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17 Abstract

18 Metabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept

19 of metabotyping – that is, grouping metabolically similar individuals – tailored and more efficient recommendations may be achieved. The aim

20 of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects

21 with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find

22 relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic

23 diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of

24 individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/

25 populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and

26 type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting

27 metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal

28 challenges or dietary interventions. This demonstrates that the term ‘metabotype’ has a subjective usage, calling for a formalised definition. In

29 conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined

30 nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and

31 validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.

32 Key words: Metabotypes: Metabotyping: Metabolic phenotypes: Targeted nutrition: enable Cluster

33 The human metabolome is influenced by genetic, transcriptional

34 and post-transcriptional factors as well as by the gut microbiome

35 and environmental factors like diet and other lifestyle

36 determinants(1,2). It is well known that individuals show large

37 differences in their nutrient requirements and responses to diet

38 and medication according to their metabolic characteristics(2–5).

39 Specific dietary recommendations or drug treatments for disease

40 states should thus be tailored to optimise the benefit to the

41 individual. Equally important, specific treatments should not

42 be provided to individuals with only a minor response or a

43 lack of positive response to the intervention. The concept of

44 personalisation is supposed to be more effective with respect to

45 individual benefit:risk ratio and health-care costs than currently

46used general dietary recommendations and standard treatments

47for chronic disease(3–8).

48Such efforts have led to the concept of metabotyping or

49metabolic phenotyping, which describes the categorisation of

50individuals based on their metabolic or phenotypic characteristics

51into more homogeneous subgroups, the so-called metabotypes or

52metabolic phenotypes. This concept implies that individuals

53within a subgroup show a high metabolic similarity and those in

54different subgroups show a high dissimilarity. Metabotyping could,

55thus, allow the identification of subpopulations or specific patient

56groups responding differently to a defined dietary or medical

57intervention, promising better nutritional and medical treatment at

58the metabotype group level(6,9–13).
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59 The metabotyping approach has been used widely in healthy

60 animals(14,15) as well as in rodent models of disease for testing

61 drug effects(16,17). On this basis, it was possible to separate

62 strain-specific metabolic phenotypes or strain subtypes based on

63 the plasma, urine or faecal metabolic profiles, thereby finding

64 diagnostic and prognostic biomarker differences between

65 groups(14–26). Strain subtypes could be established by sex(19,23–25),

66 age(22), diet(20,26) or diurnal time of sample collection(18,21,25).

67 Further, several human studies have been conducted to define

68 specific metabotypes, but these studies used a variety of methods

69 and inconsistent definitions, indicating that the term ‘metabotype’

70 is often used with quite a different meaning. In reviews on

71 personalised nutrition, O’Donovan et al.(6) and Brennan(13)

72 proposed the concept of metabotyping and provided examples

73 of articles using the metabotyping approach.

74 The aim of this paper was to review the existing literature on

75 metabotyping in human studies, to show its application in targeted

76 nutrition and, thus, to provide recommendations for future studies

77 in this field.

78 Methods

79 A comprehensive literature search was performed using PubMed,

80 Google and Google Scholar up to May 2016. However, this is not

81 a strictly systematic review as described, for example, by the

82 Cochrane Collaboration(27) because of many open questions.

83 The first search strategy addressed the definition of metabotypes

84 in healthy individuals or population-based samples to find

85 evidence for differences in metabolism and corresponding

86 subgroups. The second search was conducted on the definition

87 of metabotypes in patients with chronic diet-related metabolic

88 diseases (obesity, metabolic syndrome, diabetes, dyslipidaemia,

89 hyperlipidaemia, hyperuricemia, gout and hypertension) for

90 diagnosing or establishing metabolically homogeneous patient

91 subgroups.

92 Different combinations of the following keywords were used

93 to search for studies that performed metabotyping in healthy

94 subjects or in population-based samples: ‘metabotype’, ‘metabolic

95 phenotype’, ‘metabolomic phenotype’, ‘molecular phenotype’,

96 ‘clinical phenotype’, ‘biochemical phenotype’, ‘metabolic profile’,

97 ‘metabolomic profile’, ‘metabolic pattern’, ‘nutritional phenotype’,

98 ‘nutritype’, ‘metabolome’, ‘metabolomics’, ‘metabolism’ or

99 ‘metabolic response’ and ‘cluster’, ‘pattern’, ‘subgroup’, ‘subtype’,

100 ‘cluster analysis’ or ‘principal component analysis’. In addition,

101 an extended search was conducted on this topic including

102 information on underlying causes for differences in metabolism

103 between individuals, namely with regard to genetics, epigenetics,

104 transcriptomics or the microbiome(5). To this end, the search terms

105 ‘genetics’, ‘genotype’, ‘SNP’, ‘epigenetics’, ‘transcriptomics’, ‘gut

106 microbiota’ or ‘enterotype’ were added to the search strategy

107 mentioned above.

108 The literature search concerning the definition of metabo-

109 types in patients was restricted to frequent chronic metabolic

110 diseases with a strong relation to diet. This selection was based

111 on the worldwide growing prevalence of diet-related metabolic

112 diseases such as obesity and type 2 diabetes, on the one hand,

113 and on the fact that, besides tailored medical treatments,

114 targeted dietary intervention could also have an important effect

115on diet-related diseases, on the other(28). Thus, in addition to

116the keywords mentioned above concerning the definition

117of metabotypes in healthy subjects or population-based

118samples, the following search terms referring to common

119metabolic diseases were included in the search strategy:

120‘obesity’, ‘adiposity’, ‘metabolic syndrome’, ‘diabetes’, ‘dyslipi-

121daemia’, ‘hyperlipidaemia’, ‘hyperuricemia’, ‘gout’ or ‘hyper-

122tension’. Again, extended searches with keywords addressing

123underlying causes of metabolic differences were performed.

124Relevant articles were selected by first checking titles and

125abstracts and subsequently the full text of the search results in

126accordance with the inclusion criteria. Additional studies were

127identified through supplementary screening of the reference

128lists of all articles analysed.

129The following inclusion and exclusion criteria were used in the

130literature search: original research articles in English language

131on human studies, which established homogeneous groups of

132individuals using statistical analyses based on metabolic data from

133the body fluids blood and urine. Studies using exclusively other

134information like genetic, epigenetic, transcriptomic, microbiome,

135anthropometric or lifestyle data for group establishment

136were excluded, except in combination with metabolic and/or

137metabolomics data. In addition Q3, studies in which metabotyping

138was based only on the combination of simple cut-off points of

139metabolic variables instead of on statistical analyses, as in the

140definition of the metabolic syndrome, were not included in this

141review. In general, all types of study designs were accepted and

142there were no restrictions on sample size. However, the study

143populations were limited to healthy subjects or population-based

144samples in the first search and – for the definition of patient

145subgroups – to individuals affected by common chronic

146metabolic diseases in the second search. Extreme or rare chronic

147diet-related metabolic diseases were not included.

