingly,	the	MP	change	per	chlorine	atom	
in	the	Schultes	dataset	is	not	just	contradictory	to	our	results	but	also	to	the	influence	of	bromine	
and	iodine	in	their	own	datasets,	likely	due	to	the	low	sample	number	(derived	from	only	9	samples).	
This	example	justifies	the	necessity	of	carrying	out	this	kind	of	analysis	with	a	larger	dataset,	
providing	greater	statistical	power	for	the	observed	MP	changes.	
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CSP3 Fraction Analysis 
We	also	analysed	the	fraction	of	SP3	carbon	(CSP3	fraction)	as	a	descriptor.	We	initially	performed	
an	analysis	with	all	other	descriptors	from	Table	1	constrained,	considering	the	CSP3	fraction	to	have	
changed	if	there	was	a	difference	of	2%	or	more	between	the	members	of	the	pairs.	This	analysis	(#1	
in	Table	2)	showed	a	ΔTm	of	–7.3°C	per	10%	change	of	CSP3	fraction,	which	could	be	considered	to	
be	the	most	correct	evaluation	of	the	atom	composition	change	of	the	molecules	(“pure”	CSP3	
contribution).	If	we	removed	some	constraints,	allowing	other	descriptors	from	Table	1	to	change	
simultaneously	with	CSP3	fraction	(see	#2-#6	in	Table	2)	larger	changes	in	ΔTm	were	observed.	The	
largest	ΔTm	of	–14°C	was	calculated	for	MMPs	in	which	the	CSP3	fraction	increased	while	the	
number	of	rotatable	bonds	were	also	allowed	to	change	in	any	direction.	Since	the	increase	of	CSP3	
fraction	is	frequently	accompanied	by	an	increase	of	the	number	of	rotatable	bonds,	both	these	
changes	synergistically	contributed	to	large	ΔTm	change.	Similar	synergistic	effects	were	observed	for	
the	number	of	hydrogen	bond	donors	and	acceptors,	which	appear	to	contribute	to	the	
unconstrained	CSP3	ΔMP	indirectly.	The	logPcalc	and	Halogen	descriptors	contributed	smaller	
changes	in	ΔTm,	which	were	not	statistically	significant	as	compared	to	the	“pure”	CSP3	contribution.	
The	largest	decrease	ΔTm	of	–19°C	(for	a	10%	increase	in	CSP3	fraction)	was	observed	when	we	did	
not	have	any	constraints	on	the	change	of	other	descriptors.	This	change	was	2.6-fold	larger	than	the	
one	calculated	for	the	constrained	value	of	ΔTm	=	–7.3°C,	which	corresponded	to	the	change	caused	
by	this	descriptor	alone.	Considering	that	CSP3	is	gaining	popularity	in	drug	discovery	studies,	our	
result	suggests	that	caution	should	be	taken	in	interpreting	the	effect	of	this	descriptor	by	analysing	
its	possible	correlations	with	other	descriptors,	i.e.	the	effects	due	to	CSP3	can	be	driven	by	
correlated	changes	in	other	related	descriptors	rather	than	by	this	descriptor	alone.	

Aqueous Solubility Predictions 
Further,	we	analysed	the	change	in	solubility	in	matched	pairs	according	to	the	general	solubility	
equation,	to	test	the	accuracy	of	the	proposed	GSE	technique.	We	modified	the	GSE	(Equation	1)	to	
calculate	the	difference	of	the	values	(Equation	2),	and	then	compared	the	resulting	GSE	ΔlogS,	and	
the	predicted	ΔlogS	calculated	using	ALOGPS[19],	to	known	solubility	data.	To	do	this,	we	used	
matched	molecular	pairs	generated	from	the	dataset	used	to	create	the	ALOGPS	solubility	model,	in	
order	to	investigate	the	efficacy	of	this	GSE	technique	against	both	experimental	data	and	an	
existing	solubility	model	(Figure	2).	

