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At a Glance 

 

Scientific Knowledge on the Subject 

Organ fibrosis is a major clinical problem with limited to no therapeutic options, depending 

on organ manifestation. Fibrosis can occur as a result of persistent tissue injury and 

inflammation, impaired regeneration or repair pathways, distorted proteostasis during e.g. 

aging, or auto-immunity. It is unclear, whether organ-specific fibrotic diseases, such as 

idiopathic pulmonary fibrosis (IPF), have a common underlying pathophysiology compared 

with other fibrotic syndromes, or whether tissue-specific mechanisms of fibrosis exist that 

allow targeted therapeutic intervention.  

 

What This Study Adds to the Field 

While the analysis of tissue fibrosis has mainly relied on gene expression data to date, full-

scale quantitative proteome approaches to fibrosis are limited. It is well documented that 

changes in protein abundance are not necessarily reflected at the messenger RNA level, and 

novel therapeutic compounds largely act on proteins. We provide the most comprehensive 

proteomic resource of human tissue fibrosis, containing information about the abundance, 

stoichiometry, and detergent solubility of proteins. We identified common and distinct 

features of lung fibrosis, in comparison with skin fibrosis of patients with localized 

scleroderma. The most significant commonality of different interstitial lung diseases and skin 

fibrosis was the prevalent occurence of MZB1+ plasma B cells, which points to a common 

involvement of antibody-mediated autoimmunity in at least two forms of tissue fibrosis. 
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Abstract 

Rationale: Analyzing the molecular heterogeneity of different forms of organ fibrosis may 

reveal common and specific factors and thus identify potential future therapeutic targets.  

Objectives: We sought to use proteome-wide profiling of human tissue fibrosis to (1) 

identify common and specific signatures across endstage interstitial lung disease (ILD) cases, 

(2) characterize ILD subgroups in an unbiased fashion, and (3) identify common and specific 

features of lung and skin fibrosis. 

Methods: We collected samples of ILD tissue (n=45) and healthy donor controls (n=10), as 

well as fibrotic skin lesions from localized scleroderma and uninvolved skin (n=6). Samples 

were profiled by quantitative label-free mass spectrometry, Western blotting, or confocal 

imaging. 

Measurements and Main Results: We determined the abundance of >7900 proteins and 

stratified these proteins according to their detergent solubility profiles. Common protein 

regulations across all ILD cases, as well as distinct ILD subsets, were observed. Proteome 

comparison of lung and skin fibrosis identified a common upregulation of MZB1, the 

expression of which identified MZB1+/CD38+/CD138+/CD27+/CD45-/CD20- plasma B cells in 

fibrotic lung and skin tissue. MZB1 levels correlated positively with tissue IgG, and negatively 

with diffusing capacity of the lung for carbon monoxide (DLCO). 

Conclusions: Despite the presumably high molecular and cellular heterogeneity of ILD, 

common protein regulations are observed, even across organ boundaries. The surprisingly 

high prevalence of MZB1+ plasma B cells in tissue fibrosis warrants future investigations 

regarding the causative role of antibody-mediated autoimmunity in idiopathic cases of organ 

fibrosis, such as idiopathic pulmonary fibrosis (IPF). 

Keywords: Fibrosis, Proteomics, ILD, localized scleroderma (Morphea), MZB1, Autoimmunity 
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Introduction 

Tissue fibrosis is a major health burden, accounting for about 45% of deaths in the 

developed world, both directly and indirectly [1]. Replacement of normal tissue architecture 

by extracellular matrix (ECM)-rich scar tissue in fibrosis impedes organ functionality and 

regeneration after injury. More than 200 different chronic lung disorders are characterized 

by lung fibrosis. Many of these ILD exhibit poor prognosis, such as Idiopathic Pulmonary 

Fibrosis (IPF), with a median survival time of 3-5 years after diagnosis [2]. In localized 

scleroderma (morphea), an autoimmune-mediated chronic inflammation leads to severe 

fibrotic plaques restricted to the skin [3]. This disease represents a particularly good model 

system to study fibrotic reactions, as involved and uninvolved areas can be directly identified 

and compared in the same patient. 

 In many cases, the true origin and cause of fibrosis remains unknown. Possible causes 

for idiopathic fibrosis discussed today include persistent tissue injury or inflammation, 

impaired tissue regeneration or repair, distorted proteostasis during e.g. aging, or 

autoimmunity [4]. While ILD caused by autoimmunity is well known in connective tissue 

disease (CTD) [5], the involvement of autoimmunity in IPF has also been discussed, due to 

the presence of circulating immune complexes [6]. However, definitive evidence still remains 

limited due to a lack of specific diagnostic tests. Recent experimental evidence shows that 

autoimmunity to a lung-specific autoantigen can drive pulmonary fibrosis [7], suggesting that 

the presence of other unidentified autoantigens may drive IPF. Furthermore, impaired 

regeneration and subsequent fibrosis upon injury is associated with dysregulated 

developmental pathways, such as the Wnt-, Bmp/TGFbeta- or sonic hedgehog (Shh) 

signaling pathways [8-11]. The interactions of secreted morphogens of these pathways with 

the ECM affect its function as an “instructing niche” [12], which motivates the recently 

growing interest in ECM structure and function [13].  

The tissue- and disease-specific composition of the ECM-proteome (matrisome) in 

vivo, as well as its specific architecture and dynamic association with secreted proteins is still 

largely unexplored, due to challenging technical limitations. We recently developed a 

quantitative detergent solubility profiling (QDSP) method, which largely improved the in 

depth analysis of tissue proteomes and matrisomes [14]. In this study, we used the QDSP 

method to characterize human tissue proteomes from lung and skin fibrosis to identify 

common and distinct molecular alterations in cases of ILD and morphea. We provide a 
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comprehensive resource of protein regulation in human tissue fibrosis and describe a 

surprisingly high prevalence of MZB1-positive plasma B cells in IPF. 

 

Methods  

Human patient material 

Resected human lung tissue and explant material was obtained from the bioarchive at the 

Comprehensive Pneumology Center (CPC) in Munich. Biopsies were obtained from 10 

healthy donors and 45 endstage ILD patients (see supplementary Table S3 and S7 in the 

online data supplement for clinical baseline characteristics). Segments of the resected fresh 

frozen lung tissue that were histologically characterized with fibrosis were used for the 

proteome analysis. All participants gave written informed consent and the study was 

approved by the local ethics committee of Ludwig-Maximilians University of Munich, 

Germany (333-10).  Skin biopsies were taken from 6 patients (3 females, 3 male; mean age: 

66) with localized scleroderma (morphea). From each patient, one biopsy was obtained from 

an involved area that was clinically characterized by sclerosis and inflammation, and another 

one from a distant, clinically uninvolved site. Samples were immediately snap-frozen in liquid 

nitrogen. All patients gave written informed consent. The study was approved by the local 

ethics committee at University Hospital of Cologne, Germany (08144). Human lung tissue 

derived proteins for the UC Denver cohort were obtained from the National Jewish Health-

Interstitial Lung Disease Program, including IPF (n=4) and non-fibrotic control (n=5) samples. 

