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Abstract

Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dy-

namics are often described by continuous-time discrete-state Markov chains and simulated using

stochastic simulation algorithms. As these stochastic simulations are computationally demanding,

ordinary differential equation models for the dynamics of the statistical moments have been de-

veloped. The number of state variables of these approximating models, however, grows at least

quadratically with the number of biochemical species. This limits their application to small- and

medium-sized processes.

Results: In this article, we present a scalable moment-closure approximation (sMA) for the simula-

tion of statistical moments of large-scale stochastic processes. The sMA exploits the structure of

the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields

approximating models whose number of state variables depends predominantly on local proper-

ties, i.e. the average node degree of the reaction network, instead of the overall network size. The

resulting complexity reduction is assessed by studying a range of medium- and large-scale bio-

chemical reaction networks. To evaluate the approximation accuracy and the improvement in com-

putational efficiency, we study models for JAK2/STAT5 signalling and NFjB signalling. Our method

is applicable to generic biochemical reaction networks and we provide an implementation, includ-

ing an SBML interface, which renders the sMA easily accessible.

Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox

CERENA and is available from https://github.com/CERENADevelopers/CERENA.

Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellular mechanisms are subject to inherent biological noise that

stems from stochastic events such as bursty gene expression. Due to

such stochasticity, isogenic cells can behave differently under identi-

cal conditions (Elowitz et al., 2002), giving rise to heterogeneous

cell populations. Rather than being a nuisance, biological noise has

been proven to be crucial in the functioning of biological systems

such as microbial populations and biological tissue (Raj and van

Oudenaarden, 2008), e.g. increasing their robustness. Studying the

stochasticity of biological processes, therefore, can shed light on

their underlying mechanisms and is crucial for a better understand-

ing of their behaviour.

Many biological processes, e.g. gene expression and signal trans-

duction, are modelled as networks of chemical species that undergo

chemical reactions. The dynamics of chemical reaction networks,

i.e. the temporal evolution of the counts of individual species, is usu-

ally described by continuous-time discrete-state Markov chains

(CTMCs). The statistics of CTMCs are described by the Chemical

Master Equation (CME). As the simulation of the CME is computa-

tionally intractable for most processes due to their high- or even

infinite-dimensional state space, several methods have been pro-

posed to approximate the statistical moments, e.g. moment-closure

approximations (MAs) (Engblom, 2006; Lee et al., 2009) and

system-size expansions (Grima, 2010; van Kampen, 2007). These
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methods yield ordinary differential equations (ODEs) that ap-

proximate the temporal evolution of the statistical moments. These

ODEs are usually lower-dimensional than the CME, rendering their

numerical simulation more tractable. However, already for the ana-

lysis of the mean and covariance of the stochastic process, the size

of the state space of the approximating models grows quadratically

with the number of biochemical species. This limits the application of

these methods to small- and medium-scale biochemical reaction net-

works if the calculation of all statistical moments is required.

However interestingly, in a range of applications, including parameter

estimation (Fröhlich et al., 2016; Munsky et al., 2009), information

about a subset of statistical moments can be sufficient.

In this study, we introduce a scalable second-order moment-

closure approximation (s2MA) which is feasible for large-scale bio-

chemical reaction networks. The s2MA is designed for the accurate

description of selected statistical moments, including means and

variances. We introduce an algorithm that exploits the structure of

the reaction network to select the subset of moments which are most

relevant for the reliable approximation of means and variances.

Using analytical results for toy networks and published biological

models, we show the superior scaling of s2MA over other methods

for moment approximation, which renders the s2MA tractable for

large reaction networks. To assess the accuracy and computational

efficiency of s2MA, we simulated several network motifs and mod-

els for JAK2/STAT5 and TNF signalling.

2 Approach

We consider a biochemical reaction network of n species, S1; . . . ; Sn,

and nr reactions, R1; . . . ;Rnr
. The state of this network is denoted by

X ¼ X1;X2; . . . ;Xnð ÞT where Xi is the number of molecules of spe-

cies Si. Upon the firing of reaction Rr, the state X undergoes the tran-

sition X!ar
Xþ mr, in which �r and ar Xð Þ denote the stoichiometry

and the propensity of reaction Rr, respectively. Due to the stochastic

nature of chemical reactions, the state vector X evolves stochastic-

ally over time. The probability distribution of X at time t is denoted

by p xjtð Þ over all possible states x.