148Results

149In total, thirty-four articles met the inclusion criteria, of which

150twenty-five articles were related to the definition of metabo-

151types in healthy subjects or population-based samples, and nine

152articles were related to the definition of patient subgroups with

153common metabolic diseases revealed by metabotyping.

154Definition of metabotypes in healthy subjects or

155population-based samples

156Tables 1 and 2 summarise the key features of the twenty-five

157articles identified according to the definition of metabotypes in

158healthy subjects or population-based samples. Table 1 gives an

159overview of twenty articles defining metabotypes based on

160fasting data. Table 2 shows an additional five articles defining

161metabotypes on the basis of metabolic response data for

162different dietary interventions. Both tables present the

163respective study objectives, designs and samples, the variables

164for clustering and their preprocessing, the clustering methods

165used and their validation as well as the main findings. With the

166exception of four articles(36,41,42,45), the studies were published

167within the past decade. The studies were conducted mainly, but
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Table 1. Definition of metabotypesQ4 based on metabolic data in the fasting state

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Van Bochove
et al.(29)

Plasma lipoprotein
clusters

Genetics of Lipid-
Lowering Drugs and
Diet Network
(GOLDN) study
(n 775) in the USA

NMR plasma lipoprotein profiles of ten
particles: three VLDL (large, medium and
small), four LDL (IDL, large, medium
small and very small) and three HDL
(large, medium and small) particles

Normalisation by
standard
deviation

k-Means cluster
analysis (squared
Euclidean distance)

Well-differentiated lipoprotein profiles
by discriminatory variables (t test)

Stability of cluster results (500
replications of clustering to select the
result with the lowest total sum of
distances)

Biologically meaningful groups (Particle
Profiler model)

Three distinct subgroups with
differences in lipid characteristics
(low, medium and high degree of
dyslipidaemia) and in Prevalence of
cardiovascular risk factors

Positive lipid response of two subgroups
(medium and high degree of
dyslipidaemia) to fenofibrate therapy;
the resulting group is larger than
groups based on standard cut-off
points for TAG and HDL

O’Sullivan
et al.(30)

Metabolic
phenotypes

Intervention study
(n 135 healthy
subjects) of
participants aged
18–63 years in
Ireland

Thirteen blood 1H NMR biochemical
markers of the metabolic syndrome
(leptin, resistin, adiponectin, IL-6, CRP,
TNF-α, insulin, C-peptide, cholesterol,
TAG, NEFA, glucose, HOMA) and 25
(OH)D concentrations

z-Standardisation k-Means cluster
analysis (Euclidean
distance)

Well-differentiated metabotypes by
discriminatory variables (ANOVA,
GLM analysis, Bonferroni post hoc
multiple comparison test, PLS-DA
with R2, Q2 and variable importance
in the projection value)

Stability of cluster results (ten
iterations, 5-fold cross-validation)

Biologically meaningful groups

Five subgroups with distinct
biochemical profiles

One subgroup with lower serum 25(OH)D
and higher levels of adipokines and
resistin (cluster 5) responsive to
vitamin-D supplementation concerning
markers of the metabolic syndrome

O’Donovan
et al.(31)

Metabolic
phenotypes

National Adult Nutrition
Survey (NANS)
(n 896 adults) aged
18–90 years in
Ireland

Four routinely measured and widely
applicable serum markers of metabolic
health (TAG, total cholesterol, direct
HDL-cholesterol and glucose)

z-Standardisation
Outlier exclusion

Two-step cluster
analysis with
k-means cluster
analysis

Well-differentiated groups by
discriminatory variables (GLM
analysis, Bonferroni post hoc test)

Stability of cluster results (two-step
cluster analysis)

Biologically meaningful groups

Three distinct subgroups
Identification of a risk cluster with high

fasting levels of TAG, total cholesterol
and glucose

Development and validation of a decision
tree based on biochemical
characteristics, anthropometry and BP
for personalised dietary advice per
cluster

Vázquez-
Fresno
et al.(32)

Clinical
phenotypes

Prospective,
randomised, cross-
over and controlled
study (n 57
cardiovascular risk
patients aged ≥55
years) in Spain

Sixty-nine biochemical (blood, urinary
1H NMR) and anthropometric parameters

No preprocessing k-Means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (ANOVA/
Kruskal–Wallis test, Tukey’s post hoc
multiple comparison test/Mann–
Whitney test, OSC-PLS-DA)

Internal coherence (Dunn analysis),
external homogeneity (Figure of Merit
analysis)

Stability of cluster results (1000 different
random initialisations of clustering,
100 iterations, 7-fold internal cross-
validation)

Biologically meaningful groups

Four distinct subgroups
Identification of the two most

discriminant clusters 3 and 4
Different responses to red wine

polyphenols of the two subgroups
(cluster 3 and 4)

Frazier-Wood
et al.(33)

Plasma lipoprotein
clusters

Genetics of Lipid-
Lowering Drugs and
Diet (GOLDN) study
(n 1036 aged 48·8
(SD 16·2) years) in
the USA

Plasma lipoprotein diameters (VLDL, LDL,
HDL) by NMR spectroscopy

Standardisation Latent class analysis Well-differentiated groups by
discriminatory variables (mixed
effects models)

Stability of cluster results (good
internal reliability)

Biologically meaningful groups

Eight distinct subgroups with different
plasma lipoprotein diameters

Association of the subgroups with the
metabolic syndrome

Zubair et al.(34) Cardiometabolic
risk patterns

Cebu Longitudinal
Health and Nutrition
Survey (CLHNS)
(n 1768 women aged
36–69 years) in the
Philippines

Eight cardiometabolic biomarkers (TAG,
HDL, LDL, CRP, systolic and diastolic BP,
HOMA-IR and glucose)

z-Standardisation k-means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables
(multinomial logistic regression)

Stability of cluster results (1000
iterations, different cluster numbers)

Biologically meaningful groups

Five distinct subgroups of
cardiometabolic risk: ‘healthy’, ‘high
BP’, ‘low HDL’, ‘insulin resistant’ and
‘high CRP’



Table 1. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Zubair et al.(35) Cardiometabolic
risk patterns