Control tissue was obtained from transplant specimens that failed regional lung selection 

(NJH). The diagnosis of IPF was determined by a pathology core consisting of 2 pulmonary 

pathologists, a radiology core consisting of 3 pulmonary radiologists, and a clinical core 

consisting of 5 pulmonary physicians. All diagnoses were made in accordance with 

established criteria. The Institutional Review Board (IRB) at National Jewish Health approved 

the collection and the use of tissue. 

Online data supplement 

This article has an online data supplement, which contains a detailed description of all 

experimental methods and xlsx tables to all proteomics experiments, accessible from this 

issue's table of content online at www.atsjournals.org 
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Results 

Quantitative detergent solubility profiling of human fibrotic lung and skin  

We used mass spectrometry to analyze human tissue fibrosis biopsies. Segments of the 

resected lung and skin tissue were histologically analyzed to confirm fibrosis in this region 

and then used for the proteome analysis. From each sample the proteins were extracted 

with increasing stringency into four fractions by changing the detergent and buffer 

conditions as described in the QDSP protocol [14]. We then subjected each protein fraction 

individually to our shotgun proteomics analysis pipeline, using a four hour gradient 

measurement on a Quadrupole/Orbitrap mass spectrometer (Q-Exactive) and subsequent 

label free protein quantification and data analysis with the MaxQuant [15] and Perseus [16] 

software packages, as well as custom built analysis scripts (Figure 1A). We quantified 7907 

proteins in the ILD analysis (Table S1 in the online data supplement) and 5826 proteins in the 

analysis of the morphea biopsies (Table S2 in the online data supplement). The QDSP 

method adds an additional dimension to the tissue proteome by separating proteins by their 

detergent solubility. As expected we observed a significant separation of cytoplasmic, 

membrane, nuclear and ECM proteins, with ECM proteins being most insoluble (Figure 1B). 

This analysis is particularly interesting for secreted proteins, which might stay soluble upon 

secretion, or become incorporated into the ECM, which renders them insoluble. We used 

Uniprot keywords and the Matrisome annotations [17] to identify 550 proteins in our 

dataset that were previously annotated to be secreted by cells, and performed a principal 

component analysis (PCA) with this subset of the data. This analysis efficiently separated the 

four protein fractions in component one, which accounted for 38.8% of the data variability, 

and separated healthy donor controls from endstage ILD in component four, which 

accounted for 4.4% of the data variability (Figure 1C). Principal component four was 

significantly enriched for the gene categories `antimicrobial´ and `innate immunity´, which 

were higher in the healthy controls and `proteoglycans´ and `extracellular matrix´, which 

were higher in the ILD proteomes. A scatter plot of the loadings of the PCA revealed the 

position of individual proteins in the data space (Figure 1D). 

 We next determined the total abundance of proteins in the tissue biopsies by 

summing up the MS-intensities of the four individual protein fractions. We performed a t-

test to compare ILD and donor lung tissue proteomes (Figure 2A), as well as the skin lesions 
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from patients with localized scleroderma with the respective healthy skin from the same 

patient (Figure 2B). In order to identify common factors in different forms of ILD, we began 

our proteomic investigation with a heterogeneous group of patients (see Table S3 in the 

online data supplement for clinical baseline characteristics). Irrespective of the expected 

heterogeneity of the patient biopsies we observed significant alterations in both ILD and 

localized scleroderma to the respective controls. At a false discovery rate of 10%, 44 proteins 

were regulated in the ILD cohort (Figure 2A). Hierarchical clustering analysis (Pearson 

correlation) of these 44 proteins sorted patients by diagnostic classes (Figure 2C). The most 

significant common factor in all forms of ILD analyzed was MMP19, which was previously 

shown to be upregulated in pulmonary fibrosis in both mice and humans [18]. MMP19 was 

mostly enriched in the detergent insoluble fraction, indicating its association with the ECM 

upon secretion (Figure 2D). We also found common upregulation of the collagen chaperone 

FKBP10 that we previously identified to be upregulated in the bleomycin model of lung 

fibrosis and IPF [19]. Furthermore, we also observed the increased expression of the prolyl 3-

hydroxylase 1 protein (Lepre1), which is involved in collagen hydroxylation [20, 21] and thus 

may serve the increased production of collagen in fibrotic tissue. We confirmed the 

upregulation of KRT17 and SDF4 using Western blot analysis of IPF samples from an 

independent US cohort (Figure S1A, B). 

Finally, we compared our ILD proteome dataset with the currently (to our 

knowledge) largest available transcriptomic dataset of human ILD (n=194) and control tissue 

(n=91) (Gene Expression Omnibus dataset GSE47460), published by the Lung Tissue Research 

Consortium, and identified many proteins that are both regulated on the RNA and proteome 

level, including the proteins KRT17 and MZB1 (Figure S1C). In this comparison, the Pearson 

correlation of protein and mRNA copy numbers were weak (Figure S1D, E), confirming the 

known fact that protein and mRNA abundances do not always correlate well, even in 

matched samples. Of note, some of the proteins we identified as upregulated in ILD by mass 

spectrometry, such as LEPRE1 and MMP19, were not found increased in total ILD tissue 

mRNA abundance by microarray analysis (Figure S1C). 

In localized scleroderma, 1 protein (LTBP2) was detected at <1% false discovery rate 

(FDR), 10 proteins were at <5% FDR and a total of 27 proteins were at <20% FDR (Figure 2B). 

One of the most upregulated proteins in the fibrotic skin lesions was the cartilage oligomeric 

matrix protein (COMP) (Figure 2B), which we previously showed to be increased in skin 
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fibrosis to regulate dermal collagen ultrastructure [22, 23] and collagen secretion [24]. The 

analysis identified several interesting proteins that are not well studied in the context of 

fibrosis, including LTBP2 and CPXM2. Interestingly, LTBP2 was recently shown to bind FGF-2 

in hypertrophic scars, thereby blocking cell proliferation [25, 26].  

In summary, we provide a comprehensive biochemical characterization of the ECM 

proteome in human lung and skin fibrosis and identified previously known, as well as novel 

alterations in protein abundance. 

