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Abstract

Background

Changes in microbial community composition in the lung of patients suffering from moderate

to severe COPD have been well documented. However, knowledge about specific micro-

biome structures in the human lung associated with CT defined abnormalities is limited.

Methods

Bacterial community composition derived from brush samples from lungs of 16 patients suf-

fering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed
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using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S

rRNA gene fragment amplicons.

Results

We could show that bacterial community composition in patients with changes in CT (either

airway or emphysema type changes, designated as severe subtypes) was different from

community composition in lungs of patients without visible changes in CT as well as from

healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002).

Higher abundance of Prevotella in samples from patients with mild COPD subtype and from

controls and of Streptococcus in the severe subtype cases mainly contributed to the separa-

tion of bacterial communities of subjects. No significant effects of treatment with inhaled glu-

cocorticoids on bacterial community composition were detected within COPD cases with

and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of

networks of co-occurring bacteria. Four communities of positively correlated bacteria were

revealed. The microbial communities can clearly be distinguished by their associations with

the CT defined disease phenotype.

Conclusion

Our findings indicate that CT detectable structural changes in the lung of COPD patients,

which we termed severe subtypes, are associated with alterations in bacterial communities,

which may induce further changes in the interaction between microbes and host cells. This

might result in a changed interplay with the host immune system.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is characterized by chronic cough, increased

sputum production and dyspnoea. More than 3 million people died of COPD in 2012, approx-

imately 6% of all deaths globally [1]. Whereas in high-income countries COPD is primarily

caused by tobacco smoking, in low- and middle-income countries both indoor and outdoor

air pollution play an important role in disease etiology [1].

COPD is associated with chronic pulmonary inflammation, with exacerbations and comor-

bidity contributing to the severity in the course of disease [2]. The key pathophysiological

abnormalities in the lungs are small airway narrowing and fibrosis, emphysematous lung

destruction and mucus hypersecretion [2]. COPD is a very heterogeneous disease, with clinical

manifestations varying between individuals both in terms of presence and severity [3]. For

some years now, high resolution computed tomography (CT) has been used to evaluate struc-

tural changes in lungs of COPD patients, enabling the identification of COPD subtypes [4, 5].

These are rather attributed to structural changes in the lung than to severity of airflow obstruc-

tion. In general, decreased lung density corresponds to increased emphysema severity [6]

whereas airway wall thickening goes along with chronic bronchitis [7]. Thus, based on CT,

COPD subtypes have been defined: (I) the airway dominated subtype, characterized by high

percentage airway wall area and typically associated with chronic bronchitis [8], (II) the

emphysema dominated subtype, coming along with low lung density, and (III) cases without

changes in density and percentage wall area in CT [5]. This classification system has been used
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to differentiate specific features of COPD [9] and is recommended as a personalized approach

of treatment for patients [10].

It has been common opinion for decades, that healthy lungs are almost free of microbes

due to various mechanisms of pulmonary and mucociliary clearance [11] and cellular and

humoral immunity [12, 13]. It was considered that the bacterial microbiota observed in the

lung of individuals with diseases like COPD results from dysfunction of these described mech-

anisms [14]. Pathogenic bacteria were shown to evade or impair clearing mechanisms [15, 16],

and cigarette smoke has been described to exert a deleterious effect as well [17], facilitating

bacterial colonization of the lung.

With the emergence of cultivation-independent methods to study microbial diversity a

more multifaceted picture started to show up, changing from a pathogen dominated view

towards a perspective of a complex system with possible interactions between microbes as well

as microbes with the host [18, 19]. It is now generally agreed that the establishment of stable

and interacting communities of organisms can help to inhibit colonization by pathogens [20,

21]. However, changes in lung pathophysiology can shift the composition of the microbial

community. In the case of different COPD subtypes, this might not only impact the emergence

of single organisms like non-typeable Haemophilus influenzae or Moraxella catarrhalis [22]

but might also differentially influence bacterial community composition in general. Recent

studies described differences on the level of whole microbial community in lungs of patients

suffering from moderate to severe COPD, compared to healthy individuals [23, 24].

In this study we addressed the question of whether COPD sub-types, defined by quantita-

tive CT, are associated with lung microbiome changes. We postulated that differences in

emphysema and airway wall thickness are major factors triggering microbial community com-

position. Thus, we hypothesized that differences in the lung bacterial community composition

are observable (I) between COPD patients and controls or (II) between COPD patients with

and without CT abnormalities. To test our hypothesis, we compared lung microbial commu-

nity composition in COPD patients with or without structural lung changes detectable by

quantitative CT and a healthy control group. Samples were derived from participants of the

EvA (acronym for “emphysema vs. airway disease” in COPD) study [4]. Material was collected

by protected bronchial brushings gained during bronchoscopy. Lower airway microbiota com-

position was determined using a cultivation-independent barcoding approach. Changes in

bacterial community composition in lung samples obtained from our study participants were

assessed both on the level of individual taxa, as well as on the level of network structures.