The temporal evolution of the statistical moments of p xjtð Þ can

be approximated using MAs of different orders. The order of an

MA is the highest order of the statistical moments which are mod-

elled. The second-order MA (2MA) is an ODE with n(n þ 3)/2 state

variables which describes the dynamics of the mean m ¼
P

xxp xjtð Þ
and covariance C ¼

P
x x�mð Þ x�mð ÞTp xjtð Þ:

@mi

@t
¼
P

r�ri ar mð Þ þ 1

2

X
k;l

@2ar

@xk@xl

����
m

Ckl

 !
;

@Cij

@t
¼
P

r

�
�ri�rjar mð Þ þ

X
k

@ar

@xk

����
m

�riCjk þ �rjCik

� �

þ1

2

X
k;l

@2ar

@xk@xl

����
m

�ri�rjCkl þ �riCjkl þ �rjCikl

� ��
;

(1)

where Cikl denotes the third-order moment of Xi, Xk and Xl. Due to

the symmetry Cij ¼ Cji only Cij with i � j is considered. As in (1),

the evolution equations for second-order moments usually depend

on third-order moments. To close the 2MA equations, moment-

closure techniques are applied which approximate the third-order

moments as functions of first- and second-order moments

(Hespanha, 2008). The moment closure introduces an approxima-

tion error to the otherwise exact moment equations, as it relies on

assumptions about p xjtð Þ (e.g. normality or log-normality; Singh

and Hespanha, 2006).

The 2MA (1) describes the covariances of all pairs of species and

thus possesses O n2
� �

state variables. This quadratic scaling with re-

spect to the number of species, n, poses a challenge for the applic-

ability of 2MA to large biological networks that may contain several

hundreds up to thousands of species. However, it is usually observed

that in large biochemical networks, many pairwise correlations be-

tween species are small. This implies a comparably low covariance

and a small contribution to the right-hand side of (1). Consequently,

for an approximation of the dynamics of the biochemical network,

it may not be necessary to model all covariances.

Studying a series of networks, including the JAK2/STAT5 signalling

pathway described by Bachmann et al. (2011), we observed that species

that directly influence each other via a reaction have a stronger pairwise

correlation. For the JAK2/STAT5 signalling pathway, depicted in Figure

1A, we found that >50% of the correlation coefficients do not exceed

an absolute value of 0.1 (Fig. 1B). Furthermore, the correlation coeffi-

cients decrease as the distance between species in the network increases

(Fig. 1C). Since in many cases biological networks are sparsely con-

nected and distances between species are relatively large (Fig. 1D), a sig-

nificant portion of the covariances may be negligible.

Motivated by this observation, we develop a scalable s2MA that

models a subset of covariances. The s2MA is designed to provide a

good approximation for means and variances of species, as those

moments are essential in a range of applications including parameter

estimation (Munsky et al., 2009; Fröhlich et al., 2016). Accordingly,

the s2MA captures the subset of covariances that are expected to in-

fluence the temporal evolution of the means and variances most

strongly. In the simplest case, we only consider the covariances C�

that have a direct influence on the means and variances, i.e. those

that appear in their evolution equations for mi and Cii:

• Covariances Cik for which a reaction Rr exists with �ri 6¼ 0 and
@ar

@xk
6¼ 0. This is the case if Sk is a modifier or reactant in a reaction

producing or consuming Si.
• Covariances Ckl for which a reaction Rr exists with �ri 6¼ 0 and

@2ar

@xk@xl
6¼ 0. This is the case if both, Sk and Sl, are modifiers or

reactants in a reaction producing or consuming Si.

The remaining covariances are set to zero. The resulting MA ex-

ploits the network structure and is similar to a recently proposed

MA for spatially distributed systems exploiting the neighbourhood

structure (Feng et al., 2016). In the following, we present a mathem-

atical formulation of the s2MA as well as extensions to control its

size and approximation accuracy.

3 Materials and Methods

To simulate the statistical moments of the trajectories of large-scale

stochastic biochemical reaction networks, we introduce scalable

moment-closure approximations (sMAs). These sMA are based on

the afore-mentioned findings and exploit the structure of the bio-

chemical reaction network. In the following, we present the required

graph characteristics and the derivation of the s2MA.