 

Molecular heterogeneity of ILD tissue proteomes 

ILD pathophysiology can be highly heterogeneous. Thus, it was conceivable that we would 

encounter a large variability between patients, even though all 11 lung biopsies were taken 

from diseased areas that underwent fibrotic remodeling and showed uniform upregulation 

of fibrosis markers such as MMP19 (Figure 2). In order to identify the proteins with highest 

differences between ILD samples we calculated the coefficient of variation (CV) for each 

protein and plotted it against the protein abundance rank (Figure 3A). We identified 133 

proteins with a high coefficient of variation between patient samples, which were quantified 

in at least 5 out of 11 ILD biopsies (Figure 3A). To reveal gene categories that show high 

variation between patients, we performed two dimensional annotation enrichment analyses 

[27] for protein abundance ranks versus coefficient of variation ranks. We also calculated the 

enrichment score of the CV quantiles, showing that there is a mild increase in data 

dispersion with decreasing abundance (Figure 3B; Table S4 in the online data supplement). 

Interestingly, the upper 20% quantile (Q1) with highest coefficient of variation breaks the 

trend and shows a slightly higher abundance rank than Q2. This indicates that many highly 

abundant proteins also showed high data dispersion. In the upper right quadrant of the 2D 

annotation enrichment plot, the gene categories enriched within highly abundant proteins 

with high coefficient of variation (including ECM proteins, antibodies and antimicrobial 

peptides) are depicted (Figure 3B).  

Interestingly, many of the high CV proteins are cell-type specific genes, such as 

BPIFB1, MUC5B (goblet cells), AGER (type 1 pneumocytes), KRT5, or KRT14 (basal cells), 

indicating that we do observe differences in cellular composition between samples. The 
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average levels of AGER were only mildly reduced in ILD samples compared with donor lungs, 

however, a few patient samples showed drastic changes with at least 60-fold reduced 

protein levels, explaining its high CV. Interestingly, a subset of three ILD patient biopsies 

showed at least 60-fold increased levels of the mucin-5B (MUC5B), which is normally 

expressed by goblet cells in the bronchi. The same three patient samples were strongly 

enriched for matrilysin (MMP7), which was shown to be a key regulator of pulmonary 

fibrosis in mice and humans [28], and one of the most upregulated genes in microarray 

studies of IPF [29]. Interestingly, these samples did not display significantly different levels of 

neutrophil defensin 3 (DEFA3), which was shown to be a marker of acute exacerbations of 

IPF [29], compared with donor lungs (Figure 3C). 

We next determined the Pearson correlation coefficients between the MS-intensity 

profiles of the 133 proteins (Table S5 in the online data supplement) to group proteins by 

similarity. Unsupervised hierarchical clustering (Pearson correlation) of these correlation 

coefficients revealed three main groups of proteins, which were anti-correlated (Figure 3C). 

In group 1, we detected markers for type one (AGER) and type two (SFTPC) pneumocytes, 

while in group 2, we found markers of lung fibrosis, such as MMP7 [28], as well as the basal 

stem cell markers KRT5 and KRT14 [30]. The third distinct group showed higher correlation 

with group 2 compared to group 1 and contained proteins with functions in innate immune 

defense (DEFA3, ELANE), as well as immunoregulatory proteins (CXCL13) (Figure 3D). 

To visualize patient heterogeneity, we used principal component analysis (PCA) of 

1037 proteins representing the upper 20% quantile (Q1) of the CV (Figure 4A), and selected 

2 ILD subgroups that were characterized by a distinct protein profile compared with healthy 

donor controls (Figure 4B and C). Clinically, the ILD group1 (1 IPF and 2 HP) had a lower DLCO 

than group2 (three unclassifiable ILDs) (see Table S3). To determine which proteins in these 

patient subsets were significantly different compared with healthy donor controls, we used a 

two sided t-test, which produced 272 significantly regulated proteins (FDR < 10%) in group 1 

and 262 significantly regulated proteins (FDR < 10%) in group 2 (Figure 4D and E, and Table 

S1 in the online data supplement). 

In summary, the application of unsupervised exploratory statistics on the proteome 

data uncovered correlated groups of proteins and enabled the stratification of ILD patients, 

revealing patient groups with distinct protein composition. 
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Enrichment of MZB1+ tissue resident plasma B cells is a highly prevalent feature of lung 

and skin fibrosis  

We matched the two proteomic datasets and compared fold changes in ILD and localized 

scleroderma biopsies. To reveal common and distinct gene categories in lung and skin 

fibrosis, we first performed 2D annotation enrichment analysis [27] (Table S6 in the online 

data supplement). We observed common upregulation of extracellular matrix genes, 

complement activation, N-glycan biosynthesis, plasma-lipoprotein particles and most 

significantly, we found a common increase in the abundance of antibodies (Figure 5A, B). 

Comparing the protein outliers with the highest fold changes, we identified a number of 

interesting differences as well as similarities between both datasets. For instance, the ECM 

protein Tenascin-C (TNC), which is known to be increased in IPF [31], was upregulated in 

both datasets. Surprisingly, the most significant similarity with highest fold changes in both 

lung and skin fibrosis was an upregulation of the Marginal zone B- and B1-cell-specific 

protein (MZB1) (Figure 5B), which is known to be expressed in certain B-cell subsets to 

diversify peripheral B cell functions by regulating Ca(2+) stores, antibody secretion, and 

integrin activation [32]. We validated this finding by staining MZB1 in tissue sections from 

ILD and scleroderma (Figure 5C and S3 – S7). MZB1 localized to cells with a considerable 

volume of cytoplasm that were found in higher numbers in fibrotic tissue compared with 

controls and were localized typically in perivascular regions.  

MZB1 is an ER resident protein, which is important for antibody secretion and is thus 

upregulated in cells with high antibody secretory activity [33]. We confirmed this finding by 

treating human peripheral blood mononuclear cells (PBMC) with interleukin-2 (IL2) and the 

TLR7/8 ligand R848, which induces differentiation of memory B cells to Ig-secreting cells 

[34], and analyzing MZB1 expression. IL2/R848 treatment induced IgG production and 

expression of BLIMP1, a transcription factor essential for plasma cell function [35]. Indeed, 

expression of MZB1 on both transcript and protein levels was drastically increased under 

these conditions (Figure S2), confirming its specific expression in antibody secreting cells. 

To establish MZB1 as marker for antibody-secreting plasma B cells in human ILD 

tissue, we performed co-immunostainings with several lineage markers. The MZB1+ cells 

were negative for the T-lymphocyte lineage marker CD3 (Figure S3A, S6A), and also 

completely negative for the B-cell lineage marker CD20 (Figure S3B, S6B) or the leukocyte 

lineage marker CD45 (Figure S4A, S7A). Co-expression of MZB1 with CD38 (Figure 5C), CD138 
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(Figure S4B), and CD27 (Figure S5A), clearly identified the MZB1+ cells as terminally 

differentiated plasma B cells in ILD tissues [36]. Similarly, we also found MZB1+/CD38+ 

double positive cells that were CD20/CD45 negative (Figure S6 and S7) in the skin. 

Furthermore, consistent with the notion that we identified tissue resident plasma B cells, we 

also found positive staining of MZB1+ cells with an antibody against human IgG (Figure S5B). 