Material and methods

Study population

Sixteen male and female, Caucasian patients between the age of 48 and 74 with COPD, mainly

stages 1 and 2 according to GOLD classification [25] and nine controls were selected from partic-

ipants from 4 European countries of the EvA study according to following criteria:>2 μg of total

DNA in combination with high percentage airway wall area or low lung density in CT for cases

[4]. Table 1 summarizes information of the study participants. Participants had a substantial

smoke exposure (Table 1) but all were ex-smokers at the time of sampling. Except for one case

they stopped smoking at least one year before the bronchoscopy procedure. None of the patients

received oral glucocorticoids, antibiotics or had an exacerbation during the preceding 2 months.

Nine of the cases received inhaled glucocorticoids in combination with long-acting beta-2 ago-

nists (LABA). Twelve of the cases showed abnormalities detected by quantitative computed

tomography (QCT), with underlying values for QCT indices of emphysema (lung densitometry

expressed as 15th percentile point) and airway wall geometry (percentage airway wall of the apical

Lung microbiome in CT definable subtypes of COPD
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segment bronchus of the right upper lobe), being described in detail before [26]. In summary,

cases with detectable changes in CT either showed changes characteristic for airway-type COPD

with high percentage wall area (�69.3%WA) or those typical for emphysema-type COPD, char-

acterized by low density of the lung parenchyma (�-925.6 Hounsfield units (HU)) (S1 Table).

Four cases didn’t show CT detectable changes in the lung and were designated as mild subtypes

with low percentage wall area (<69.3%WA) and normal density (>-925.6 HU).

The study was approved by the local ethics and review boards at the participating centers:

Ethics Committee of Ferrara (Nr. 071195 (2007)), Medical Research Council, Scientific and

Research Committee (ETT-TUKEB, 22-278/2007-1018EKU), Leicestershire, Northampton-

shire and Rutland MREC (08/H0402/19), Ethics Committee of the Philipps-University of Mar-

burg (101/08, 04.07.2008) and all subjects provided written informed consent.

Lung material

Flexible bronchoscopy was performed after mild sedation in supine position. In the right upper

lobe segment bronchi S1, and its sub-segments were sampled with a protected brush (5mm

diameter at bristle level, Olympus, Hamburg, Germany) via a nostril as described before [4].

Bronchial brushings were transferred into RNAprotect (Qiagen, Hilden, Germany) fluid imme-

diately, and all material was stored at -20˚C. DNA was extracted using the semi-automated Qia-

cube, AllPrep DNA/RNA Mini Kit (Qiagen) in the CEA DNA extraction unit (Centre National

de Génotypage, Institut de Génomique, CEA, Evry, France). Quantity was determined in dupli-

cate, using the Quant-IT kits from Life Technologies (Carlsbord, California, US). Quality of

DNA was verified by ensuring its integrity in 0.5% agarose gels. Samples were selected for the

microbiome study if they contained more than 2 μg of total DNA with high integrity.

Pyrosequencing

Amplification of the V6–V9 region of the 16S rRNA gene was performed according to Tim-

mers et al. [27]. Briefly, for PCR 16S rRNA gene targeting forward primer 926F (5´-AAACTY
AAAKGAATTGACGG-3´ [28]) attached to the Roche A adapter for 454-library construction

Table 1. Clinical, spirometry and laboratory comparisons of patients and controls. Data presented as mean ±SD, unless otherwise indicated. Abbrevi-

ations: av. last cigarette (years): average years study participants stopped smoking before bronchoscopy procedure. BMI: body mass index. pO2: partial pres-

sure of oxygen. pCO2: partial pressure of carbon dioxide. FEV1: forced expiratory volume in 1s. FVC: forced vital capacity. LABA: long-acting beta-2 agonists.

study participants cases with changes in CT

(severe subtype)

cases without changes in CT

(mild subtype)

control

number of participants in respective group 12 4 9

sex (% male) 66.6 100 66.6

av. Age (year) 65.7±7.1 59±6.5 60±9

never-smokers 0 0 2

smoking, average pack-years 50.3±18.2 57.8±16.1 27.8±13

av. last cigarette (year) 9.6±9.1 3.5 ±3.1 13.6±8

av. BMI (kg/m2) 26.2±4.4 28.7±3.8 26.0±2.9

GOLD classification GOLD1:50%; GOLD2:41.7%; GOLD3: 8.3% GOLD1:25%; GOLD2:50%; GOLD3: 25% -1

combined assessment group A: 66.7%; B:25%; C: 8.3% A: 75%; C: 25% NA

pO2 72.1±11.6 65.7±10.8 79.9±8.7

pCO2 35.1±3.8 38.0±3.2 36.6±1.6

FEV1, % predicted 0.77±0.16 0.72±0.17 1.2±0.2

FEV1/FVC, % 59.6±9.3 59.1±5.3 81.1±3.3

% applying inhaled glucocorticoid/LABA 58.3 50 0

https://doi.org/10.1371/journal.pone.0180859.t001
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and reverse primer 630R (5´-CAKAAAGGAGGTGATCC-3´ [29]) attached to the Roche B

adapter were used. For multiplexing purposes each primer included a 10-nt barcode sequence.