Cebu Longitudinal
Health and Nutrition
Survey (CLHNS)
(n 1621 individuals
aged 21 (SD 0·0)
years) in the
Philippines

Eight cardiometabolic biomarkers (TAG,
HDL, LDL, CRP, systolic and diastolic BP,
HOMA-IR and glucose)

z-Standardisation k-Means cluster
analysis

Well-differentiated groups by
discriminatory variables
(multinomial logistic regression)

Stability of cluster results (iterations,
different cluster numbers)

Biologically meaningful groups

Five distinct sex-specific subgroups of
cardiometabolic risk: ‘healthy/high
HDL’, ‘healthy/low BP’, ‘high BP’,
‘insulin resistant/high TAG’ and ‘high
CRP’

Prediction of clusters by diet, adiposity
and environment

Wilcox
et al.(36)

Metabolic
phenotypes

Framingham Heart
Study (FHS) cohort
(n 2885) in the USA

CVD risk factors Categorisation of
variables

Data reduction by
multiple-
correspondence
analysis

Two-staged clustering:
k-means cluster
analysis and
hierarchical cluster
analysis

Well-differentiated groups by
discriminatory variables (probability
of cluster membership by binary
logistic regression, genome-wide
linkage analyses)

Stability of cluster results (iterations,
two cluster analyses)

Biologically meaningful groups

Four distinct subgroups: one healthy
group, two groups with mild to
moderately elevated lipid levels, and
one group with strongly elevated
lipid levels

Assessment of heritability of traits

Wilcox
et al.(37)

Metabolic
phenotypes

Framingham Heart
Study (FHS)
offspring cohort
(n 2760) in the USA

CVD risk factors Categorisation of
variables

Data reduction by
multiple-
correspondence
analysis

Two-staged clustering:
k-means cluster
analysis and
hierarchical cluster
analysis

Well-differentiated groups by
discriminatory variables (probability
of cluster membership by binary
logistic regression, genome-wide
association analyses)

Stability of cluster results (iterations,
two cluster analyses)

Biologically meaningful groups

Five distinct subgroups: One group
dropped because of missing data,
two healthy groups, one group with
features of the metabolic syndrome
and one group with features of the
metabolic syndrome and obesity

Genetic associations, but loss of
significance after stratification/
adjustments

Tzeng et al.(38) Metabolic
phenotypes

Study (n 573 women of
reproductive age) in
Taiwan

Ten cardiovascular and metabolic risk factors
(systolic and diastolic BP, waist size, fasting
insulin, fasting glucose, 2-h glucose,
cholesterol, TAG, HDL and LDL)

No preprocessing Hierarchical cluster
analysis (Ward’s
method and within-
group linkage)

Well-differentiated groups by
discriminatory variables (χ2 test,
Fisher’s exact test, ANOVA, one-
way ANOVA post hoc range
(Dunnett’s) test)

Stability of cluster results (two cluster
analyses)

Biologically meaningful groups

Two distinct subgroups (low- and high-
risk group)

Association between endocrine
disturbances and increased risk for
metabolic diseases

Li et al.(39) Plasma fatty acid
patterns

Irish National Adult
Nutrition Survey
(NANS) (n 1052
aged 42·9 (SD 16.5)
years) in Ireland

Twenty-six plasma fatty acids Log-transformation
of skewed data

Exclusion of
outliers

Standardisation
(Subtraction of
minimum and
division by
range)

k-Means cluster
analysis (squared
Euclidean distance)

Well-differentiated groups by
discriminatory variables (GLM,
χ2 test, ANOVA, Bonferroni
correction)

Stability of cluster results (validation
analysis, scree plot examination,
two-step cluster analysis)

Biologically meaningful groups

Four subgroups with distinct fatty acid
profile

Relationship between plasma fatty acid
patterns, dietary intake and
biomarkers of metabolic health

The subgroup (cluster 3) higher in very-
long-chain SFA and lower in α-
linolenic acid was associated with
metabolic health

Bermúdez
et al.(40)

Selection of
metabolically
healthy and sick
individuals for
waist
circumference
cut-off point
selection

Maracaibo City
Metabolic Syndrome
Prevalence Study
(MMSPS) (n 1902
aged 38·70
(SD 15·06) years) in
Venezuela

Eleven metabolic variables (mean arterial
pressure, TAG, cholesterol, HDL,
HOMA2-IR, HOMA2-βcell, HOMA2-S,
fasting glucose, non-HDL-C cholesterol,
TAG/HDL-C index and
hs-CRP)

Log-transformation
of skewed data

Classification
according to BMI
before the two-
step cluster
analysis

Two-step cluster
analysis:
hierarchical
(centroid-based)
and k-means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (t test,
ANOVA, cohesion, separation,
silhouette coefficient)

Stability of cluster results (training and
validation data set with Cohen’s
kappa coefficient)

Biologically meaningful groups

Six subgroups with distinct
cardiometabolic profiles

Most predictive variables (HOMA2-IR,
HOMA2-βcell and TAG)

Selection of a cut-off point for waist
circumference (91 cm for women
and 98 cm for men)

Micciolo(41) Metabolic
phenotypes

Patients of one general
practice in Castel
D’Azzano (n 458
aged 21–60 years) in
Italy

Seven metabolic variables (glucose, uric
acid, TAG, cholesterol, LDL and HDL
(both total and percentage)) and BP
levels or nine anthropometric
characteristics (six skinfolds and three
circumferences)

Log-transformation
of skewed data

Standardisation
(subtraction of
mean and
division by
standard
deviation)

k-Means cluster
analysis (separately
on anthropometric
and metabolic
variables for each
sex)

Well-differentiated groups by
discriminatory variables (hierarchical
algorithm for number of clusters, one-
way ANOVA, χ2 statistics)

Stability of cluster results (five iterations,
cross-classification of cluster results
using correspondence analysis, γ
coefficient and correlation coefficient)

Biologically meaningful groups

Seven distinct subgroups for men and
women, respectively

Solution with anthropometric variables
more stable than solution with
metabolic variables

Significantly different metabolic
patterns with anthropometric and
metabolic variables

Associations between anthropometric
characteristics and metabolic
profiles



Table 1. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Baumgartner
et al.(42)

Cardiovascular risk
factor groups

Cross-sectional study
(n 317 individuals
aged 18–88 years) in
the USA

Cardiovascular risk factors (BP, plasma
lipids, lipoprotein cholesterols and serum
glucose)