Finally, to increase the overall number of samples and validate our findings in an 

independent cohort, we performed Western blot analysis of 34 additional ILD tissues (IPF 

n=14, HP n=7, CTD-ILD n=2, NSIP n=3, unclassifiable ILD n=12, other ILD n=3) and 7 healthy 

donor controls (see Table S7 in the online data supplement for clinical baseline 

characteristics). We found MZB1 significantly increased in both IPF and non-IPF ILD 

compared with healthy donor tissue (Figure 6A and 6B). We also re-confirmed our finding by 

Western blotting of MZB1 protein in 3 additional localized scleroderma patients (Figure 6C). 

Importantly, the quantification of total tissue IgG and MZB1 levels showed a significant 

positive correlation, again indicating that MZB1 amounts are predictive for local antibody 

secretion (Figure 6D). Increased abundance of MZB1 transcripts in ILD compared with 

healthy donor controls and COPD cases were also found in an independent large US cohort 

microarray study (Gene Expression Omnibus dataset GSE47460) (Figure 6E). Of note, the 

same dataset shows increased abundance of CD38 in ILD tissues (Figure S1), thus providing 

an independent confirmation for the prevalence of plasma B cells. MZB1 levels were 

independent of age, vital capacity, gender, treatment with steroids or antifibrotics (Figure 

S8), but showed a significant negative correlation with DLCO (%) in both cohorts analyzed 

(Figure 6F and 6G).  

In summary, the unbiased proteomic analysis of human lung and skin fibrosis 

uncovered a surprising prevalence of MZB1+/CD38+/CD138+/CD27+/CD20-/CD45- plasma B 

cells, which is an indication for a common involvement of antibody-mediated autoimmunity 

in idiopathic organ fibrosis. 
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Discussion 

Mass spectrometry driven proteomics evolved into a highly sensitive and accurate 

technology that enables the precise quantification of thousands of proteins at once [37]. In 

this study, we used the recently developed QDSP method to analyze tissue biopsies of 

human lung and skin fibrosis at a depth of >7900 proteins quantified. We provide the most 

comprehensive proteomic resource of human tissue fibrosis, containing information about 

the abundance, stoichiometry, and detergent solubility of proteins, and the first cross-organ 

comparison of tissue fibrosis. Profiling lung biopsies from a heterogeneous cohort of human 

ILD together with skin biopsies from patients with localized scleroderma (morphea) enabled 

the identification of common and distinct protein regulation in various forms and stages of 

fibrotic remodeling.  

Proteomic analysis of tissue composition is particularly powerful for secreted 

proteins, whose protein abundances very often do not correlate with total tissue mRNA 

quantification in RNA sequencing assays [14]. Thus, our data represents an essential addition 

to existing transcriptomic studies of human lung and skin fibrosis.  Furthermore, the QDSP 

method captures the interactions of morphogens and other secreted proteins with the ECM 

in an unbiased way, revealing those that are bound to the matrix by their decreased 

detergent solubility. Thereby, we added an additional dimension to the human lung and skin 

proteome, which for the first time revealed the association of secreted proteins with the 

ECM.  

The use of unsupervised statistical tests, such as principal component analysis clearly 

showed the high degree of molecular heterogeneity between samples. This was no surprise 

since we intentionally selected a diverse patient cohort to screen for molecular events that 

are commonly present in all forms of fibrosis. We made use of patient heterogeneity by 

grouping proteins with high abundance variation across samples by their Pearson 

correlation. The correlation of proteins in this analysis can be for instance explained by their 

cell-type specific expression and thus their capacity to report differences in the relative 

amount of cell types in the respective biopsies. Along these lines, the recent development of 

high throughput technologies in the field of single cell mRNA sequencing [38] will likely 

enable future attempts to study cellular heterogeneity in chronic lung disease in great detail. 

Given the high amount of biological variation and heterogeneity of cellular composition 
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observed in our ILD cohort, it is remarkable that we identified a substantial number of 

common factors that were increased in all samples.  

The most significant common factor across ILD and scleroderma samples was the 

protein MZB1, which we localized to CD38+/CD138+/CD27+/CD20-/CD45- B cells. In 

respiratory immunity, B cells can be recruited to tertiary lymphoid organs around the 

bronchi were they are organized in B cell follicles [39, 40]. In our analysis, MZB1 positive cells 

were found to be quite dispersed in the tissue and not necessarily associated with tertiary 

lymphoid structures, however with predominant perivascular abundance. MZB1 has 

important functions in the endoplasmic reticulum (ER) of B cells that undergo ER-stress upon 

high antibody secretory activity [32, 33]. In the immunostainings we observed MZB1 high 

and low cells, indicating that the expression level is tightly regulated in B cells. MZB1 high 

cells had a large cytoplasm and were positive for a comprehensive panel of known mature 

plasma B cell markers, which clearly identifies them as terminally differentiated antibody 

producing tissue resident plasma cells. Since most of the samples in our study were biopsies 

from idiopathic forms of ILD, we believe that this observation warrants future investigation 

regarding the causative role of antibody mediated autoimmunity in idiopathic cases of organ 

fibrosis. Of note, it has been recognized that many idiopathic interstitial pneumonia (IIP) 

patients have clinical features that suggest an underlying autoimmune process, but do not 

meet established criteria for a connective tissue disease (CTD). To meet this problem, an 

ERS/ATS task force recently proposed the term “interstitial pneumonia with autoimmune 

features” (IPAF) and offered several classification criteria [41]. 

Circulating autoantibodies in IPF have been described long time ago [6], and a 

causative role for B-cell mediated autoimmunity for idiopathic ILD has been discussed [42, 

43]. In localized scleroderma the role of autoantibodies is unclear but the histology of the 

fibrotic reaction, involving a strong inflammatory infiltrate around the blood vessels, is 

identical to the lesions found in systemic scleroderma patients, who all have circulating 

autoantibodies [44]. A recent study demonstrated that autoantibodies against the lung 

specific protein Bpifb1 occur in 12% of patients with idiopathic ILD [7]. Importantly, the 

authors of this landmark study also demonstrated that T cells specific for a single 

autoantigen (Bpifb1) are sufficient to induce full blown and irreversible lung fibrosis in mice 

[7]. It is thus conceivable that (1) the presence of autoantibodies and autoreactive T cells 

against unknown antigens may cause or at least perpetuate many if not most IIPs and (2) 
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that the identification of these unknown autoantigens in patient plasma may serve as a 

powerful tool for both patient stratification and future immunotherapy based approaches to 

treatment of ILD. The recent use of chimeric antigen receptor T cells specific for autoantigen 

producing B-cells for targeted therapy of autoimmune disease [45] introduces an exciting 

new avenue for eliminating autoreactive B-cell clones, while maintaining protective adaptive 

immunity. Such future therapeutic approaches will depend on the identification of disease 

specific autoantigens, and appropriate pre-clinical models, to test if indeed certain antigens 

have causative roles in idiopathic forms of organ fibrosis. 
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Figure legends 

Figure 1. Quantitative detergent solubility profiling (QDSP) of human lung and skin fibrosis. 