Three independent PCRs were performed for each sample with the Fast Start High Fidelity PCR

System (Roche, Mannheim, Germany) containing 200ng of DNA and 0,3% (w/v) BSA with an

optimal annealing temperature of 50˚C and 36 cycles. Replicate PCR reactions were pooled

together and purified using QiaQuick PCR Purification Kit (Qiagen, Hilden, Germany). Addi-

tional purification was performed with Agencourt AMPure XP Beads (Beckman Coulter, Krefeld,

Germany) as recommended in the 454 instructions for amplicon library preparation (Roche,

Mannheim, Germany). Sequencing of the 16S rRNA gene amplicon library was performed on a

Roche 454 GS FLX Titanium system Pyrosequencer as recommended in the manufacturer’s

instructions (Roche, Mannheim, Germany). Resulting sequences were processed using the ampli-

con signal processing pipeline of the Roche software for base calling, trimming of adaptors and

quality trimming with one modification in the quality filtering section, where “vfScanAllFlows”

was changed from “tionly” to “false” such that 3’ trimming for the Amplicon pipeline is activated

leading to fewer rejected reads.

Sequence data have been submitted to Sequence Read Archive (SRA) of NCBI (BioProject

ID: PRJNA296567).

Data analysis

Unassembled sequence reads in sff format where subjected to further quality checking using

mothur v.1.29.2 [30]. Briefly, after demultiplexing of the reads and trimming them to 720

flows, sequences where subjected to denoising (PyroNoise implemented in mothur). After

removal of reads shorter than 200nt or with more than seven homopolymers, sequences were

aligned against the Silva v102 compatible SSU reference alignment. For further reduction of

sequencing errors preclustering was applied which clusters sequences only differing in up to

two nucleotides. Chimera check against the Silva database was conducted applying Chimera

UCHIME, as implemented using the "chimera.uchime" command in mothur and chimeric

sequences were dismissed. To account for possible contamination bias, OTUs were first clus-

tered on 99% identity and all sequencing reads from OTUs that had a significant (P<0.05) and

negative spearman correlation with amplicon concentration in one of the three library amplifi-

cation runs were removed for further analysis as previously described [31]. The remaining

sequencing reads were subjected to a second run of the mothur software by clustering OTUs at

an identity cutoff of 95%. Subsequent classification of OTUs was performed using the RDP

trainset applying a bootstrap cutoff of 80%. For all OTUs that were unclassified on genus level

but classified on family level representative sequence reads were retrieved, automatically

aligned using SINA [32] and imported in ARB [33]. Maximum Likelihood Treeing algorithm

PhyML, embedded in ARB, was used to reconstruct phylogenetic trees of partial 16S rRNA

gene sequences of selected OTUs derived from this study and of reference organisms. All

OTUs that could be assigned to a genus using ARB were re-classified to the corresponding

genus.

Statistical analysis

Abundances of all OTUs that were classified on genus level were added to obtain the abun-

dance of their corresponding genus. Genera with less than 0.01% abundance within the total

number of samples were neglected. To visualize differences in community composition

between COPD subtypes, PCoA analysis was performed using Bray-Curtis distances [34] on

Hellinger transformed abundances. We observed a trend for differences in community com-

position between samples processed during summer and samples processed during winter

Lung microbiome in CT definable subtypes of COPD
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(S1 Fig). To avoid systematic bias, reported P-values for comparisons of individual abun-

dances, diversity and principal coordinates were corrected for seasonal effects. This was

achieved by using the difference of the value under consideration and the median of this value

for all samples processed during winter or summer, respectively. For the estimation of diver-

sity in terms of species evenness and richness, we applied Pielou’s evenness [35] and the Chao

richness index [48]. In addition, rarefaction curves and PERMANOVA were computed using

the R package vegan (S2 Fig) [49]. To test for differences in abundances between binary meta-

variables, two-sided Wilcoxon-Mann-Whitney tests were applied. P-values of individual gen-

era and PERMANOVA analyses were adjusted for multiple testing using Benjamini-Hoch-

berg’s method [36]. Such P-values will be referred to as Padj throughout the manuscript. To

construct interaction networks of genera, we used the CCREPE method [37] with pairwise

Spearman’s rank correlation coefficients for relative abundances of all genera larger than zero

in at least 5 samples. To obtain P-values we used 1000 random permutations and set an edge, if

P<0.05 and the correlation coefficient passed a threshold of 0.5. To account for differences

between samples processed during winter and summer, correlations were also computed for

abundances corrected for seasonal effects and all edges that did not remain significant were

removed from the initial network. Communities of correlated genera were then defined based

on the resulting connected components.