3.1 Graph representation of biochemical reaction

networks
The s2MA uses the structure of the reaction network to identify the

covariances that are most relevant to accurately approximate the

means and variances of species. To establish a simple structure-

based procedure, we exploit the graph structure of the biochemical

reaction networks. This graph structure is best represented using

the Systems Biology Graphical Notation (SBGN) process diagram

i294 A.Kazeroonian et al.

Deleted Text: Munsky <italic>et<?A3B2 show $146#?>al.</italic>, 2009; 
Deleted Text: 2<sup>nd</sup> 
Deleted Text: 2<sup>nd</sup> 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: 3<sup>rd</sup> 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: 2<sup>nd</sup> 
Deleted Text: 3<sup>rd</sup> 
Deleted Text: 3<sup>rd</sup> 
Deleted Text: <IMG_FOUND/>
Deleted Text: 2<sup>nd</sup> 
Deleted Text: ,
Deleted Text: (
Deleted Text: )
Deleted Text: more than 
Deleted Text: s
Deleted Text: 2<sup>nd</sup> -order <?A3B2 thyc=10?>moment-closure<?thyc?> approximation (
Deleted Text: )
Deleted Text: ; Fr&hx00F6;hlich <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: ,
Deleted Text: moment-closure approximation
Deleted Text: moment-closure approximation


(Le Novère et al., 2009). In essence, SBGN process diagram is a

graph which consists of entity nodes representing biochemical species,

process nodes representing biochemical reactions and arcs indicating

the interactions/dependences. The incoming edges to a process node

indicate all the reactants, as well as the modifiers, of the correspond-

ing reaction, while the outgoing edges from a process node mark the

products. For instance, reaction R2 in Figure 2 is a bimolecular reac-

tion where species S2 and S3 react to form species S4. In reaction R3,

species S5 acts as a modifier that activates the conversion of S4 into S6

and S7. The graph structure is encoded in the propensities and the

stoichiometric coefficients and can be easily visualized for Systems

Biology Markup Language (SBML) models using software toolboxes

such as CellDesigner (Funahashi et al., 2008).

We use the graph representation to define a dependency matrix

D which summarizes direct dependencies between species in the net-

work. Following the arguments in Section 2, we say that a species Sj

directly depends a species Si, if the evolution equations for the mean

or the variance of Sj, i.e., mj and Cjj, depend on moments of Si.

Accordingly, it can be shown that:

• The products of a reaction depend on the reactants and the

modifiers.

• The reactants of a reaction depend on the other reactants and the

modifier.

This yields the dependency matrix D,

Dij ¼
1 if Si directly influences Sj

0 otherwise

(

Note that D is not necessarily symmetric as the defined dependency

is a directed property. In the model depicted in Figure 2, S4 depends

on S2 (D24 ¼ 1) but not vice versa (D42 ¼ 0). The dependency ma-

trix D encodes the necessary information for the construction of the

s2MA.

3.2 The scalable s2MA
The exact evolution equations for means m and covariances C (1)

can be written as

@mi

@t
¼ Fm;i m;C;Hð Þ; i 2 f1; . . . ;ng

@Cij

@t
¼ FC;ij m;C;Hð Þ; i; jð Þ 2 I

with I ¼ f i; jð Þ 2 f1; . . . ;ng2ji � jg:

(2)

where H denotes all moments with orders greater than two.

To avoid redundancies caused by the symmetry of the covari-

ances, Cij ¼ Cji, we consider only the subset I of covariances.

The higher-order moments H result from reactions with non-

linear propensities and their temporal evolution is not to

described by (2). To obtain a closed formulation, the higher-order

moments H are approximated by functions of lower-order

moments, H � �H m;Cð Þ, using moment closure techniques.