(A) Experimental design (Graphs adapted from [14]). (B) Proteins in the four indicated QDSP 

detergent solubility fractions were quantified individually and the z-score of relative protein 

MS-intensities across 14 ILD proteomes and the four protein fractions was used for 

unsupervised hierarchical clustering (using Pearson correlation of rows). Clusters A-D were 

significantly enriched for the indicated gene categories. Core matrisome and matrisome 

associated proteins are assigned to the cluster by the indicated color code. (C) A principal 

component analysis (PCA) of the relative MS-intensities of 550 secreted proteins was used to 

separate the four QDSP protein fractions (indicated by the color code) in Component 1 and 

endstage ILD tissues (closed circles) from healthy donor lungs (open circles) in Component 4. 

(D) The scatter plot depicts the protein loadings used for the PCA in panel (C). 

 

Figure 2. Total tissue protein abundance changes. The depicted volcano plots show 

significantly altered proteins relative to controls at the indicated false discovery rates (FDR) 

in (A) lung biopsy samples from ILD patients, and (B) fibrotic skin lesions from localized 

scleroderma patients. (C) Hierarchical clustering (Pearson correlation of z-score) of the 44 

significant proteins in panel (A). Gene names and clinical classification of patients are shown. 

(D) In the left panel the summed up MS-intensities of MMP19 (total tissue protein 

abundance) are shown on log2 scale for donor and ILD samples. In the right panel, the 

relative MS-intensities across detergent solubility fractions of MMP19 are shown. 

 

Figure 3. Identification of proteins and gene categories with high variance in ILD 

proteomes. (A) The scatter plot depicts proteins sorted from highest to lowest abundance 

(MS-intensity normalized by number of theoretical tryptic peptides; IBAQ) and their 

coefficient of variation (CV) across the ILD tissue proteomes. The indicated color code shows 

the 5 quantiles of CV. The dashed line shows the chosen cutoff resulting in 133 proteins with 

high CV used for analysis in panel D. (B) The scatter plot depicts significantly enriched gene 

categories along two dimensions, with annotation enrichment scores (-1 to +1) for both CV 

and protein abundance. The indicated gene categories in the upper right quadrant are highly 
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abundant while nevertheless having a high CV. GOCC – Gene Ontology Cellular 

Compartment; GOMF – Gene Ontology Molecular Function. (C) Normalized MS-intensities of 

the indicated proteins are shown on log2 scale. (D) The Correlogram visualizes the color 

coded Pearson correlation of 133 high CV proteins across the ILD proteomes. Gene names 

within the three main clusters of proteins are indicated in the boxes. 

 

Figure 4. Distinct molecular signatures of ILD patient subsets. (A) Principal component 

analysis of 5707 quantified proteins was used to separate the 14 human lung tissue 

proteomes. A three dimensional visualization of components 1-3 enabled separation of 

patient subsets and healthy donor controls as indicated. Clinical diagnosis is color coded as 

indicated. Two distinct ILD subsets and the donor controls are labeled with a circle. (B) Two 

dimensional PCA plot of component 1 and 3. Two distinct ILD subsets and the donor controls 

are labeled with a circle. (C) The loadings of the principal component analysis in panel (B) are 

shown. Proteins with the highest loadings are labeled with their gene names. (D) The 

volcano plot depicts 272 significantly regulated proteins (FDR < 10%) in the ILD subset 1 

(indicated in panels A & B) compared to healthy donor controls. (E) The volcano plot depicts 

262 significantly regulated proteins (FDR < 10%) in the ILD subset 2 (indicated in panels A & 

B) compared to healthy donor controls. 

 

Figure 5. High prevalence of MZB1+ tissue resident plasma B cells is a common feature in 

human lung and skin fibrosis. (A) The scatter plot depicts significantly enriched gene 

categories along two dimensions, with annotation enrichment scores (-1 to +1) for both lung 

fibrosis [ILD / donor] and skin fibrosis [scleroderma / control]. The indicated gene categories 

in the upper right quadrant are common factors in ILD and localized scleroderma. (B) The 

scatter plot shows the t-test difference in human skin and lung fibrosis respectively. T-test 

significant proteins in the ILD comparison (orange) and the scleroderma comparison (blue) 

are color coded. MZB1 protein was significant in both comparisons. (C) Representative 

confocal image of four-color immunostainings with antibodies to the indicated proteins in a 

FFPE tissue section of an ILD patient. Arrows indicate MZB1/CD38 double positive cells. 
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Nuclei were stained with DAPI and Desmin stains vascular smooth muscle cells and some 

mesenchymal cells in fibrotic tissues. 

 

Figure 6. The number of MZB1+ cells correlates with tissue IgG and predicts lower diffusing 

capacity of the lung for carbon monoxide (DLCO). (A) Tissue homogenates of the indicated 

groups were subjected to Western blot analysis with antibodies against MZB1 and human 

IgG. Blots were stained with Amidoblack for quantification of total protein loading.  (B) The 

box and whiskers plot shows densitometric quantification of the MZB1 bands in the Western 

blot in panel (A), which were normalized to Amidoblack staining. (C) Tissue homogenates of 

the indicated groups were subjected to Western blot analysis with antibodies against MZB1 

and human IgG. Blots were stained with Amidoblack for quantification of total protein 

loading. (D,F,G) Linear regression analyses - clinical classifications are color coded as 

indicated and the p-values of the linear regressions and the Pearson correlation coefficients 

(r) are shown. (D) Positive correlation of IgG and MZB1 levels (normalized to total protein 

analyzed using amidoblack quantification). (E) Quantification of MZB1 tissue abundance by 

microarray in a large US cohort (Gene Expression Omnibus dataset GSE47460 published by 

the Lung Tissue Research Consortium). (F) Negative correlation of DLCO (%) and MZB1 levels 

(normalized to total protein analyzed using amidoblack quantification). (G) Negative 

correlation of DLCO (%) and MZB1 levels (quantified by mass spectrometry).  
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MATERIAL AND METHODS 

Antibodies, immunohistochemistry and microscopy  

FFPE tissue samples were sectioned and stained as previously described [1]. The following 

primary (1) and secondary (2) antibodies were used: (1) MZB1 rabbit (Sigma-Aldrich, 

HPA043745), CD3 rabbit (Abcam, ab16669), CD20 mouse (Dako, MO755), CD38 mouse 

(Santa Cruz, sc-374650), CD45 mouse (Sigma-Aldrich, AMAb90518), Desmin goat (Santa Cruz, 

sc-7559), Human IgG [EPR4421] (Abcam, ab109489), CD27 (Abcam, ab49518), CD138 (Sigma, 

SAB4700486); (2) donkey anti-mouse Alexa Fluor (AF) 647 (Invitrogen, A-31571), donkey 

anti-rabbit AF 568 (Invitrogen, A10042), donkey anti-goat AF 488 (Invitrogen, A11055). 