Results

After direct extraction of the DNA derived from bronchial brushings from patients suffering

from COPD stages 1 and 2 according to the GOLD classification, and from healthy subjects,

bacterial community composition was determined by 454 pyro-sequencing of 16S rRNA gene

amplification products. Sequencing resulted in 77515 chimera free, high-quality reads. After

removal of 16S rRNA sequences derived from mitochondria of epithelium cells of the lung

and of reads identified as potential PCR contaminations according to [31], numbers of reads

varied between 722 to 4789 reads per sample. To account for differences in the number of

sequencing reads, all libraries were subsampled to 722 reads and reads were clustered on 95%

sequence similarity level. This number of reads was sufficient to cover the majority of OTUs in

all samples as indicated by analysis of the individual rarefaction curves (S2 Fig). Samples with

less than 700 reads in total were discarded for the analysis. In total, 25 samples (9 samples from

healthy subjects and 16 from cases) were used for further analysis.

Bacterial community composition of the lung in healthy subjects and

COPD patients with and without CT detectable abnormalities

Our COPD patients group comprised cases with and without CT detectable lung changes. For

better readability we refer to mild COPD subtypes in the following for patients without QCT

detectable changes in lungs and to severe COPD subtypes for patients with QCT detectable

changes in lungs, deviating from the GOLD nomenclature of COPD patients. Such QCT

detectable abnormalities were either characterized by low lung density in CT, indicating

destruction of the lung parenchyma (emphysema), or airway type changes characterized by

high percentage wall area. We hypothesized, that changes in lung bacterial community compo-

sition might either be observable between COPD patients and controls or between cases with

compared to those without abnormalities in CTs (severe and mild subtype, respectively) and

controls. To test these hypotheses, bacterial community composition in lung samples of mild

and severe subtype COPD patients and controls was analyzed based on Principal Coordinate

Analysis (PCoA) (Fig 1A). While the latter indicated separation of communities of controls

and patients (principal coordinate (PC) 1, Padj = 0.014) (Fig 1B), no significant differences

Lung microbiome in CT definable subtypes of COPD
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were observed based on PERMANOVA analysis (Padj = 0.11). Since changes in QCT reflect

structural changes of the lung and since these changes may be more important to microbial

composition than air flow parameters, we compared microbial patterns in cases with CT

changes and individuals with normal lung structure (cases without CT changes and controls).

This analysis showed, that the main difference in community composition was observed

between severe versus mild subtype cases and controls in the first principal coordinate (PC1,

Padj = 0.0074) (Fig 1C) and in PERMANOVA (Padj = 0.006) analyses. Moreover, bacterial com-

munities derived from lungs of mild subtype COPD patients closely resembled those of con-

trols (P = 0.60). Furthermore, communities derived from severe subtype COPD patients could

be separated from controls (Padj = 0.0048) (S4 Fig). The focus of the following analyses was

therefore on the comparisons between COPD patients showing visible changes in CT desig-

nated as severe subtype cases with those without changes and controls (designated as mild sub-

type and control group).

We hypothesized, that changes in the structure of the lung might coincide with differences

in diversity or richness of harbored bacterial communities. Thus, evenness and richness of

community compositions was compared between severe vs mild subtype cases and controls.

No significant differences were observed between groups (P = 0.32 and 0.5, respectively) (Fig

2A and 2B). The composition of bacterial communities on family level, showed a large vari-

ability between the individual subjects (Fig 2C). However, representatives of Veillonellaceae
and Streptococcaceae were dominating the microbial communities in most samples, summing

up to more than 50% of bacterial families present in the majority of samples of cases as well as

controls. Frequently detected bacterial families, although less dominant, were Neisseriaceae,
Pasteurellaceae and Fusobacteriaceae (Fig 2C).

Differences in individual genera between severe vs mild subtype cases

and controls

To identify genera which contribute to the separation of severe versus mild subtype cases

and the control group, all genera were screened for significant differences between the two

groups of individuals (Fig 3 and S5 Fig). Streptococcus (P = 0.03) (Fig 1A), Granulicatella
(P = 0.018), a Neisseriaceae genus (P = 0.002), and Diaphorobacter (P = 0.02) showed signifi-

cantly higher abundance in severe subtype COPD cases (Fig 3A and S5 Fig). In the mild

subtype and control group significantly higher abundances of genera Prevotella (P = 0.008)

(Fig 1), Solobacterium (P = 0.018), Parvimonas (P = 0.0038), Selenomonas (P = 0.013), Fuso-
bacterium (P = 0.014), Oribacterium (P = 0.042), and a Ruminococcaceae genus (P = 0.014)

were contributing to the observed differences between the groups (Fig 3B and S5 Fig). How-

ever, after multiple testing corrections no significant associations remained. Thus, above

described findings should be considered as trends, which have to be confirmed in further

studies.

Influence of medication on microbial community composition in the lung

of COPD patients

58% of the severe subtype COPD patients and 50% of the mild subtype COPD patients

received Glucocorticoid/LABA (GC) medication by inhalation (Table 1). We hypothesized

that GC medication might exert an effect on bacterial community composition. However, no

significant effects of GC treatment on bacterial community composition were detected for

cases with and those without GC treatment in PCoA (P = 0.19) (S3 Fig). Additionally, we

tested for an influence of GC treatment on the abundance of individual genera (S6 Fig). Mem-

bers of Parvimonas showed lower abundances in patients receiving GC treatment (P = 0.0071).