Log-transformation
of skewed data

Standardisation
(subtraction of
mean and
division by
standard
deviation)

k-Means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (PCA for
number of clusters, one-way
ANOVA, χ2 test, discriminant
analysis)

Biologically meaningful groups

Four distinct subgroups for men and
women, respectively

Significant association of cluster
membership with indices of adiposity
but not with adipose tissue
distribution

Huang
et al.(43)

Metabolic
phenotypes

West Australian Cohort
(Raine) Study
(n 1094 adolescents
aged 14 years) in
Australia

The Metabolic syndrome components
(TAG, BMI, HOMA, systolic BP)

Log-transformation
of skewed data

Two-step cluster
analysis separately
by sex (log-
likelihood distance)

Well-differentiated groups by
discriminatory variables (one-way
ANOVA)

Biologically meaningful groups

Two distinct subgroups (high-risk and
low-risk cluster of cardiovascular
and metabolic disorders)

Relationships between inflammatory
markers and components of a
metabolic syndrome cluster

Andreeva-
Gateva
et al.(44)

Metabolic
phenotypes

Cross-sectional study
(n 113 subjects aged
21–70 years with an
increased risk for
type 2 diabetes) in
Bulgaria

Components of the metabolic syndrome:
anthropomorphic measurements, lipid
and carbohydrate parameters (during
oral glucose-tolerance test), insulin,
C-peptide, creatinine, CRP, liver tests, β-
cell function assessment, insulin
sensitivity and insulin resistance

z-Standardisation Hierarchical cluster
analysis (squared
Euclidean distance,
Ward’s method)

Well-differentiated groups by
discriminatory variables (test
statistics)

Stability of cluster results (PCA with
Varimax-normalised rotation for
latent factor identification)

Biologically meaningful groups

Two distinct subgroups
Association of clusters with different

patterns and stages of
cardiovascular risk → diversity of
metabolic disorders in subjects with
an increased risk for type 2 diabetes

Ventura
et al.(45)

Risk profiles for the
metabolic
syndrome

Longitudinal study
(non-clinical sample
of n 154 adolescent
girls aged 13 years)
in the USA

Six metabolic syndrome factors (systolic
and diastolic BP, HDL, TAG, waist
circumference and blood glucose)

Standardisation Mixture model (or
latent profile
analysis)

Well-differentiated groups by
discriminatory variables (GLM,
ANOVA, Fisher’s least significant
difference comparison, χ2 test,
Fisher’s exact test)

Stability of cluster results (AIC, BIC,
multiple iterations, different cluster
numbers)

Biologically meaningful groups

Four distinct subgroups of risk profiles
for the metabolic syndrome

Differences in developmental, lifestyle
and family history variables between
the subgroups

Bucci et al.(46) Cardiovascular risk
phenotypes

Data sets from France
of the Pole
Cardiovasculaire
Hopital Europeen
Georges Pompidou
(n 618) and from
Uruguay (n 123)

Five clinical variables (age, systolic and
diastolic BP, LDL and HDL)

No preprocessing k-Means cluster
analysis (Euclidean
distance)

Validation using Framingham index
Well-differentiated groups by

discriminatory variables (t test)
Stability of cluster results (iterations,

silhouette index)
Biologically meaningful groups

Two distinct subgroups in the data sets
of France and Uruguay, respectively

Association of clusters with
cardiovascular risk patterns

Moazzami
et al.(47)

Metabolic
phenotypes

Randomised, controlled,
cross-over meal study
(n 19 postmenopausal
women aged 61
(SD 4·8) years) in
Finland

189 metabolites from LC-MS metabolomics
analysis (twenty-one amino acids,
seventeen biogenic amines, forty-seven
acyl-carnitines, thirty-eight
phosphatidylcholines, thirty-nine acyl-
alkyl phosphatidylcholines, fourteen
lysophosphatidylcholines, fifteen
sphingomyelins and one hexose)

No preprocessing Hierarchical cluster
analysis, O-PLS
and PCA

Well-differentiated groups by
discriminatory variables (O-PLS-
DA, GLM, ANOVA)

Stability of cluster results (three cluster
analyses, cross-validated ANOVA,
constant over three different
sampling days)

Biologically meaningful groups

Two distinct subgroups
Different postprandial metabolic

responses to breads (refined wheat,
whole-meal rye and refined rye
breads) → identification of
individuals with reduced insulin
sensitivity

Different metabolic responses after
consumption of different breads

Qureshi
et al.(48)

(only
abstract of a
presentation
available)

Metabolic
phenotypes

Insulin Resistance
Atherosclerosis
Study (n 500
individuals) in the
USA

Ninety-three serum metabolites from liquid
chromatography-MS analysis

– Hierarchical cluster
analysis and PCA

Well-differentiated groups by
discriminatory variables (test
statistics)

Stability of cluster results (different
cluster numbers)

Biologically meaningful groups

133 individuals developed incident
hypertension

Identification of a cluster (n 154) with
high risk for incident hypertension

Identification of metabolites associated
with a high risk for incident
hypertension

IDL, intermediate-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; GLM, general linear model; HOMA-IR, homoeostasis model assessment of insulin resistance; OSC-PLS-DA, orthogonal signal-correction partial least squares discriminant analysis; BP,

blood pressure; HOMA2-S, homoeostasis model assessment of insulin sensitivity; PCA, principal component analysis; AIC, Akaike information criterion; BIC, Bayesian information criterion.



Table 2. Definition of metabotypes based on metabolic response data to interventions

References Objective

Study design and

study sample Variables for clustering Preprocessing of variables

Clustering

method Validation of cluster solutions Main findings

Morris

et al.(9)
Response groups to

an oGTT

Metabolic

Challenge

(MECHE) study

(n 116 healthy

adults aged

18–60 years) in

Ireland

Response curves of blood

glucose to oGTT (blood

glucose measured during the

oGTT at 0, 10, 20, 30, 60, 90

and 120min)

No preprocessing Mixed-model

clustering

Well-differentiated response groups by

discriminatory variables (ANOVA,

GLM, Bonferroni post hoc multiple

comparison test)

Stability of cluster results (oral lipid-

tolerance test)

Biologically meaningful groups

Four distinct subgroups with different

responses to oGTT

One subgroup (cluster 1) as ‘at risk’

phenotype having the highest BMI,

TAG, hs-CRP, C-peptide, insulin

and HOMA-IR score and lowest

VO2max

Krishnan

et al.(49)
Response groups to

meal challenges

with different

glycaemic indices

Cross-over study

(n 24 healthy

premenopausal

women aged

20–50 years) in

the USA

Blood glucose, insulin and leptin Range-scaling PCA Well-differentiated response groups by

discriminatory variables (ANOVA,

Tukey’s post hoc test, Bonferroni

post hoc multiple comparison test)