∆ log !!"# = −0.01∆!" − ∆ log!!"#! 	 	 	 	 (2)	

The	results	revealed	that	both	the	GSE	and	ALOGPS	methods	provide	accurate	predictions	of	
changes	in	the	solubility	of	molecules	in	MMPs	(RMSE	of	0.71	and	0.61	log	units	respectively).	The	
structural	features	that	frequently	appeared	in	the	highest-deviated	pairs	for	the	GSE	method	(see	
supplemental	information)	were	long	alkyl	chains,	and	the	loss/gain	of	nitrogen-containing	
functional	groups.	The	method	had	a	tendency	to	overstate	the	hydrophobicity	of	increasing	chain	
length,	and	tended	to	overestimate	the	hydrophilicity	of	amine	functions,	with	an	exaggerated	
logPcalc	contribution.	This	is	not	unexpected,	as	the	GSE	was	designed	to	be	an	approximation	for	
rigid	molecules[20],	and	is	not	accounting	for	the	large	rotational	degrees	of	freedom	of	these	
molecules.	The	GSE	method	performed	generally	well	for	small	molecules,	and	rigid	fused-ring	
system.	There	is	no	correlation	in	the	errors	(R2	=	0.27)	between	the	two	predictive	methods,	
implying	a	consensus	of	the	two	models	should	give	improved	results.	Indeed,	a	simple	averaging	of	
the	two	predictions	gives	a	model	with	greater	accuracy	(RMSE	of	0.57).	
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Functional Group Analysis 
The	functional	group	analysis	was	carried	out	among	all	MMPs	to	identify	important	functional	
group	transformations	which	affect	MPs.	A	complete	list	of	the	functional	group	endpoints	and	
conversions	from	this	study	are	available	in	the	supplemental	information	and	they	are	generally	
consistent	with	known	trends.	A	few	transformation	examples	are	shown	in	Table	3	to	highlight	the	
resultant	notable	MP	changes.	For	example,	the	conversion	between	an	acid	and	its	ester	results	in	a	
decrease	in	melting	point.	This	is	due	to	a	decrease	in	intermolecular	bonding	from	the	loss	of	
hydrogen	bond	donors,	and	resultant	destabilisation	of	the	crystal	lattice	–	likewise	with	amides	to	
esters,	and	with	e.g.	tertiary	to	secondary	amides.	The	conversion	to	heavier	halides	is	consistent	
with	the	trend	observed	in	intermolecular	halogen	bonding,	with	heavier	halides	being	more	easily	
polarised,	resulting	in	a	stronger	crystal	lattice.[21]	

We	exported	the	functional	group	conversions	into	a	directed	graph	(Figure	3).	Analysis	of	subgraphs	
showed	that	a	large	majority	of	the	transformations	are	consistent	within	the	network	to	within	a	
reasonable	degree	of	accuracy.	Whilst	only	one	of	the	subgraphs	is	additive	to	within	predicted	
error,	the	pairs	sets	involved	were	acyclic,	and	so	a	small	amount	of	bias	can	be	expected	–	a	couple	
of	sources	of	error	are	considered	later.	We	found	that	many	of	these	functional	group	conversions	
can	be	justified	in	terms	of	simple	descriptor	changes	previously	reported,	for	example:	

• The	transformation	between	a	primary	amide	and	a	secondary	amide	results	in	a	ΔMP	on	
average	of	–30°C,	equivalent	to	the	loss	of	a	hydrogen	bond	donor	and	addition	of	bond	
rotation	(Table	1).	

• The	conversion	from	a	primary	amide	to	a	tertiary	amide	(–52°C)	is	approximately	equivalent	
to	the	loss	of	two	hydrogen	bond	donors	and	a	gain	in	rotational	freedom	

• The	conversion	from	a	primary	amide	to	a	carboxylic	acid	ester	(–68°C)	is	approximately	
equivalent	to	the	loss	of	two	hydrogen	bond	donors,	and	the	gain	of	some	rotational	
freedom	with	the	replacement	of	the	rotationally	restricted	C-N	amide	bond	and	addition	of	
the	ester	group.	

Although	these	MMPs	are	derived	from	MP	data,	given	the	strong	correlation	between	compound	
solubility	and	MP,	they	could	be	very	useful	for	optimising	compound	solubility	either	by	modifying	
specific	functional	groups	in	the	parent	structure	or	indirectly	predicting	new	compound’s	solubility	
via	MP	prediction	through	some	additive	or	group	based	method.	