Lung microbiome in CT definable subtypes of COPD
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For representatives of Solobacterium (P = 0.054) and Fusobacterium (P = 0.065) a slight trend

towards reduced abundance in samples derived from GC treated patients was observable, but

is missing significance. This influence of GC treatment on individual genera might also have

contributed to the observed differences for the respective genera in the comparison between

severe versus the mild subtype cases and control group (S5 Fig).

Fig 1. Genus level community composition for COPD patients with and without abnormalities in CT and controls based on PCoA. (a) Lung

derived microbial community composition in severe subtype COPD patients, mild subtype cases and controls were compared based on principal

coordinate 1 and 2. (b) Boxplot comparing principal coordinate 1 between case and control samples. (c) Boxplot comparing principal coordinate 1 for

severe subtype and mild subtype COPD patients and control samples. P-values were computed based on two-sided Wilcoxon-Mann-Whitney tests after

correction for confounding effects from samples processed during winter or summer, respectively.

https://doi.org/10.1371/journal.pone.0180859.g001
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Bacterial networks in the lung

On basis of the observed differences in community composition between severe vs mild

COPD subtypes and controls, we aimed at assessing associations of bacteria in the lung. Partic-

ularly, we were interested how differences in abundances between severe versus mild subtype

cases and controls influence associations within microbiota. To address this question, a

Fig 2. Diversity of microbial communities derived from lungs of severe subtype cases and mild subtype and control individuals. (a) Pielou’s

evenness and (b) Chao richness of microbial communities on genus level for severe vs mild/control samples. P-values were computed based on two-sided

Wilcoxon-Mann-Whitney tests after correction for confounding effects from samples processed during winter or summer, respectively. (c) Phylogenetic

community composition based on 16S rRNA gene fragment sequences in bronchial brushing samples. Bars represent the relative abundance of the most

abundant families (>5% in one sample). The remaining families are subsumed as others.

https://doi.org/10.1371/journal.pone.0180859.g002
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microbial correlation network was estimated based on relative abundances of bacterial genera.

This approach revealed four communities of positively correlated bacteria (Fig 4A).

The microbial communities can clearly be distinguished by their associations with disease

phenotype. While all genera in three of the communities (marked in blue, green and yellow)

showed a trend for increased abundances in the mild subtype cases and controls, all genera in

Fig 3. Heatmap of genera showing significantly different abundances between severe versus mild subtype cases and

controls. Genera showing significantly increased (a) or decreased (b) abundances in severe vs mild subtype cases and controls.

Colors at the top represent COPD subtypes and controls. For each genus, samples were colored based on quartiles of non-zero

abundances from light red to dark red. All Samples for which a genus was not present were colored in white.

https://doi.org/10.1371/journal.pone.0180859.g003
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the fourth community showed the opposite trend (red community). Among the communities

with increased abundances in individuals of the mild subtype and control group one small

community (marked in green) consisted of members of Bacteroidetes (S7 Fig). It included Pre-
votella which was indicative for the separation of groups in PCoA (Fig 1A). The largest com-

munity (blue) harbored mainly representatives of Firmicutes beside genera of Bacteroidetes,
Tenericutes, Proteobacteria and Fusobacteria (S7 Fig). Many of the genera showed significantly

increased abundances in the mild subtype cases and controls compared to severe subtype cases

(S5 Fig). In contrast, the cluster marked in red, harbored genera predominantly detected in

severe subtype cases (Fig 4A). This cluster is composed of members of Firmicutes, Actinobac-
teria and Proteobacteria (S7 Fig) and included the genus Streptococcus which was indicative for

the separation of groups in PCoA (Fig 1A). Overall, clustering of genera into communities

indicated that co-occurrence relationships were strongly influenced by differences in microbial

abundances between severe subtype versus mild subtype cases and controls. Different struc-

tural states of the lung favored different clusters of genera. Further comparison of correlation

patterns between community members reveals co-exclusion relationships between communi-

ties containing genera that have increased abundances in severe subtype cases and the commu-

nity containing genera that have increased abundances in the mild subtype and controls (Fig

4B).

Fig 4. Co-occurrence analysis of bacterial genera. (a) Microbial correlation network of bacterial genera as a surrogate for bacterial interaction. Each node

represents one microbial genus and shading colors (blue, red, green, yellow) highlight microbial communities. Coloring of nodes indicates differences

between severe subtype versus mild subtype cases and controls (red colors: higher average abundance in severe subtype cases; blue colors: higher

average abundance in mild subtype cases and controls). Communities containing�2 genera were not shown. (b) Heatmap showing spearman correlation

coefficients between bacterial genera from the four microbial communities. Colors at the upper and left side of the figure indicate the community affiliation of

respective genera.

https://doi.org/10.1371/journal.pone.0180859.g004
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Discussion

The current microbiota analysis was performed on samples obtained from the EvA study [4].