Plasma cell differentiation and MZB1 qPCR 

QPCR and Western Blot analysis was performed as described previously [2]. Primers used are 

listed in the table below. Antibody against human IgG was goat anti-Human IgG (Fc specific, 

Sigma-Aldrich).  

Target Species Forward (5’->3’) Reverse (5’->3’) 

MZB1 human GGA ACT GGC AGG ACT AC CAA ACA TGT CCT GGA GAG 

Mzb1 mouse AAC TGG CAG TCC TAT GG GAA ACA CGT CTT GGA GAG 

GAPDH human TGA CCT CAA CTA CAT GGT TTA CAT 

G 

TTG ATT TTG GAG GGA TCT CG 

Gapdh mouse TGT GTC CGT CGT GGA TCT GA CCT GCT TCA CCA CCT TCT TGA 

BLIMP1 human GAT GAA TCT CAC ACA AAC AC GAT TTC TTT CAC GCT GTA CT 

 

Differentiation of memory B cells to Ig-secreting cells was performed according to Pinna et al 

[3]. Briefly, human peripheral blood mononuclear cells (PBMCs) were stimulated with 

interleukin-2 (IL2) and the TLR7/8 ligand R848 for 7 days and compared to unstimulated cells 

cultured for the same time period.  
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Sample preparation procedures for proteome analysis 

For proteome analysis of human tissue biopsies ~100mg of fresh frozen total tissue (wet 

weight) was homogenized in 500 µl PBS (with protease inhibitor cocktail) using an Ultra-

turrax homogenizer. After centrifugation the soluble proteins were collected and proteins 

were extracted from the insoluble pellet in 3 steps using buffers with increasing stringency 

as described in the QDSP protocol [1]. Peptides from LysC and trypsin proteolysis of the four 

protein fractions in guadinium hydrochloride (enzyme/protein ratio 1:50), were purified as 

previously described on SDB-RPS material stage-tips [1].  

LC-MS/MS analysis  

Data was acquired on a Quadrupole/Orbitrap type Mass Spectrometer (Q-Exactive, Thermo 

Scientific) as previously described [1]. Approximately 2 μg of peptides were separated in a 

four hour gradient on a 50-cm long (75-μm inner diameter) column packed in-house with 

ReproSil-Pur C18-AQ 1.9 μm resin (Dr. Maisch GmbH). Reverse-phase chromatography was 

performed with an EASY-nLC 1000 ultra-high pressure system (Thermo Fisher Scientific), 

which was coupled to a Q-Exactive Mass Spectrometer (Thermo Scientific). Peptides were 

loaded with buffer A (0.1% (v/v) formic acid) and eluted with a nonlinear 240-min gradient of 

5–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow rate of 250 nl/min. 

After each gradient, the column was washed with 95% buffer B and reequilibrated with 

buffer A. Column temperature was kept at 50 °C by an in-house designed oven with a Peltier 

element [4] and operational parameters were monitored in real time by the SprayQc 

software [5]. MS data were acquired with a shotgun proteomics method, where in each 

cycle a full scan, providing an overview of the full complement of isotope patterns visible at 

that particular time point, is follow by up-to ten data-dependent MS/MS scans on the most 

abundant not yet sequenced isotopes (top10 method) [6]. Target value for the full scan MS 

spectra was 3 × 10
6
 charges in the 300−1,650 m/z range with a maximum injection time of 

20 ms and a resolution of 70,000 at m/z 400. Isolation of precursors was performed with the 

quadrupole at window of 3 Th. Precursors were fragmented by higher-energy collisional 

dissociation (HCD) with normalized collision energy of 25 % (the appropriate energy is 

calculated using this percentage, and m/z and charge state of the precursor). MS/MS scans 

were acquired at a resolution of 17,500 at m/z 400 with an ion target value of 1 × 10
5,

 a 
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maximum injection time of 120 ms, and fixed first mass of 100 Th. Repeat sequencing of 

peptides was minimized by excluding the selected peptide candidates for 40 seconds.  

Bioinformatic analysis and statistics 

MS raw files were analyzed by the MaxQuant software [7] (version 1.4.3.20) and peak lists 

were searched against the human Uniprot FASTA database (version May 2013), and a 

common contaminants database (247 entries) by the Andromeda search engine [8] as 

previously described [1]. As fixed modification cysteine carbamidomethylation and as 

variable modifications, hydroxylation of proline and methionine oxidation was used. False 

discovery rate was set to 0.01 for proteins and peptides (minimum length of seven amino 

acids) and was determined by searching a reverse database. Enzyme specificity was set as C-

terminal to arginine and lysine, and a maximum of two missed cleavages were allowed in the 

database search. Peptide identification was performed with an allowed precursor mass 

deviation up to 4.5 ppm after time-dependent mass calibration and an allowed fragment 

mass deviation of 20 ppm. For label-free quantification in MaxQuant the minimum ratio 

count was set to two. For matching between runs, the retention time alignment window was 

set to 30 min and the match time window was 1 min. QDSP data analysis was performed 

with a custom made matlab script as previously described [1]. Box plots, t-test statistics and 

correlation analysis was performed using the software GraphPad Prism. All other statistical 

and bioinformatics operations, such as normalization, pattern recognition, cross-omics 

comparisons and multiple-hypothesis testing corrections, were performed with the Perseus 

software package [9].  
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Supplement Legends 

 

Figure S1. Cross-omics analysis of molecular alterations in ILD. (A, B) Western blot analysis 

of KRT17 (B) and SDF4 (C) expression in IPF samples from an independent US cohort 

compared to Donor lungs. (C) The mean log2 mRNA abundance ratios [ILD n=194 / CTRL 

n=91] from a published gene expression dataset (Gene Expression Omnibus dataset 

GSE47460 published by the Lung Tissue Research Consortium) was plotted against the mean 

log2 protein abundance ratios [ILD n=11 / CTR n=3] of the ILD patient proteomes described 

in Figure 2. Outliers are labeled with gene names. (D, E) Correlation analysis of mRNA 

abundance (Gene Expression Omnibus dataset GSE47460) and protein abundance (mass 

spectrometry) for (B) healthy controls and (C) ILD tissues. Core matrisome proteins are 

labeled and the Pearson correlation coefficient (r) is shown. 

 

Figure S2: MZB1 expression correlates with plasma B cell differentiation. (A) Treatment of 

human peripheral blood mononuclear cells (PBMCs) with interleukin-2 (IL2) and the TLR7/8 

ligand R848 induces differentiation of memory B cells to Ig-secreting plasma cells [34], as 

monitored by immunofluorescent stainings for human IgG and (B) increased transcript levels 

of BLIMP1, a transcription factor essential for plasma cell function [35]. (C) MZB1 transcript 

(upper panel) and protein (lower panel, representative Western Blot) levels are drastically 

increased upon treatment of PBMCs with IL2/R848 in comparison to unstimulated cells. 