Biologically meaningful groups

Three distinct subgroups with different

responses to meal challenges

One subgroup with higher insulin

resistance and another subgroup

with higher leptin values

Wang

et al.(50)
Response groups to

dietary carotenoids

in watermelon juice

and tomato juice

Cross-over study

(n 23 healthy

subjects) in the

USA

Temporal response of individual

plasma carotenoids

(β-carotene, lycopene,

phytoene and phytofluene)

Normalisation to baseline values k-Means cluster

analysis

Well-differentiated response groups by

discriminatory variables (t test)

Biologically meaningful groups

Five distinct subgroups with different

plasma responses to dietary

carotenoids → Identification of

strong and weak responders

Response differences between

individual carotenoids and between

interventions

Association of response with genetic

variants of carotenoid-metabolising

enzyme

Bouwman

et al.(51)
Response groups to

a 5-week dietary

intervention with

anti-inflammatory

ingredients

Controlled cross-

over study

(n 33 men) in

the Netherlands

145 metabolites, seventy-nine

proteins and 10 812

transcripts

Selection of significantly

changed plasma parameters

due to the intervention

Normalisation (subtraction of the

mean and division by the

distance between mean

scores of intervention and

placebo group)

Hierarchical

cluster analysis

(Euclidean

distance, group

average

linkage)

Well-differentiated groups by

discriminatory variables (PLS-DA,

ANOVA)

Stability of cluster results (double cross-

validation of PLS-DA)

Biologically meaningful groups

Two distinct subgroups of inter-

individual responses to intervention

→ Difference in metabolic stress

profile, inflammatory and oxidative

response

Effects of the nutritional intervention

on oxidative stress, inflammation,

and metabolism → Differentiation

between treated and untreated

individuals

Chua

et al.(52)
Circadian metabolic

phenotypes

Study (n 20 ethnic-

Chinese male

aged 21–28

years) in

Singapore

Time course of 263 plasma

lipids

Iterative feature selection

Elimination of linear trends of

time courses

z-Standardisation

k-Means cluster

analysis and

hierarchical

cluster analysis

Well-differentiated groups by

discriminatory variables (ANOVA,

Kruskal–Wallis test, Bayes method)

Stability of cluster results (consensus

clustering: 1000 iterations of k-means

cluster analysis, two cluster methods)

Biologically meaningful groups

Three distinct subgroups

13% of lipids showed circadian

variation

Diversity in circadian regulation of

plasma lipids, (glucose and insulin)

oGTT, oral glucose-tolerance test; GLM, general linear model; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, homoeostasis model assessment of insulin resistance; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis.



168 not exclusively, in Europe and the USA, either with population-

169 based samples or random samples of healthy individuals. The

170 sample size of the studies varied considerably from twenty to

171 up to 3000 participants. Also, the age range of the study

172 populations differed across the studies with a main focus on

173 adults. Regarding sex, two studies investigated only men(51,52),

174 five studies only women(34,38,45,47,49) and all other studies

175 included both sexes.

176 For the identification of metabotypes, different numbers of

177 clustering variables were used. Besides the use of full 1H NMR

178 spectra or metabolomics data in some studies(32,47,48,51,52), all

179 other studies used selected metabolites for clustering similar

180 components of the metabolic syndrome(43,45) or cardiovascular

181 risk factors(36,37,42). The type of the cluster variables differed

182 between the studies using blood or urine metabolites, diverse

183 metabolite classes or specifically selected individual metabolite

184 subclasses like lipoproteins or fatty acids and those using

185 fasting metabolites (Table 1) or metabolic responses to dietary

186 interventions (Table 2). According to the number and type of the

187 selected clustering variables, the definitions of metabotypes

188 differed considerably; they ranged between general fasting

189 metabotypes, more specific fasting parameter subgroups like

190 plasma lipoprotein(29,33) or fatty acid clusters(39) and response

191 groups to defined meal challenges or dietary interventions.

192 However, in most studies, at least some standard clinical markers

193 such as glucose, TAG and cholesterol were included. Besides

194 metabolic data, the inclusion of additional phenotypic factors for

195 the definition of metabotypes was implemented in some studies:

196 for example, the consideration of anthropometric parameters

197 like BMI or waist circumference(32,36–38,41,43–45) and blood

198 pressure(34–38,40–43,45,46). However, only the study by Bouwman

199 et al.(51) also assessed some underlying causes for differences in

200 metabolism between subpopulations in the clustering process

201 using transcriptomics data.

202 Before grouping individuals into metabotypes, diverse

203 preprocessing steps were applied in the studies analysed to the

204 cluster variables such as outlier exclusion, log-transformation

205 of skewed data, dimension reduction (e.g. by multiple-

206 correspondence analysis) and standardisation (e.g. range-scaling

207 or z-standardisation). Different unsupervised learning methods

208 were used in the studies to define relatively homogeneous

209 metabolic groups of individuals. These included k-means cluster

210 analysis, hierarchical clustering and combinations of the two,

211 principal component analysis (PCA), latent class analysis(33) and

212 mixed-model clustering(9,45). Then, supervised learning methods,

213 such as partial least squares regression as well as statistical tests

214 like the t test and ANOVA, were used to find discriminatory

215 variables between the established groups. Clustering indices,

216 cross-validation procedures, repetitions with different cluster

217 seeds and cluster numbers as well as different clustering methods

218 were applied to validate the clustering results. Biologically

219 meaningful metabotypes, which were differentiated using

220 discriminatory variables, also confirmed the clustering results.

221 Using the clustering methods, different numbers of metabotypes

222 were found, ranging between two and eight groups. Some studies

223 identified subgroups of individuals with differential response to

224 nutritional interventions; others only described differences

225 between the subgroups, mainly in the fasting state.

226The following two studies are examples for the establishment

227of metabotypes using metabolite profiles obtained in the fasting

228state and the subsequent investigation of differences in

229response to dietary interventions between the subgroups.

230O’Sullivan et al.(30) described metabotypes in an Irish inter-

231vention study with 135 healthy individuals aged 18–63 years.

232After z-standardisation, thirteen blood 1H NMR biochemical

233markers of the metabolic syndrome and serum vitamin-D levels

234were used in a k-means cluster analysis. Five distinct biologi-

235cally meaningful clusters were found. Among these, one

236group with lower serum vitamin-D levels and higher levels

237of adipokines showed a positive response to vitamin-D

238supplementation on parameters of the metabolic syndrome.