This study defined subtypes of COPD using CT image analysis of lung density for determina-

tion of the degree of emphysema and airway wall thickness as a measure of bronchitis. We

were interested in early changes in bacterial communities during disease development in

COPD, with special emphasis on interrelation of COPD subtypes with and without abnormali-

ties in CT and changes in microbial community composition.

Microbial community composition in the lung of COPD patients

Differences in bacterial community composition of the lung were observed between patients

with severe subtypes of COPD compared to that of controls. However, bacterial communities

derived from lungs of mild subtype COPD patients clustered mainly with those derived from

healthy controls. Several studies reported contamination of sputum as a measure for lung

microbial communities with upper airway microbiota, and thus, higher diversity in these sam-

ples or even day to day variation in absence of clinical changes can be expected [38, 39]. In our

study protected specimen brushes introduced through the nose were used for sampling. This

sampling technique not only minimizes contamination of lung derived samples with bacteria

from the upper airways, but provides samples being derived from the interface of human and

environment and thus targets those organisms which are in tight interplay with the human

cells and immune system. In our study sampling was performed in the right upper lobe. Dick-

son et al. [40] could show that right upper lobe microbiota more closely resembled that of the

upper respiratory tract, than that from more distant lung regions like middle lobe and lingual.

Thus, our detection of typical representative genera of the upper respiratory tract like Veillo-
nella, Oribacterium or Catonella [41] support their findings [40]. For patients with severe lung

indispositions partly accompanied by exacerbations, differences in microbial community com-

position have been described before: in a study including 5 COPD patients and 11 cases with

asthma, bacterial communities clustered together but differed in composition from communi-

ties of healthy controls [24]. However, COPD patients examined in this study have a much

lower average percent of FEV1 predicted value (51,2%) [24] compared to participants of our

study (Table 1). Also in another study composition of microbial community derived from

lungs of patients suffering from moderate to severe COPD differed from that of the control

group [23]. Sze and coworkers could show an increased diversity and significantly different

community structures of bacteria derived from lung tissue of patients suffering from COPD

GOLD stage 4 compared to controls [42]. However, none of the studies mentioned above,

focused on the associations of COPD subtypes based on CT detectable changes in lungs of

affected subjects with bacterial community composition, as performed in our study. Detection

of shifts in community composition of COPD cases with detected abnormalities in CT in our

study suggests that changes in microbial colonization of the lungs of COPD patients already

occur early, before meaningful impairment of the health status starts. Also Sze et al. [43] were

able to detect early changes by a decreased abundance of GD1-positive Lactobacillus in lungs

of GOLD stage 1 and 2 COPD patients compared to controls, although on genus level Lactoba-
cillus showed no differences between groups. However, changes like this are not detectable in

studies based on 16S rRNA gene fragment analyses alone, given the missing resolution of 16S

rRNA genes to strain level. In lungs of COPD GOLD stage 4 patients a shift to an increased

abundance towards Proteobacteria could be detected within harbored microbial communities

[44, 45]. In our severe subtype cases, a trend in this direction was observed with the higher

abundance of Diaphorobacter or Neisseriaceae genus (Fig 3) contributing to the trend. More-

over, for cases with detected abnormalities in CT the shift towards lower abundance of
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Bacteroidales [24] and higher prevalence of Lactobacillales [23] detected in lung derived com-

munities of GOLD stage 2 and 3 COPD cases was confirmed by data from our study. However,

comparisons among different studies have to be dealt with caution, since different regions of

the 16S rRNA gene as well as different sequencing platforms applied were shown to lead to

slight differences in detected community composition [46, 47].

Bacterial community structure and abnormalities in lung as detected by

CT

Data from our study revealed differences in the composition of the lung microbiome of

patients suffering from subtypes of COPD, that appear to correspond to CT-detectable

changes like percentage airway wall area or development of emphysema in the diseased lung.

It has been shown before, that these CT detectable changes involve physiological changes in

the lung. In lungs of COPD patients with chronic bronchitis (cases with increased percentage

airway wall area) reduced airway surface liquid leads to inefficient mucus clearance by reduced

action of cilia of epithelial cells. This results in increased mucus adhesion and thus facilitates

bacterial infections [48]. As a consequence of higher viscosity of mucus, gas diffusion is ham-

pered. Also during emphysematous lung states gas diffusion is impeded, due to trapping of air.

We hypothesize, that this might be an explanation for the observation of the increased abun-

dance of typical bacterial genera like Neisseria in our study, that need elevated levels of CO2 for

growth and are commensals of mucous membranes [49].