Results are based on three independent experiments using PBMCs derived from the same 

donor and are given as mean ± SEM. Statistical analysis was performed using paired t-test (*, 

p<0.05). Scale bar: 20 µm. 

   

Figure S3. MZB1+ cells in human lungs are CD3 and CD20 negative. (A, B) Representative 

confocal image of four-color immunostainings with antibodies to the indicated proteins in a 

FFPE tissue section of an ILD patient. Nuclei were stained with DAPI and Desmin stains 

vascular smooth muscle cells and some mesenchymal cells in fibrotic tissues. MZB1+ cells are 

(A) negative for the T lymphocyte specific cell surface marker protein CD3, and (B) the B cell 

specific cell surface marker protein CD20. Arrows indicate MZB1+ cells.  

Page 32 of 45Page 32 of 45
 AJRCCM Articles in Press. Published on 27-June-2017 as 10.1164/rccm.201611-2263OC 

 Copyright © 2017 by the American Thoracic Society 



 

Figure S4. MZB1+ cells in human lungs are CD45 negative and CD138 positive. (A, B) 

Representative confocal image of four color immunostainings with antibodies to the 

indicated proteins in a FFPE tissue section from an ILD patient. Nuclei were stained with 

DAPI and Desmin stains vascular smooth muscle cells and some mesenchymal cells in fibrotic 

tissues. (A) MZB1+ cells are negative for the leukocyte specific cell surface marker protein 

CD45. Arrows indicate MZB1+ cells. (B) MZB1+ cells are positive for the plasma B cell marker 

CD138. Arrows indicate MZB1/CD138 double-positive cells.  

 

Figure S5. MZB1+ cells in human lungs stain positive for CD27 and IgG. (A, B) 

Representative confocal image of four color immunostainings with antibodies to the 

indicated proteins in a FFPE tissue section from an ILD patient. Nuclei were stained with 

DAPI and Desmin stains vascular smooth muscle cells and some mesenchymal cells in fibrotic 

tissues. (A) MZB1+ cells are positive for the plasma B cell specific cell surface marker protein 

CD27. Arrows indicate MZB1/CD27 double positive cells. (B) MZB1+ cells are positive for IgG. 

Arrows indicate MZB1/IgG double-positive cells.  

 

Figure S6. MZB1+ cells in human skin are CD3 and CD20 negative. (A, B) Representative 

confocal image of four-color immunostainings with antibodies to the indicated proteins in a 

FFPE tissue section of localized scleroderma. Nuclei were stained with DAPI and Desmin 

stains vascular smooth muscle cells and some mesenchymal cells in fibrotic tissues. MZB1+ 

cells are (A) negative for the T lymphocyte specific cell surface marker protein CD3, and (B) 

the B cell specific cell surface marker protein CD20. Arrows indicate MZB1+ cells. 

 

Figure S7. MZB1+ cells in human skin are CD45 negative and CD38 positive. (A, B) 

Representative confocal image of four color immunostainings with antibodies to the 

indicated proteins in a FFPE tissue section of localized scleroderma. Nuclei were stained with 

DAPI and Desmin stains vascular smooth muscle cells and some mesenchymal cells in fibrotic 

tissues. MZB1+ cells are (A) negative for the leukocyte specific cell surface marker protein 
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CD45, and (B) positive for the plasma B cell marker CD38. Arrows indicate MZB1/CD38 

double-positive cells. 

 

Figure S8. No effect of age, vital capacity, treatment or gender on MZB1 tissue levels. (A, B) 

Linear regression analyses - clinical classifications are color coded as indicated and the p-

values of the linear regressions and the Pearson correlation coefficients (r) are shown. (A) 

Correlation of age and MZB1 levels (normalized to total protein analyzed using amidoblack 

quantification). (B) Correlation of vital capacity (VC) in % and MZB1 levels (normalized to 

total protein analyzed using amidoblack quantification). (C-E) The box and whisker plots 

show MZB1 levels in the indicated groups as quantified by Western blotting.  

 

Table S1. ILD proteomes. The xlsx table contains three tabs with different types of 

information. Tab1 (`total proteome´) shows the quantification of total protein abundance. 

Expression columns as well as numerical and categorical annotations are shown. Tab2 

(`QDSP full dataset´) shows the quantification of proteins separately for each fraction in the 

QDSP protocol [14]. Individual columns representing the MS-intensities for each sample are 

labeled with the fraction names (`FR1-FR4´) and the group names (`ILD´ or `donor´). 

Additional columns show gene annotations. Tab3 (`QDSP normalized´) shows normalized 

protein intensities across the QDSP fractions. The solubility profiles across the four fractions 

are compared by first normalizing the intensities such that the mean log 2 intensities of the 

groups (`ILD´, `ILD subset´ and `donor´) are zero. 

 

Table S2. Localized scleroderma proteomes. The xlsx table contains three tabs with different 

types of information. Tab1 (`total proteome´) shows the quantification of total protein 

abundance. Expression columns as well as numerical and categorical annotations are shown. 

Tab2 (`QDSP full dataset´) shows the quantification of proteins separately for each fraction 

in the QDSP protocol (Schiller et al., 2015). Individual columns representing the MS-

intensities for each sample are labeled with the fraction names (`FR1-FR4´) and the group 

names (`control´ or `sclerotic´). Additional columns show gene annotations. Tab3 (`QDSP 

normalized´) shows normalized protein intensities across the QDSP fractions. The solubility 
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profiles across the four fractions are compared by first normalizing the intensities such that 

the mean log 2 intensities of the groups (`control´, `sclerotic´) are zero. 

 

Table S3. Baseline characteristics of patients with ILD included in the mass spectrometry 

analysis. Abbreviations: PFT: pulmonary function test, VC: vital capacity, TLC: total lung 

capacity, RV: residual volume, FEV1: forced expiratory volume in 1 second, DLCO: diffusing 

capacity of the lung for carbon monoxide, LTOT: long term oxygen therapy. 

 

Table S4. Two dimensional annotation enrichment analyses for protein abundance ranks 

versus coefficient of variation ranks. The table shows significantly enriched gene categories 

along two dimensions, with annotation enrichment scores (-1 to +1) for both CV and protein 

abundance. 

 

Table S5. Pearson correlation matrix of high CV proteins. The xlsx table shows the Pearson 

correlation coefficients of 133 proteins that were selected by their high coefficient of 

variation across the 11 ILD proteomes. Alongside the correlation matrix several numerical 

and categorical annotations to every protein are shown. 

 

Table S6. Two dimensional annotation enrichment analyses for lung versus skin fibrosis. 