239The stability of the cluster result was verified using a 5-fold

240cross-validation method. Second, Vázquez-Fresno et al.(32)

241investigated fifty-seven subjects at a high cardiovascular risk

242aged ≥55 years in a randomised and controlled cross-over

243study. k-Means cluster analysis revealed four well-differentiated

244and biologically meaningful clusters using sixty-nine blood

245and urine 1H NMR biochemical markers and anthropometric

246variables identifying red wine polyphenol-responsive

247metabotypes. In addition to cross-validation, cluster indices

248like Dunn analysis and Figure of Merit analysis were used.

249An example for the definition of metabotypes based on

250metabolic response data to a dietary intervention is the Irish

251Metabolic Challenge (MECHE) study, which included 116

252participants aged 18–60 years(9). Mixed-model clustering of

253blood glucose curves revealed four distinct metabotypes with

254different responses to an oral glucose-tolerance test, of which

255one group was identified as a high-risk phenotype. The stability

256of the differentiated clusters was confirmed by another inter-

257vention, an oral lipid-tolerance test. Wang et al.(50) described

258metabotypes in a dietary intervention with carotenoid-rich

259beverages in a cross-over design based on twenty-three healthy

260subjects in the USA. In each carotenoid arm, the responses to all

261plasma carotenoids were analysed individually. k-Means cluster

262analysis revealed five distinct subgroups with different temporal

263responses. Subsequently, strong and weak responders to

264individual dietary carotenoids were identified. The different

265responses were induced by genetic variants of the carotenoid-

266metabolising enzyme β-carotene 15,15’-monooxygenase 1.

267Definition of patient subgroups with metabolic diseases

268by metabotyping

269Table 3 presents nine publications that were selected during the

270literature search on the definition of metabotypes in patients

271with chronic diet-related metabolic diseases for diagnosing or

272establishing metabolically homogeneous patient subgroups. All

273articles were published within the last 10 years and, again, a

274majority of the studies were performed in Europe and the USA

275with differences in study design, sample size (between fifty and

27650 000 participants) and the age range of adults. Both sexes were

277considered in all studies. The articles describe the diagnosis

278and subgrouping of patients affected by diabetes, obesity, the

279metabolic syndrome or dyslipidaemia. Here, again, the definitions

280of patient subgroups varied according to the use of different

281numbers of metabolic clustering variables. In addition, the types

Metabotyping and its applications 7



Table 3. Definition of patient subgroups with metabolicQ5 diseases by metabotyping

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Zák et al.(53) Diagnosis and
identification of
distinct
phenotypes of
the metabolic
syndrome

Study (n 354 individuals
(166 patients with the
metabolic syndrome
and 188 controls)) in
the Czech Republic

Initially twenty-two but
reduced to six plasma fatty
acids in plasma
phosphatidylcholine
(dihomo-γ-linolenic,
stearic, myristic, DHA,
DPA and linoleic acids)

Examination of extreme
values

Power transformation
for symmetry and
constant variance

Variable reduction by
linear discriminant
analysis with forward
variable selection
using Wilk’s λ
criterion

Hierarchical cluster
analysis (Ward’s
method with
Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test,
Wilcoxon’s test, Benjamin–
Hochberg correction,
ANCOVA adjustments)

Biologically meaningful
groups

Diagnosis of the metabolic
syndrome

Two distinct subgroups of the
metabolic syndrome with
differences in
concentrations of glucose,
NEFA, HOMA-IR and
conjugated dienes in LDL

Schader(54) Subtypes of type 2
diabetes

GWAS (Framingham Heart
Study (FRAM), MESA
SHARe Study (MESA),
Atherosclerosis Risk in
Communities study
(ARIC)) (13459 study
participants aged 30–84
years (832 cases during
follow-up for clustering
and 12066 controls) in
the USA

Ten metabolic and
anthropometric
characteristics before
diagnosis of type 2
diabetes (sex, BMI, waist:
hip ratio, TAG, HDL,
glucose, insulin,
cholesterol, systolic BP
and diastolic BP)

Standardisation k-Means cluster
analysis
(Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test, Cox
proportional hazards
model)

Stability of cluster results
(Calinski method, twenty-
five iterations)

Biologically meaningful
groups

Two distinct subtypes
No statistical significant

differences in genetic risk
factors between the
subtypes

Li et al.(55) Subtypes of type 2
diabetes

Mount Sinai BioMe
Biobank Program
(n 11 210 individuals
mean aged 55·5 years,
of whom 2551 were
patients with type 2
diabetes) in the USA

Seventy-three clinical data
from high-dimensional
electronic medical records

Feature selection
(>50% of patients
with non-missing
values)

Topological analysis
(cosine distance)

Well-differentiated individuals
by discriminatory
metabolites (t test,
ANOVA, χ2 test)

Stability of cluster results
(random training and test
sets, stability and
robustness statistics)

Biologically meaningful
groups

Three distinct subtypes
characterised by
increased diabetic
nephropathy and
retinopathy in subtype 1,
cancer malignancy and
CVD in subtype 2 and
CVD, neurological
diseases, allergies and
HIV infections in subtype 3

Association of subtypes with
specific SNP

Amato et al.(56) Subtypes of type 2
diabetes

Cross-sectional study
(n 96 patients with type
2 diabetes aged 62·40
(SD 6·36) years
(range=51–75 years))
in Italy

Three fasting serum incretins
(GLP-1, GIP and ghrelin)

Log-transformation of
skewed data

Two-step cluster
analysis
(preclustering
and hierarchical
methods, log-
likelihood
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test, χ2 test,
Fisher’s exact test)

Stability of cluster results
(silhouette coefficient)

Biologically meaningful
groups

Two distinct subgroups with
higher levels of glycated
Hb, glucagon, fasting
glucose and lower levels of
C-peptide in subgroup 1

Frei et al.(57) Subtypes of obesity Study (n 50 patients aged
21–61 years) in Brazil

Blood parameters before and
after the surgery (BMI,
LDL, HDL, VLDL, Hb,
platelets, leucocytes, TAG,
glucose and bilirubin)

z-standardisation Hierarchical cluster
analysis
(Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (ANOVA,
Bonferroni test)

Stability of cluster results
(Calinski–Harabasz,
silhouette index, different
cluster algorithms
(complete linkage,
average linkage, Ward’s
method))

Biologically meaningful
groups

Two distinct subtypes with
differences in indicators of
the metabolic syndrome
(glucose, LDL, VLDL and
TAG)