Common techniques include zero-cumulant closure (Matis and

Kiffe, 1999), low-dispersion closure (Hespanha, 2008), and

Fig. 1. Correlation coefficients in the simulated JAK2/STAT5 signalling pathway. (A) A partial schematic of the JAK2/STAT5 signalling pathway. (B) Maximum

absolute pairwise correlation coefficients found in the simulation of the JAK2/STAT5 signalling pathway. (C) Maximum absolute pairwise correlation coefficients

as function of the distance between species. (D) Frequency distribution of distance between species pairs

Fig. 2. Illustration of SBGN process diagram of a simple biochemical reaction

network. Biochemical species (boxes), biochemical processes (squares) and

interactions/dependencies (arcs) are visualised. Label Si indicates species Si
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derivative-matching (Singh and Hespanha, 2007). This yields the

2MA,

@mi

@t
¼ Fm;i m;C; �H m;Cð Þ

� �
¼: �Fm;i m;Cð Þ; i 2 f1; . . . ; ng

@Cij

@t
¼ FC;ij m;C; �H m;Cð Þ

� �
¼: �FC;ij m;Cð Þ; i; jð Þ 2 I:

The solution of the 2MA yields an approximation to the moments

of the state of the biochemical reaction network. The quality of this

approximation depends on the accuracy of the moment closure

(Kazeroonian et al., 2016; Schnoerr et al., 2015).

The 2MA possesses n nþ 3ð Þ=2 state variables, thus, it grows

quadratically with n. The simplest s2MA, the first-degree s2MA, re-

duces the growth rate by considering only the covariances on which

the temporal evolution of the means and variances depends directly.

This reduced set of covariances, Cij with i; jð Þ 2 I 1ð Þ, can be deter-

mined using the dependency matrix D,

I 1ð Þ ¼ i; jð Þ 2 f1; . . . ;ng2

����i � j ^ DþDT
� �

ij
6¼ 0

� �
:

The covariances Cij with i; jð Þ 2 InI 1ð Þ are not modelled by the first-

degree s2MA but can be approximated using the means, the vari-

ances and the reduced set of covariances. In this study, we use the

low-dispersion closure, Cij ¼ 0 for i; jð Þ 2 InI 1ð Þ.

The approximation quality of the s2MA can be controlled

using the cut-off degree. The second-degree s2MA describes the

covariances that influence the temporal evolution of the means

and variances either directly or via an intermediate step. More

precisely, the second-degree s2MA considers the covariances Cij;

i; jð Þ 2 I 1ð Þ and the covariances which appear in their evolution

equations. The set of these covariances, Cij; i; jð Þ 2 I 2ð Þ, is defined

by the second power of the dependency matrix D2. More gener-

ally, we define the dth-degree s2MA (s2MA-d) which describes the

reduced set of covariances Cij with i; jð Þ 2 I dð Þ,

I dð Þ ¼ i; jð Þ 2 f1; . . . ;ng2

����i � j ^ Dd þ Dd
� �T

	 

ij
6¼ 0

� �
:

The degree d � 1 denotes the maximal intermediate dependency

steps between species pairs (Si, Sj) for which covariances are

included in the s2MA. For a given d, we obtain the s2MA-d,

@mi

@t
¼ �Fm;i m;Cð Þ; i 2 f1; . . . ; ng

@Cij

@t
¼ �FC;ij m;Cð Þ; i; jð Þ 2 I dð Þ

Cij tð Þ ¼ 0; i; jð Þ 2 InI dð Þ:

(3)

We focus on the case d ¼ 1, in which merely covariances of interact-

ing species are considered. To capture long-range interactions, we

considered d � 2, which can improve the approximation accuracy of

the s2MA in biological systems with complex or highly non-linear

kinetics. The potentially enhanced approximation accuracy comes

at the cost of higher computational complexity as the number of

state variables increases with d. In Section 4, we demonstrate that

one can usually find a satisfactory tradeoff between the compu-

tational cost and approximation quality for complex biological

networks.

3.3 Implementation
We implemented methods for the construction and simulation

of the s2MA in the ChEmical REaction Network Analyzer

(CERENA), an open source MATLAB toolbox (Kazeroonian

et al., 2016). The advanced version of CERENA supports

automatic construction of the 2MA and the s2MA using symbolic

calculus and allows for a range of moment closure schemes.

The proposed construction algorithm circumvents the formulation

of the full 2MA to ensure feasibility for large-scale networks.

Biochemical reaction networks can be defined in the SBML or in a

simple m-file format. For efficient numerical simulation, C-code

simulation files are compiled using the Advanced MATLAB

Interface for CVODES and IDAS (Fröhlich et al., 2016).