However,	when	functional	groups	are	to	be	considered	in	a	networked	manner,	the	analysis	should	
be	performed	with	caution	and	the	results	examined	carefully.	We	consider	two	potential	sources	of	
error	for	such	analyses:	

1)	If	cyclic	subgraphs	are	to	be	analysed,	then	the	limit	on	the	maximum	number	of	transformed	
atoms	may	come	into	effect.	For	example,	consider	two	transformations,	each	adding	groups	
comprising	6	atoms.	The	final	pair	would	exceed	the	maximum	number	of	transformed	atoms	and	
be	excluded,	introducing	bias.	

2)	If	the	functional	groups	to	be	considered	are	chemically	irrelevant	or	insignificant	(e.g.	
start/endpoint	considered	to	be	loss	of	C-H	hydrogen,	instead	of	addition	of	replacement	group),	
then	the	observed	relationship	would	be	inherent	noise,	especially	if	smaller	datasets	are	used.	

This	suggests	the	need	to	be	careful	in	the	selection	of	functional	groups	to	be	analysed	in	the	case	
of	a	similar	functional	group-type	analysis.	

10.1002/cmdc.201700303ChemMedChem

This article is protected by copyright. All rights reserved.



6	
	

Conclusions 
We	have	investigated	the	influence	of	simple	descriptors	on	the	melting	point	of	a	large	number	of	
compounds.	It	was	found	that	changes	in	selected	simple	2D	descriptors	have	a	quantifiable	and	
significant	effect	on	the	melting	point	of	these	compounds,	and	that	solubility	predictions	using	this	
method	are	comparable	to	existing	techniques,	indicating	that	this	is	a	viable	method	for	predicting	
the	properties	of	derivative	compounds.	This	is	of	useful	consequence	in	the	lead	optimisation	phase	
of	drug	design,	aiding	in	silico	prediction	or	exclusion	of	alternative	compounds,	with	respect	to	
solubility	optimisation.	In	general	our	results	are	in	line	with	previous	findings,	and	further	show	that	
long	lists	of	significant	functional	group	optimisations	can	be	mined	from	existing	data,	with	
potential	practical	application.	Further	to	this,	using	this	technique	to	discover	relationships	
between	descriptors	and	properties	is	a	method	that	could	be	used	to	mine	and	disseminate	
information	from	proprietary	chemical	databases;	as	no	underlying	structures	need	be	released	–	
the	only	source	of	structural	information	in	the	results	comes	from	the	functional	group	analyses,	
which	can	be	easily	curated	before	publication	were	the	dataset	to	contain	IP-sensitive	information.	
Such	analyses	are	known	to	work,	with	companies	such	as	MedChemica	performing	MMP	analysis[22]	
on	large	pharmaceutical	datasets	to	identify	and	distribute	rule-based	structural	changes	for	ADMET	
optimisation.	

Methods 
Datasets 
For	this	study,	we	used	a	dataset	published	by	Tetko	et	al	[15].	The	dataset	is	publicly	available	on	
OCHEM[23]	(Online	Chemical	Database	with	Modelling	Environment),	and	contains	275,133	
compounds	covering	a	wide	range	of	melting	points,	primarily	in	the	drug-like	range	(50–250°C).	
These	data	were	taken	from	sources	including	patents[15],	research	papers	published	by	Bradley[24]	
and	Bergström[25],	Enamine[26]	and	the	existing	OCHEM	database[26].	The	Bradley,	Bergström	and	
Enamine	datasets	are	all	highly	curated	and	of	good	quality,	and	the	errors	associated	with	the	
various	sources	involved	in	the	patent	dataset	are	discussed	in	the	original	publication	referenced.	
After	filtering	incomplete	records,	and	compounds	with	a	molecular	weight	>1000	Da.,	the	
remaining	molecules	were	standardised,	neutralised,	and	salts	were	removed	with	Chemaxon,	and	
the	structures	were	cleaned.	After	filtering	we	ended	up	with	a	set	of	275,008	molecules	with	
melting	points	ranging	from	–199°C	to	517°C	(Figure	4).	

Matched Molecular Pairs and Descriptors 
We	used	ALOGPS[27]	to	calculate	the	octanol/water	partition	coefficient	(logPcalc),	CDK[28]	to	calculate	
the	number	of	hydrogen	bond	donors	and	acceptors,	and	OEstate[29]	to	generate	other	molecular	
descriptors,	which	include	i)	the	number	of	each	type	of	halogen	atom	in	the	molecule,	and	ii)	the	
number	of	rotatable	bonds,	resulting	in	a	total	of	eight	analysed	descriptors.	