We hypothesize, that Prevotella may influence community composition and inflammation

in the lung by exhibiting anti-inflammatory properties in mixed bacterial communities. Sev-

eral different Prevotella species have been shown to reduce pro-inflammatory cytokine produc-

tion induced by other Gram negative bacteria in dendritic cells [50]. Similar effects have been

demonstrated in mouse models with an intrinsic toleration of Prevotella by the respiratory

immune system due to only weak induction of airway inflammation [51]. Following this line the

reduction of Prevotella in COPD disease might favour inflammation due to the absence of the

potentially immunosuppressive Prevotella species, finally promoting wall thickening or emphy-

sema. In contrast to findings using brush samples from severe subtypes of COPD cases in this

study, and in lung specimens of explanted lungs of GOLD 4 COPD patients [52], Segal et al [53]

described a correlation of Prevotella abundance with enhanced BAL inflammatory cells and eNO

in asymptomatic smoking and non-smoking individuals. Pathogenicity of Prevotella, in particu-

lar P. intermedia has been described before for oral samples [54]. It could be shown, that for

these pathogenic Prevotella the potential of invasion in epithelial cells is an important virulence

factor [55]. However, this ability is obviously strain specific [55, 56]. Insight into the properties

of Prevotella detected in higher abundance in the mild subtype and control group in this study

would need further research with a good resolution of Prevotella to strain level and a metage-

nomics approach to allow conclusions about functional characteristics of Prevotella strains pres-

ent in the lung.

Influence of medication on microbial community composition in lung of

cases

Some of our patients (9 out of 16) applied inhaled glucocorticoids (GC), all of them in combina-

tion with long-acting beta-agonists (LABA) and 70% also with long-acting muscarinic antagonists

(LAMA). No significant effects of GC treatment on overall bacterial community composition

could be detected for cases with and without GC treatment in PCoA, but a possible, slight impact

on few single genera was observed. As it has long been shown that glucocorticoids influence anti-

microbial activity of macrophages [57] and impact the extent of inflammation [58] the application
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of inhaled glucocorticoids can impact microbial community composition. In addition LABA,

which is applied to cause bronchodilation, modifies the lung by inhibition of airway smooth-mus-

cle cell proliferation and inflammatory mediator release, as well as stimulation of mucociliary

transport [59]. In contrast to our findings, an earlier study [23] reported separation of bacterial

communities of GOLD 2 and 3 COPD patients using inhaled corticosteroid from that of non-

users based on their composition. The contrasting response pattern in our study could be related

to the fact that users of inhaled corticosteroids were harbored in all COPD subtypes present in

this study. It could already be shown in a study concerning the impact of combined corticosteroid

and LABA treatment in patients suffering from different COPD subtypes, that treatment differen-

tially exerts effects in sub-types of COPD patients. Only low improvements were observed during

treatment of emphysema-type patients (characterized by low lung density in CT, included in our

severe subtype, S1 Table) and highest improvements for the obstruction dominant subgroup

(included in our severe subtype with high percentage wall area, S1 Table) [60]. Mild subtypes

showed intermediate improvements [60]. Thus, given the heterogeneity of our study group, dif-

ferential effects of GC on individuals can also be expected in our study. Only few bacterial genera

were affected by glucocorticoid/ LABA medication throughout all these subtypes in our study.

However, we cannot exclude that weak differences were masked due to small group sizes of 9

patients compared to 7 patients without GC treatment, resulting in a low power of resolution.

Network structure

In our study co-occurrence analysis revealed the presence of clusters of co-occurring bacteria

in the lungs of study participants, strongly influenced by differences in microbial abundances

between severe versus mild subtype cases and controls. It is well accepted that composition of

bacterial communities is influenced by positive (this might be mutualism or commensalism)

as well as negative relationships (i.e. parasitism, competition) between contributing microor-

ganisms in several organs of the human body [37]. The lung is a niche, where bacteria face

limited supply of nutrients, influence of the host immune system, oxidative stress, as well as

the clearance mechanisms of the host. Thus, interactions between bacteria can be expected,

enabling and facilitating the colonization of the lung. Co-occurrence analysis revealed the

presence of a large cluster of co-occurring bacteria showing higher abundances in the lungs of

mild subtype cases and controls (Fig 4A, blue). In this cluster Fusobacterium is included,

which was described before as part of the lung core microbiome [61]. Fusobacterium enables

adherence between different sorts of cells of human and bacterial origin, which otherwise

would not be able to interact [62]. This ability might help during colonization of the lung. On

the one hand, various subspecies of this organism show the ability to effectively adhere to

human epithelial cells [63, 64]. On the other hand, a high capability to form co-aggregates with

diverse Gram+ and Gram- bacterial species in co-aggregation tests have been shown [65].

Thus, it might be hypothesized, that representatives of Fusobacterium act as interconnectors

between human and bacterial cells in the lung, too. Finally, Fusobacterium is also supporting

the growth of anaerobic organisms in oxygenated environments [66, 67]. This ability might be

of increased importance in an aerated habitat like the lung which might promote the observed

co-occurrence of Fusobacterium with representatives of Lachnospiraceae genera Catonella and

Moryella, which have been described to be strictly anaerobic [68].