This C-code employs sophisticated numerical methods imple-

mented in CVODES (Serban and Hindmarsh, 2005), facilitating

the study of a wide range of models. In addition, simulation

using MATLAB internal ODE solvers is supported. CERENA is

freely available from GitHub (http://cerenadevelopers.github.io/

CERENA/) and its functionality is described in a detailed

documentation.

4 Results

In the following, we study the properties of the s2MA and illustrate

its importance for the study of large-scale biochemical reaction net-

works. For this purpose, we analyse various network motifs as well

as published pathway models for which available methods are com-

putationally demanding or even infeasible.

4.1 Scaling properties
The size of the s2MA for a given network as well as its scaling prop-

erties depends on network characteristics. To highlight the scaling

properties, we considered reoccurring network motifs and per-

formed a general theoretical assessment. As verification, we in-

spected published signalling and metabolic pathways with different

numbers of biochemical species.

4.1.1 Theoretical scaling for network motifs and generic networks

To study the scaling properties of s2MA, we considered three differ-

ent network motifs illustrated in Figure 3A–C:

• A chain of monomolecular reactions as observed in metabolic

processes (Krumsiek et al., 2011) and delay representations

(Bachmann et al., 2011).
• A 2D grid of monomolecular reactions as observed in histone

methylation (Zheng et al., 2012).
• A sequence of bimolecular reactions with a hub as observed

in polymerisation related processes, e.g. prion aggregation

(Rubenstein et al., 2007).

For these network motifs, we derived the size of the s2MA-1 and -2

(see Table 1). For all three motifs, we found a linear scaling of the

size of the s2MA-1 with respect to the number of species n. The

same holds for the s2MA-2 of the chain of monomolecular reactions

and the 2D grid of monomolecular reactions. The s2MA-2 of the se-

quence of bimolecular reactions with a hub is identical to the 2MA

as all species are connected via at most one intermediate species (the

hub). Accordingly, the analysis of selected motifs suggests that the

s2MA allows for a substantial size reduction in the absence of cen-

tral hubs.

For generic network structures, the scaling of the s2MA depends

on the degree distribution P(d) of nodes in the graph representation

of the biochemical reaction network (see Section 3.1). By construc-

tion, the number of covariances in the s2MA-1 is the sum of node

degrees over two,
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number of covariances in s2MA� 1 ¼ 1

2

Xn

i¼1
di ¼

n �d

2
;

in which di denotes the degree of node i and the division by

two is required as covariances are associated to two nodes.

Introducing the average node degree, �d ¼ 1
n

Pn
i¼1 di, the s2MA-1 de-

scribes the temporal evolution of n means, n variances and n �d
2 covari-

ances, and thus possesses n
2 4þ �d
� �

state variables. If we assume that

there are no long-ranged connections in the network and every node

is only connected to a subset of neighbouring nodes, then we can as-

sume that �d is independent of the size of the network n, and s2MA-1

will scale linearly with the number of species.

The degree distribution in biological systems have been reported

to follow a power-law (Albert, 2005), P dð Þ / d�c, with an exponent

of 2 < c < 3. Networks with this property are usually referred to

as scale-free networks. The expected value of the average node de-

gree in scale-free networks is

E �d
� �
¼
Xn

i¼1
di ¼

Xn�1

d¼1
d � P dð Þ ¼

Xn�1

d¼1
d1�c:

Using the lower bound of c and the upper bound on the partial sums

of the harmonic series, we obtain

if c > 2 ) E �d
� �

< ln n� 1ð Þ þ 1ð Þ:

Evaluating this upper bound, we notice that even for networks with

up to n ¼ 104 species, �d hardly exceeds 10, making it behave like a

constant compared to n. Accordingly, we conclude that the size of

the s2MA-1 should scale (only slightly worse than) linearly with the

network size.

4.1.2 Scaling for published biochemical reaction networks

To corroborate the theoretical predictions derived under the as-

sumption of scale-free networks, we studied a collection of 50

published biochemical reaction networks. These networks were ex-

tracted from the BioModels, NetPath and Reactome database. They

include between 17 and 1277 biochemical species and a range of

rate laws. A comprehensive list of the networks is provided in

Supplementary Table S1.