As	one	can	see,	a	normalised	variance-covariance	Principal	Component	Analysis	(PCA)	plot	using	
these	descriptors	(Figure	5)	provides	reasonable	discrimination	between	compounds	with	low	(blue)	
and	high	(red)	melting	points.	The	first	two	components	cover	>40%	of	the	variance	of	the	whole	
dataset.	The	number	of	hydrogen	bond	donors	and	acceptors	as	well	as	the	number	of	rotatable	
bonds	contribute	the	highest	loading	for	the	first	principal	component	(PCA	1),	whilst	the	logPcalc	
dominates	the	second	principal	component	(PCA	2).	The	outlying	structures	with	the	greatest	PCA	1	
are	large	molecules	with	many	carbonyl	and	hydroxy	groups.	

The	assembled	dataset	was	used	to	calculate	matched	molecular	pairs	(MMPs).	The	matched	
molecular	pair	technique	has	been	used	in	the	analysis	of	many	properties[30–33].	In	the	case	of	this	
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study,	the	transformed	part	of	the	molecule	has	no	more	than	10	atoms,	and	fewer	atoms	than	the	
main	scaffold	of	the	molecule.[34]	Initially	over	2.5	million	MMPs	were	generated.	After	removing	
some	transformation	schemas,	which	resulted	in	identical	pairs,	917,831	unique	pairs	were	
ultimately	collected.	From	this	list	of	MMPs,	we	were	interested	in	the	pairs	where	only	a	single	
descriptor	changed,	and	the	other	descriptors	remain	constant.	By	relating	structural	changes	to	
ΔMP,	we	hope	to	identify	matched	pair	rules	suitable	for	ADME	optimisation,	in	which	experimental	
lead	compounds	can	be	used	as	a	starting	point	to	predict	the	changes	associated	with	virtual	
derivative	compounds,	with	higher	accuracy	than	is	involved	in	predicting	these	properties	from	
ordinary	modelling	methods.	

Additionally,	we	performed	a	functional	group	analysis	using	ToxAlerts[36].	ToxAlerts	is	an	analytical	
feature	of	OCHEM	intended	for	the	identification	of	potentially	toxic	functional	groups,	however	it	
also	contains	an	extended	functional	group	(EFG)	category.[37]	This	category	allows	for	the	easy	
identification	of	the	(binary)	presence	of	over	500	different	functional	groups,	of	which	472	were	
present	in	the	dataset.	We	examined	both	transformations	that	resulted	in	the	substitution	of	
functional	groups	across	the	pair,	and	transformations	that	had	an	endpoint	of	only	a	single	
additional	functional	group,	with	no	fixed	start	point.	Examples	of	functional	group	transformations	
can	be	found	in	the	supplemental	information.	

Data Processing 
Data	resulting	from	the	OCHEM-based	analysis	were	further	processed	using	in-house	code	written	
in	VB.NET	and	Python:	The	analysis	performed	with	OCHEM	resulted	in	3	files	–	molecule	ID	with	
descriptor	information,	Matched	Molecular	Pairs	including	molecule	IDs	with	respective	
temperatures,	and	functional	group	presences	with	respective	molecule	IDs.	Once	the	data	were	
exported	from	OCHEM,	the	data	processing	was	performed	in-house.	First,	we	checked	for	
redundant	pairs	(different	transformation	schemas	that	resulted	in	the	same	matched	pairs),	and	
then	created	a	hash	dictionary	matching	each	molecule	in	each	pair	to	its	respective	descriptors	and	
ToxAlerts,	to	allow	rapid	iteration	through	the	MMP	list,	and	to	allow	easy	identification	of	pairs	for	
which	incomplete	information	was	available.	The	list	of	pairs	was	then	iterated	through,	and	
differences	were	calculated	–	all	valid	pairs	(where	only	a	single	descriptor,	or	1–2	ToxAlerts	
changed)	were	grouped	according	to	their	respective	descriptors	and	indexed	for	statistical	analysis.	
P-values	were	calculated	using	bootstrap	hypothesis	testing,	due	to	the	volume	and	unknown	
distribution	of	the	resulting	data	as	described	elsewhere[38].	Plots	were	created	using	a	Python	script,	
executed	on	conclusion	of	the	statistical	analyses.	
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Tables 
Table	1	—	The	descriptor	results	for	all	compounds.	