Another cluster of associated bacteria harbours Porphyromonas and Prevotella (Fig 4A,

associated bacteria marked in green). For these species the ability to form heterotrophic bio-

films by co-aggregation has been demonstrated, showing an intra-species variability in the co-

aggregation of the partners [69]. During co-aggregations an increase in biomass of participat-

ing partners was detected [69]. This ability was suggested to promote persistence of both
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species in the oral habitat. Detected co-occurrence of these two genera in our study may in

some way hint to similar capabilities of involved species. We hypothesize that also in the lung

the ability to co-aggregate offers advantages for involved partners to compete. However, fur-

ther studies using metagenomics approaches and single cell genomics will be needed to allow

conclusions about functional traits and to go beyond the 16S rRNA gene fragment based solely

associative findings of this study.

Limitations of the study

Several groups reported specific bacterial DNA contamination of extraction and sequencing

kits [70], reagents [71] or solutions [72] in 16S rRNA gene targeting next generation as well as

metagenomic shotgun sequencing studies [73]. Different lots of an extraction kit harbored the

same predominantly contaminating genera, but differed in genera detected in low prevalence

[70]. The influence of contamination on high bacterial biomass containing samples has been

described to be negligible. However, low bacterial biomass samples are prone to be influenced

by bacterial contamination of reagents and kits [70–72]. In non-immunocompromised indi-

viduals the lung is a niche with low bacterial load. In this study negative controls were not

included. Therefore, reads from contaminating bacteria were probably generated in our

sequencing runs. In the study of Glassing et al. [70] more than 80 genera with far more than

100 tentative species have been detected as contaminants of different kits, most of them in low

abundance. Moreover, the study of Segal et al. [72] described reads with similarity to Strepto-
coccus thermophilus as contaminants, whereas Streptococcus mitis affiliated reads were detected

as part of the microbial community harbored in supraglottic and lung samples. Thus, extract-

ing all contaminating genera present in contaminant databases is no option, as contamination

is very specific to the kits used as well as species or even strain specific. To account for this

problem, we tested our sequencing reads according to the method described by Jervis-Bardy

et al. [31]. These authors could show that relative abundance of OTUs identified as potential

reagent contamination showed a strong inverse correlation with amplicon concentration allow-

ing for objective removal. Adaption of their method to our sequencing evaluation workflow

resulted in the detection of several OTUs as potential contaminants and removal of 2512 corre-

sponding reads prior to analyses. Although it cannot be fully excluded that a subset of non-con-

taminating OTUs by chance show the same inverse correlation behavior as contaminating

OTUs and is thus false positive, it is an appropriate method to account for contamination

within our context. Additionally to exclude potential low abundant contamination of samples

in our study, which might not be detectable with above described method, we neglected genera

with less than 0.01% abundance within the total number of samples.

The restricted number of subjects per COPD subtype (12 for the severe subtype and four

for the mild subtype) hindered the statistically valid detection of differences between COPD

subtypes at the genus level. After rigorously correcting for multiple testing, no significant asso-

ciations remained for subtype discriminating genera. Thus, described findings should be con-

sidered as trends, which have to be confirmed in further studies. Some of our findings hint

towards differences in bacterial community composition in the lung, comparing subjects with

emphysema and airway dominated severe COPD subtypes. However, with subject numbers as

low as 4, the statistical power for presentation of results at level of significance was too low.

Thus, potential differences have to be elucidated in larger studies with more balanced numbers

of samples per COPD subgroup.

Finally, with the approach used, based on the analysis of 16S rRNA gene fragments it is not

possible to provide data on the functional traits of the bacterial genera being present in the

communities. Moreover, resolution to strain level is not possible, thus requiring validation of
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our findings based on studies applying meta- and single-cell genomic approaches as well as on

determination of host derived effectors of the innate, humoral immune system.

Conclusion

This study revealed changes in lung microbial community composition in GOLD stage 1 and

2 COPD cases with abnormalities in CT. We could show that lung community composition in

COPD patients without abnormalities in CT resembles that of the control group, whereas,

communities of patients with abnormalities in CT were significantly different. Our approach

using community detection in association networks of bacteria hints to the presence of differ-

ent communities of associated bacteria in the lung.

Our results suggest the presence of networks of associated bacteria, which are shifting,

depending on changes in the lung. These shifts might lead to a dysbiosis in the lung with

increasing severity of the disease which, at the end, might then result in altered susceptibility

to exacerbation events, as well as responsiveness towards medical treatment.

Larger group sizes with a higher depth of sequencing will allow confirmation of our trends.

Analyses of samples applying sequencing techniques that produce higher read lengths like Pac-

Bio [74] will allow getting a better phylogenetic resolution of our initial findings and enable

deeper insights into community composition. Also a simultaneous acquisition of individual

host derived factors, like inflammatory cells, inflammatory mediators or protease/anti-protease

activity together with microbial community analyses is desirable. This would allow conclusions

on immunological processes in the host and enable getting a deeper insight into interactions

between innate and adaptive inflammatory immune responses on the one hand and microbial

community composition on the other hand, both steering changes during COPD progression

in lung. Finally, detection of spatial arrangements of bacteria in relation to sites of inflammation

in the lung would be eligible to allow conclusions about interference of bacteria with the lung

epithelium.
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