We used an extension of the MATLAB toolbox CERENA to

generate the s2MAs for the networks and recorded the sizes

(Fig. 4). The analysis verified our prediction of a roughly linear re-

lation between the size of the s2MA-1 and the number of species.

The s2MA-1, on average, possessed only five times more state vari-

ables than the reaction rate equations, ensuring the applicability of

the s2MA-1 to large-scale networks. For the largest network, a

size reduction by a factor of >120 was achieved compared to the

2MA.

As the consideration of pair-wise correlations between reaction

partners might not be sufficient for a particular application, we also

assessed the scaling of the s2MA-2 and -3. In agreement with the re-

sults for the network motifs, we found that the size of the s2MA of

degree � 2 grew stronger than linear, namely with order 1.25 and

1.49. This implies that for realistic pathway structures, also the size

of the s2MA of degree 2 and 3 grows substantially slower than the

size of the 2MA, facilitating the analysis of stochasticity in large-

scale networks.

4.2 Approximation accuracy
The improved scalability of the s2MA is achieved by merely model-

ling a subset of covariances. In the following section, we will assess

the resulting approximation error and its dependence on the degree

Fig. 3. Illustration of considered network motifs. (A) Chain of monomolecular

reactions (n ¼ 5). (B) 2D grid of monomolecular reactions (n ¼ 25). (C) Chain

of bimolecular reactions with a hub (n ¼ 5)

Table 1. Comparison of the sizes of the 2MA and the s2MA for dif-

ferent network motifs

Network motif Number of state variables

2MA s2MA-1 s2MA-2

Chain of monomolecular reactions nðnþ3Þ
2 3n� 1 4n� 3

2D grid of monomolecular reactions nðnþ3Þ
2 4n�

ffiffiffi
n
p

7n� 7
ffiffiffi
n
p
þ 1

Chain of bimolecular reactions nðnþ3Þ
2 4n� 3 nðnþ3Þ

2

Fig. 4. Scaling of different moment-closure approximations for published net-

works. Moment-closure approximations for individual networks (markers)

and fitted regression curves (lines) are shown
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of the s2MA. For this analysis, we consider two network motifs and

two published signalling pathways.

4.2.1 Comparison of approximation methods for network motifs

For an initial assessment of the approximation accuracy, we con-

sidered the chain of monomolecular reactions (n ¼ 10) and the se-

quence of bimolecular reactions with a hub (n ¼ 20) with mass

action kinetics (Fig. 3A and C). The initial conditions and parameter

values are reported in Supplementary Tables S2 and S3. As a meas-

ure for the approximation accuracy the relative errors in the means

and variances were used, e.g.

100%� jC
s2MA
ii tð Þ � C2MA

ii tð Þj
maxtC2MA

ii tð Þ
;

in which Cs2MA
ii tð Þ and C2MA

ii tð Þ denote the time-dependent variance

of species i calculated by s2MA and 2MA, respectively.

The numerical simulation revealed a good agreement of means

and variances of 2MA and s2MA-1 (Fig. 5). Neglecting the covari-

ances that are not modelled by the s2MA; however, resulted in a

relative error <1% for the means and <20% for the variances.

Given a size reductions of 55.4 and 66.5%, the low relative error

supported the validity of the approach.

4.2.2 Comparison of approximation accuracy for s2MA of

different degrees on published biochemical reaction networks

To assess the approximation accuracy of s2MAs of different degrees

for realistic pathway topologies, we considered the published mod-

els of JAK2/STAT5 signalling and TNF signalling. These models

were also considered in the scalability analysis (Section 4.1.2).

The model of JAK2/STAT5 signalling describes the activity of

the transcription factor STAT5 in response to Epo treatment

(Bachmann et al., 2011). STAT5 regulates cell proliferation, differ-

entiation and inflammation. The considered model accounts for 25

biochemical species and includes biochemical reactions with non-

mass action kinetics. Its 2MA possesses 350 state variables while the

s2MA-1 has less than one-third of the state variables, namely 112.

Nonetheless, the simulation revealed a good agreement of 2MA and

s2MA-1 for the means and variances (Fig. 6A). The means and vari-

ances computed using s2MA-2 and s2MA-3 were essentially indis-

tinguishable from those computed using 2MA. For all s2MAs, we

observed a reduction in the computation time comparable to the size

reduction.