The table shows significantly enriched gene categories along two dimensions, with 

annotation enrichment scores (-1 to +1) for both lung fibrosis [ILD / donor] and skin fibrosis 

[scleroderma / control]. 

 

Table S7. Baseline characteristics  

of patients with ILD analyzed by Western blotting. Abbreviations: PFT: pulmonary function 

test, VC: vital capacity, TLC: total lung capacity, RV: residual volume, FEV1: forced expiratory 

volume in 1 second, DLCO: diffusing capacity of the lung for carbon monoxide, LTOT: long 

term oxygen therapy. 
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Patient characteristics 

Characteristics IPF 

n=2 

HP 

n=3 

COP 

n=1 

NSIP  

n=1 

Unclassifiable ILD n=4 All  

n=11 

Male gender, no. (%) 1 (50,0) 1 (33,3) 0 (0) 1 

(100,0) 

3 (75,0) 8 (72,7) 

Age, years, ±SD 66,0±4,2 47,3±13,3 48,0 84,0 54,0±4,2 58±13,1 

PFT       

     VC, l (% pred) 

 

3,41±0,33 

(97,8±26,6) 

1,06±0,07 

(31,7±4,04) 

3,2 

(109) 

2,32 

(69,4) 

3,27±0,62 (81,1±10,7) 2,72±1,09 

(76,1±29,9) 

     TLC, l (% pred) 

 

5,61±0,70 

(95,1±36,8) 

2,23±0,09 

(43,0±5,2) 

4,91 

(105,9) 

4,25 

(66,2) 

5,46±0,28 (86,4±13,4) 4,62±1,5 

(79,0±27,1) 

     RV, l (% pred) 

 

2,20±1,01 

(99,9±59,2) 

1,17±0,16 

(31,7±27,1) 

1,71 

(104,9) 

1,94 

(68,6) 

2,09±0,37 

(100,5±27,0) 

1,87±0,58 

(82,3±41,7) 

     FEV1, l (% pred) 2,72±0,73 

(97,1±5,7) 

0,93±0,01 

(33,7±5,77) 

2,86 

(117,2) 

1,79 

(75,5) 

2,73±0,59 (86,3±11,8) 2,25±0,93 

(79,0±29,8) 

     DLCO, % pred. 32,8±6,9 19,0±5,2 67,9 46,7 56,8±18,0 40,8±21,0 

     pO2 at rest, mmHg 61,25±22,98 46,67±9,81 68,7 73,4 75,25±12,39 63,70±16,48 

Therapy *       

     LTOT, no. (%) 1 (50,0) 3 (100,0) x x x 4/5 (80,0) 

     Steroids,  no. (%) 1 (50,0) 3 (100,0) x x x 4/5 (80,0) 

    Immunosuppressant, 

no. (%) 

1 (50,0) 1 (33,3) x x x 2/5 (40,0) 

     Antifibrotic drugs, 

no. (%) 

0 (0) 0 (0) x x x 0/5 (0) 

Table S3: Baseline characteristics of patients with ILD included in the mass spectrometry analysis 

Abbreviations: PFT: pulmonary function test, VC: vital capacity, TLC: total lung capacity, RV: residual 

volume, FEV1: forced expiratory volume in 1 second, DLCO: diffusing capacity of the lung for carbon 

monoxide, LTOT: long term oxygen therapy. 
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Characteristics IPF 

n=14 

HP 

n=7 

CTD-ILD  

n=2 

NSIP  

n=3 

Unclassifiable 

ILD n=12 

Other ILD  

n=3 

All  

n=41 

Male gender, no. (%) 12 (85,7) 3 (42,9) 2 (100) 2 (66,7) 7 (58,3) 2 (66,7) 28 (58,3) 

Age, years, ±SD 56,1±10,0 53,7±10,5 42,5±4,9 56,3±8,1 51,0±7,0 55,1±6,9 54,4±8,8 

PFT        

     VC, l (% pred) 

 

1,8±0,2 

(38.0±2,8) 

1,5±0,7 

(42,3±22,5) 

2,1±0,01 

(39,5±9,2) 

1,8±0,2 

(38,0±2,8) 

1,5±0,4 

(39,8±9,3) 

1,9±1,3 

(43,7±28,

6) 

1,7±0,6 

(40,6±15,0) 

     TLC, l (% pred) 

 

3,11±0,5 

(41,5±0,7) 

3,2±1,2 

(54,8±20,7) 

3,1±0,5 

(41,5±0,7) 

2,67 (36) * 2,7±0,5 

(45,7±6,0) 

4,5±1,7 

(63,0±28,

3) 

3,2±1,0 

(49,2±14,2) 

     RV, l (% pred) 

 

1,06±0,5 

(50,0±21,2) 

1,6±0,5 

(70,2±32,29 

1,06±0,5 

(50±21,2) 

0,95 (38) * 1,2±0,3 

(59,3±14,3) 

2,3±0,2 

(100,0±4,

2) 

1,5±0,6 

(68,5±35,2) 

     FEV1, l (% pred) 1,69±0,3 

(40,5±2,1) 

1,2±0,5 

(42,7±16,5) 

1,69±0,3 

(40,5±2,1) 

1,73±0,1 

(46,5±0,7) 

1,3±0,4 

(43,1±11,6) 

1,1±0,3 

(33,3±9,1) 

1,4±0,5 

(42,7±14,5) 

     DLCO, % pred. 10±2,8     

n=5 

20,5±10,1 

n=4° 

10 ±2,8 x 22,8±3,6       

n=5° 

24            

n=1° 

19,7±7,7 

     pO2 at rest, mmHg 36,0±7,1 49,2±8,2 36±7,1 x 50,6±6,8 56±1,4 48,3±8,5 

Therapy        

     LTOT, no. (%) 14 (100) 7 (100) 2 (100) 3 (100) 10 (83,3) 3 (100) 39 (95,1) 

     Steroids,  no. (%) 7 (50.0) 7 (100) 2 (100) 3 (100) 10 (83,3) 3 (100) 32 (78,0) 

    Immunosuppressant, no. (%) 2 (14.3) 3 (42,9) 1 (50) 0 (0) 2 (16,7) 0 (0) 13 (31,7) 

    Antifibrotic drugs, no. (%) 7 (50.0) 2 (28,6) 0 1 (33,3) 7 (58,3) 1 (33,3) 13 (31,7) 

Table S7: Baseline characteristics of patients with ILD analyzed by Western blotting 

Abbreviations: PFT: pulmonary function test, VC: vital capacity, TLC: total lung capacity, RV: residual 

volume, FEV1: forced expiratory volume in 1 second, DLCO: diffusing capacity of the lung for carbon 

monoxide, LTOT: long term oxygen therapy. 

* n=1 

° not all patients were able to perform a DLCO  
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Figure S1
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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Figure S7
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Figure S8
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