Identification of patterns that
hinder recovery after the
bariatric surgery

Q6



Table 3. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Arguelles
et al.(58)

Subtypes of the
metabolic
syndrome

Hispanic Community
Health Study/Study of
Latinos (HCHS/SOL)
(n 15 825 Hispanics/
Latinos aged 18–74
years) in the USA

The Metabolic syndrome
components (waist
circumference, systolic
and diastolic BP, HDL,
TAG, glucose, medication
use)

Log-transformation and
multiplication with
100 skewed data

Latent class
analysis
separately by sex

Well-differentiated individuals
by discriminatory
metabolites (logistic
regression)

Stability of cluster results
(different cluster numbers,
AIC, BIC, ABIC, entropy
and posterior probabilities)

Biologically meaningful
groups

Two distinct subgroups for
men and women,
respectively (‘metabolic
syndrome’ cluster and
‘non-metabolic syndrome’
cluster)

Association of subgroups
with covariates and CVD

No identification of additional
subtypes of the metabolic
syndrome

Kim et al.(59) Subtypes of
prediabetes

Large Cohort (n 52 139
adult Mayo Clinic
patients) in the USA

Diagnoses (obesity,
hyperlipidaemia,
hypertension, renal failure,
various cardiovascular
conditions), vital signs (BP,
pulse), laboratory results
(glucose, lipids), use of
medication (aspirin,
medication for
hypertension and
hypercholesterolaemia)

Binary transformation
of variables

Bisecting divisive
hierarchical
cluster analysis

Well-differentiated individuals
by discriminatory
metabolites

Biologically meaningful
groups

A subgroup with higher and
another subgroup with
lower risk for diabetes than
the general population

Identification of twelve
highest-risk groups (out of
twenty-six clusters) and
their relevant risk factors

Use of clustering as a
diabetes index
outperforming the
Framingham risk score

Mäkinen
et al.(60)

Subtypes of type 1
diabetes

Finnish Diabetic
Nephropathy
(FinnDiane) Study
(n 613 patients with
type 1 diabetes) in
Finland

Blood serum 1H NMR
spectrum

Several preprocessing
steps of 1H NMR
spectra

Adjustment of intensity
units to equal
variance

Self-organising map
(9 × 9 hexagonal
sheet of map
units, Gaussian
neighbourhood
function))

Well-differentiated individuals
by discriminatory
metabolites

Stability of cluster results
(non-NMR measurements
of a number of
metabolites)

Biologically meaningful
groups

Six subgroups
Different diabetic

complications, clinical and
metabolic characteristics
between subgroups

Botelho
et al.(61)

Subgroups of
dyslipidaemia

Patient data bank at the
Dante Pazzanese
Institute of Cardiology
(n 57 individuals aged
30–80 years with
dyslipidaemia
controlled by statins) in
Brazil

Four plasma biomarkers of
oxidative stress
(malondialdehyde, ferric
reducing ability power, 2,2-
diphenyl-1-picrylhydrazyl
radical and oxidised-LDL)

Dimension reduction by
PCA

Hierarchical cluster
analysis (Ward’s
method,
Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (ANOVA,
Tukey’s post hoc test)

Biologically meaningful
groups

Five distinct subgroups
No difference in dietary

pattern between the
subgroups

HOMA-IR, homoeostasis model assessment of insulin resistance; GWAS, genome-wide association study; BP, blood pressure; GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic polypeptide; AIC, Akaike information criterion; BIC, Bayesian

information criterion; ABIC, sample size-adjusted BIC; PCA, principal component analysis.



282 of clustering variables differed, often depending on the particular

283 disease investigated. For example, Mäkinen et al.(60) used a full

284 blood serum 1H NMR spectrum for the subgrouping of patients

285 with type 1 diabetes. In contrast, Arguelles et al.(58) tried

286 to identify subgroups of the metabolic syndrome using only

287 components of this syndrome (waist circumference, systolic

288 and diastolic blood pressure, HDL, TAG, fasting glucose and

289 medication use) for the clustering procedure. Few studies used

290 additional variables such as anthropometry(54,57,58) or medication

291 use(58,59) along with the metabolic information in the clustering

292 process. As a result, the studies identified different patient

293 subgroups depending on the metabolic data assessed. After the

294 application of various preprocessing steps to the cluster variables

295 as described above, clustering methods like k-means cluster

296 analysis, hierarchical clustering and combinations of the two,

297 topological analysis(55), latent class analysis(58) and self-organising

298 maps(60) were applied. Discriminatory variables between the

299 resulting disease subgroups were again identified using test

300 statistics. Moreover, biological meaning, clustering indices,

301 cross-validation procedures, repetitions with different cluster seeds

302 and cluster numbers as well as different clustering algorithms were

303 applied to validate the clustering results. Different numbers of

304 disease subgroups were formed, mainly two to four groups.

305 An example for the establishment of type 2 diabetes subgroups

306 is the study by Schader(54) using three studies in the USA with a

307 total of 832 patients with type 2 diabetes aged 30–84 years.

308 Applying k-means cluster analysis with ten standardised metabolic

309 and anthropometric characteristics assessed before the diagnosis of

310 type 2 diabetes, two subgroups of the disease were found. Despite

311 the stabilityQ7 of the clustering results, measured using the Calinski

312 method and twenty-five repetitions of the clustering method,

313 and strong differentiation of individuals based on discriminatory

314 variables, no statistically significant difference was found between

315 the genetic risk factors among the subgroups. In a smaller sample

316 size of ninety-six patients with type 2 diabetes, Amato et al.(56) used

317 three fasting incretins in a two-step cluster analysis to identify two

318 subgroups of this disease.

319 Discussion

320 This review analysed the literature on metabotyping of

321 individuals in metabolic and nutrition research. In total,

322 thirty-four studies were included in this analysis covering a wide

323 range of populations and using various clustering variables and

324 statistical methods to identify different numbers of metabotypes.

325 Consequently, it is difficult to draw meaningful conclusions

326 regarding the establishment of metabotypes based on these

327 rather heterogeneous studies using different approaches in

328 metabotyping. However, this paper includes all available human

329 studies using metabotyping in healthy subjects, population-based

330 samples and patients with chronic metabolic diseases, and

331 thereby represents the current state of knowledge.