The model of TNF signalling describes the activation of pro- and

antiapoptotic factors, i.e. caspases and NFjB, in response to TNF

treatment (Schliemann et al., 2011). Apoptosis is a form of pro-

grammed cell death which is relevant, among others, in immune

Fig. 5. Approximation accuracy of the s2MA-1 for network motifs. (A) The

chain of monomolecular reactions with n ¼ 10. (B) The sequence of bimolecu-

lar reactions with n ¼ 20. (A, B) Means and variances are depicted along with

relative errors in the variances (2MA versus s2MA-1) for several biochemical

species

Fig. 6. Approximation accuracy of the s2MA for published pathways. (A) The

JAK2/STAT5 signalling pathway. (B) The TNF signalling network. (A, B)

Means and variances computed using the 2MA and the s2MA-1, -2 and -3 are

depicted for several biochemical species. For the s2MA of different degrees,

the relative error in the variances with respect to the 2MA is provided
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response and cancer. The model comprises 47 biochemical species,

yielding a 2MA with 1175 state variables. In contrast, the s2MA-1, -

2 and -3 possess only 189, 540 and 664 state variables. The numer-

ical simulation of the s2MA-1 was more than 25 times faster than

the numerical simulation of the 2MA. The disagreement between

s2MA-1 and 2MA, which resulted in a relative error of 100% for

some species (Fig. 6B) indicates that also covariances betweens spe-

cies which do not interact directly might be required for an accurate

description of mean and variances. The comparison of the results

for s2MA-1, -2 and -3 confirmed that the approximation error de-

creases as more covariances are taken into account. For s2MA-3,

the relative error is below 15%.

In summary, our analysis of network motifs and published net-

works revealed that the s2MA yields substantially smaller ODE

models than the 2MA, indicating a substantial gain in computa-

tional efficiency. Moreover, even for models with many species and

non-mass action kinetics, a good approximation accuracy was

achieved.

5 Discussion

Stochasticity of biochemical reactions is an inherent property of bio-

logical processes. It contributes to the establishment of functional

cell-to-cell variability and robust decision-making (Eldar and

Elowitz, 2010; Raj and van Oudenaarden, 2008). The analysis of

the stochastic processes is, however, restricted by the available ana-

lytical and numerical methods. In this manuscript, we introduce the

scalable second-order moment-closure approximation, the first

method to enable the simulation of statistical moments of large-

scale stochastic processes. The s2MA exploits the network structure

to construct approximate evolution equations for selected process

statistics.

To assess and illustrate the properties of s2MA, we studied net-

work motifs and a large collection of published networks. This com-

prehensive evaluation, which sets this study apart from other studies

of moment-closure approximations (e.g. (Feng et al., 2016; Singh

and Hespanha, 2006), verified that in practice the size of the first-

degree s2MA (s2MA-1) grows linearly with the network size, a scal-

ability that is similar to the reaction rate equations. Accordingly, the

s2MA enables the assessment of stochastic dynamics on a new scale.

The achieved scalability, however, comes at the cost of an approxi-

mation error. The approximation quality can be easily controlled

via the degree of the s2MA.

Beyond scalable moment-closure approximations for the calcu-

lation of means and variances, structured-based approaches might

be used for the evaluation of third-order moments and conditional

moments (Hasenauer et al., 2014). Complementarily, an improve-

ment might be achieved by tailored moment-closure schemes which

avoid neglecting a large fraction of covariances. A possible formu-

lation, for instance, could be based on partial correlations

(Krumsiek et al., 2011) or convergent moments (Zhang et al.,

2016). All of these methods would benefit from a priori and a pos-

teriori error bounds, which are not yet available for moment-

closure approximations, such as the s2MA, but are urgently

needed.

In summary, we presented a scalable moment-closure approxi-

mation for the simulation of stochastic chemical kinetics. This

method is beneficial for application problems that require numerical

simulations at low computation cost, e.g. parameter estimation

(Fröhlich et al., 2016; Munsky et al., 2009). An implementation of

the method is provided in the open-source MATLAB toolbox

CERENA to facilitate its application and further extensions. This

implementation, as well as the concept of structure-based reduction,

is applicable to a broad range of problems and will help to improve

the analysis of stochastic chemical kinetics.
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