Descriptor	Changed	 Number	of	
Samples	

Mean	Descriptor	
Change	

ΔTm/ΔDescriptor	
(°C)	

Standard	Error	
of	Mean	(°C)	

P-value	

Fluorine	atoms	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
17,297	

24	
41	

	
1.29	
1.3	
1.8	

	
1.2	

–0.77	
–3.9	

	
±0.3	
±7.3	
±7.7	

	
†	

n.s.	
n.s.	

Chlorine	atoms	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
9,893	

9	
188	

	
1.04	
1.0	
1.0	

	
6.2	
–10	
7.0	

	
±0.4	
±14	
±3.4	

	
†	

n.s.	
◊	

Bromine	atoms	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
2,804	

16	
128	

	
1.02	
1.0	
1.2	

	
14	
47	
20	

	
±0.8	
±9.0	
±4.1	

	
†	
‡	
†	

Iodine	atoms	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
400	

1	
8	

	
1.02	
1.0	
1.0	

	
20	
10	
39	

	
±2.2	
NA	

±3.2	

	
†	

n.s.	
◊	

H-Donors	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
12,889	

36	
46	

	
1.02	
1.1	
1.1	

	
23	
44	
25	

	
±0.5	
±7.7	
±9.0	

	
†	
†	
◊	

H-Acceptors	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
24,358	

13	
263	

	
1.16	
1.0	
1.7	

	
11	
36	
12	

	
±0.3	
±13	
±3.1	

	
†	
◊	
†	

Rotatable	bonds	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
68,531	

61	
155	

	
1.27	
1.3	
2.0	

	
–7.3	
–16	
–6.0	

	
±0.2	
±4.9	
±4.3	

	
†	
†	
‡	

logPcalc	
PATENTS	dataset	
Schultes	In-House	
Karthikeyan	

	
24,818	

103	
390	

	
0.92	
0.5	
0.7	

	
4.6	
–2.0	
2.9	

	
±0.4	
±3.7	
±2.2	

	
†	

n.s.	
n.s.	

P-values	are	classified	†	<	0.0001,	‡	<	0.001,	◊	<	0.05,	n.s.	non	significant	p>0.05.	The	PATENTS	dataset	comprises	the	ca.	
275,000	compound	dataset	we	used	in	the	study.	The	Schultes	In-House	and	Karthikeyan	datasets	are	those	used	in	the	

Schultes	study[16].	

	

Table	2	—	The	CSP3	results	for	all	compounds	in	the	PATENTS	database.	

Experiment	 Unconstrained	
Descriptors	

Descriptors	
Unchanged	

Number	of	
Samples	

Mean	CSP3	
change	

ΔTm	(°C)	for	10%	
increase	of	CSP3	

Standard	
Error	of	
Mean	(°C)	

1	 CSP3	 nRot	
Halogen	
Donors	
Acceptors	
logPcalc	

29,874	 8%	 –7.3	 5.6	

2	 CSP3	
nRot	

Halogen	
Donors	
Acceptors	
logPcalc	

80,284	 8%	
	

–14	 3.5	
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3	 CSP3	
Halogen	

nRot	
Donors	
Acceptors	
logPcalc	

46,893	 8%	
	

–8.6	 4.3	

4	 CSP3	
Donors	

nRot	
Halogen	
Acceptors	
logPcalc	

38,154	 8%	
	

–13	 5.2	

5	 CSP3	
Acceptors	

nRot	
Halogen	
Donors	
logPcalc	

45,495	 8%	
	

–12	 4.7	

6	 CSP3	
logPcalc	

nRot	
Halogen	
Donors	
Acceptors	

49,267	 9%	
	

–8.5	 4.1	

7	 CSP3	
nRot	
Halogen	
Donors	
Acceptors	
logPcalc	

n.a.	 641,192	 10%	 –19	 1	

P-values	are	classified	†	<	0.0001.	The	CSP3	fraction	was	considered	to	have	changed	when	the	difference	≥	2%	(0.02).	
logPcalc	was	considered	to	be	constrained	if	the	change	was	≤	0.5.	

	

	

Table	3	—	The	Most	Common	and	Most	Influential	Results	of	the	Functional	Group	Analyses.	

The	Most	Influential	Functional	Group	Substitutions	
From	 To	 Number	of	

Samples	
Mean	

ΔTm	(°C)	
Standard	Error	
of	Mean	(°C)	

P-value	

Sulfonamides	 Sulfonic	acids	 39	 90	 ±17	 †	
Phosphonic	acid	esters	 Phosphonic	acids	 37	 85	 ±9	 †	

Thiocarboxylic	acid	esters	 Thiocarboxylic	acid	
amides	 22	 73	 ±7	 †	

Dialkylethers	 Carboxylic	acid	
secondary	amides	 20	 72	 ±10	 †	

Carboxylic	acid	esters	 Carboxylic	acid	primary	
amides	 176	 68	 ±4	 †	

The	Most	Common	Functional	Group	Substitutions	
From	 To	 Number	of	

Samples	
Mean	

ΔTm	(°C)	
Standard	Error	
of	Mean	(°C)	

P-value	

Carboxylic	acid	esters	 Carboxylic	acids	 7056	 65	 ±0.6	 †	

Aryl	fluorides	 Aryl	chlorides	 6039	 7.0	 ±0.5	 †	

Aryl	chlorides	 Aryl	bromides	 3322	 5.1	 ±0.6	 †	

Aryl	fluorides	 Aryl	bromides	 1883	 13	 ±0.8	 †	
Carboxylic	acid	tertiary	
amides	

Carboxylic	acid	
secondary	amides	 1570	 31	 ±1.4	 †	

The	Most	Influential	Functional	Group	Endpoints	
Group	 Number	of	

Samples	
Mean	

ΔTm	(°C)	
Standard	Error	
of	Mean	(°C)	

P-value	

Pyrazoles	(HS)	 21	 –70	 ±17	 †	
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Sulfenic	acid	derivatives	 49	 –55	 ±6	 †	

Thiocarboxylic	acids	 25	 52	 ±8	 †	

1,3-Diphenols	 22	 51	 ±8.5	 †	

Alkyl	iodides	 21	 48	 ±13	 ‡	
The	Most	Common	Functional	Group	Endpoints	 	 	 	 	
Group	 Number	of	

Samples	
Mean	

ΔTm	(°C)	
Standard	Error	
of	Mean	(°C)	

P-value	

Nitriles	 4,618	 18	 ±0.8	 †	

Arenes	 4,278	 7.3	 ±0.7	 †	

Nitro	compounds	 3,842	 22	 ±0.8	 †	

Aryl	chlorides	 3,499	 6.2	 ±0.8	 †	

Carboxylic	acid	esters	 3,486	 –18	 ±0.9	 †	
P-values	are	classified	(†	p	<	0.0001,	‡	p	<	0.0005)	[HS]	shows	high	specificity	–	indicating	that	fusion	with	other	rings	is	

disallowed.	

Captions for graphics 
Figure	1	—	An	example	of	a	Matched	Molecular	Pair.	The	structures	differ	by	a	hydroxy	group,	which	is	highlighted.	

Figure	2	—	Correlation	between	Predicted	and	Observed	ΔlogS,	and	the	results	of	a	consensus	model	of	the	two	
approaches.	

Figure	3	—	Examples	of	the	functional	group	transformations	

Figure	4	—	A	Histogram	of	the	Melting	Points	of	all	compounds	used	in	the	study.	The	majority	of	compounds	involved	were	
in	the	drug-like	range	of	50-250°C	

Figure	5	—	A	PCA	plot	of	the	two	first	principal	components	of	the	eight	descriptors	used	in	the	analysis.	The	change	of	
colour	from	blue	to	red	indicates	increasing	compound	melting	point.	The	PCA	plot	was	generated	using	the	PAST[35]	
software.	
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Table of Contents Text 
A	matched	molecular	pair	analysis	was	used	to	examine	the	change	in	melting	point	(ΔMP)	between	
molecules	in	a	set	of	ca.	275,000	compounds.	We	found	many	cases	where	the	ΔMP	correlates	with	
changes	in	functional	groups,	and	simple	descriptors,	such	as	number	of	hydrogen	bond	donors	and	
acceptors.	We	observed	that	this	method	remains	stable	and	scales	well	with	larger	datasets,	
indicating	it	may	be	used	as	a	simple	privacy-preserving	technique	to	analyse	large	proprietary	
databases	and	share	findings.	
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