332 Differences in study populations

333 We found a considerable variation in metabotypes across the

334 countries in which the studies were performed, and this could

335 be due to different genetic characteristics, environmental

336influences (like dietary and cultural behaviour), risk factors and

337disease rates(5,62–64). This variation Q8was seen to be particularly

338large between Western countries and East Asian countries,

339whereas metabotypes across different Western countries

340displayed substantial overlapping(62,64). As most studies we

341review here were conducted in Western populations in Europe

342and the USA, the defined metabotypes seem to be transferable

343and comparable between these studies. However, there is a

344lack of data as to whether these metabotypes can be transferred

345to other ethnic populations.

346Comparing metabotypes between different age ranges may

347be hampered by the physiological ageing process itself, which

348is characterised by marked changes in metabolism or metabolic

349flexibility(65). However, it was shown in some studies that the

350plasma metabotypes (metabolite profiles) of individuals remain

351relatively stable over a few years(66,67) and only large differ-

352ences in age seem to be relevant. As many metabolites differ

353between men and women – for example, steroid hormones or

354branched chain amino acids(62,68,69) – studies need to consider

355sex differences. This could be achieved by the exclusion of

356these sex-specific variables from the clustering process or by

357separate analyses for men and women.

358Differences in variables used for clustering

359The use of diverse types and numbers of clustering variables

360does not allow a reasonable comparison of the metabotypes

361identified in different studies. At present, the debate on the

362most important criteria and variables to be used for the

363definition of a biologically meaningful metabotype remains

364open. Equally important, the aim of metabotype definition has

365to be defined a priori. In 2000, Gavaghan et al.(15) defined a

366metabotype as ‘a probabilistic multiparametric description

367of an organism in a given physiological state based on analysis

368of its cell types, biofluids or tissues’. Later, metabotyping

369was described in several studies as the ‘process of grouping

370similar individuals based on their metabolic or phenotypic

371characteristics(6,9–13). These wide and general definitions of

372metabotypes allow the inclusion of all studies establishing

373subgroups based on (1) healthy or sick people (thus also

374in the diagnosis or subgrouping of patients), (2) the fasting

375state or response to interventions, (3) a few or a variety of

376metabolites and (4) specifically selected single metabolite

377subclasses like lipoproteins, diverse metabolite subclasses or

378the addition of other variables like underlying causes for

379differences in metabolism – for example, genetic, epigenetic or

380gut microbiome information.

381The selection of variables plays an important role in the

382identification and separation of metabotypes. Grouping of indivi-

383duals based on a few variables or single specific metabolite classes

384provides a restricted definition of metabotypes, as only a small part

385of human metabolism is taken into account. However, for the

386establishment of plasma lipoprotein clusters in the studies by

387van Bochove et al.(29) and Frazier-Wood et al.(33), or of plasma

388fatty acid patterns in the study by Li et al.(39), restriction to the

389respective lipid variables seemed to be sufficient for

390subclassification. Likewise, Wang et al.(50) considered only the

plasma carotenoid levels after a dietary intervention with

10 A. Riedl et al.



391 carotenoids. The same was the case in the study by Morris et al.(9)

392 considering only blood glucose levels, measured at several points

393 in time, to identify groups with differential glucose responses to an

394 oral glucose-tolerance test. This is of course in accordance with the

395 current clinical practice for classification of type 2 diabetes based

396 on the plasma kinetics of glucose. In diagnosing or subgrouping

397 patients, the restriction of variables to disease-related parameters

398 could also be sufficient for subclassification. For example,

399 Arguelles et al.(58) established subgroups of the metabolic

400 syndrome patients based on the standard criteria for disease

401 description, namely waist circumference, systolic and diastolic

402 blood pressure, HDL, TAG, fasting glucose and medication use.

403 The grouping in other studies using plasma fatty acids for the

404 description of the metabolic syndrome(53) and fasting incretins for

405 the subgrouping of diabetes(56) could be probably refined by the

406 consideration of additional disease-related variables.

407 There is no consensus yet on a uniform use of the term

408 ‘metabotype’, thus it is subjectively applied, usually based on

409 the respective study objectives. In this review, the definitions of

410 metabotypes differed considerably; they ranged between

411 general fasting metabotypes, more specific fasting parameter

412 subgroups like plasma lipoprotein(29,33) or fatty acid clusters(39)

413 and response groups to defined meal challenges or dietary

414 interventions according to the number and type of the selected

415 clustering variables. Although an accepted definition of

416 metabotype seems attractive, there is also the view that there is

417 no need for a strict metabotype definition. On the one hand,

418 it may be argued that a metabotype has by its nature a wide

419 definition and should not be restricted. On the other hand, a

420 better comparability of studies could be achieved using a

421 stricter definition. Even if a strict general definition appears

422 implausible or unrealistic, more precise sub-definitions of

423 metabotypes could be developed, for example for lipid and

424 carbohydrate (glucose) metabolism. Thus, metabolic variables

425 restricted to specific metabolic pathways like to those of

426 lipoproteins may be sufficient depending on the respective

427 study objective.

428 However, it is assumed that the inclusion of various metabolites

429 originating from different pathways as well as additional

430 information from anthropometry or that obtained by including

431 genetics, epigenetics or the gut microbiome in the process

432 of metabotyping provides a more precise characterisation of

433 individuals and, thus, the establishment of more refined and

434 generally valid metabotypes(70). This can be achieved through

435 the use of ‘-omics’ data such as metabolomics, genomics and

436 epigenomics, where research is growing rapidly(2,71,72). Thus, it

437 may be wise to suggest a stricter definition of generally valid

438 metabotypes in healthy subjects or population-based samples

439 by at least the use of variables originating from different metabolic

440 pathways, preferably the use of targeted or untargeted

441 metabolomics data.

442 Further, there is no agreement as to whether the definition of

443 metabotypes should be based on fasting data (see Table 1) or

444 rather on metabolic response data to interventions (see

445 Table 2), for which we identified only five studies that met the

446 inclusion criteria. An argument for the use of metabolic

447 response data to interventions is the increase of variation

448 between individuals as some metabolic differences are only

449visible through challenges and would remain undetected

450using fasting blood values(73). However, the establishment

451of metabotypes by means of fasting data allows extensive

452measurements of larger study populations and is thus more

453feasible in the general population. It is important to note that

454intra-individual variations of metabolite concentrations may

455also occur because of diurnal time, stress, latent diseases as

456well as by measurement and storage conditions of the

457samples(5,64,74,75). However, these differences were shown to

458be smaller than inter-individual differences, suggesting that

459individual metabotypes are relatively robust(76).

460Differences in statistical analyses

461As a variety of statistical methods are available for the estab-

462lishment of metabotypes(70), there is an on-going discussion on

463which statistical methods should be used to obtain the best

464spread between subgroups. The preprocessing of variables is

465especially dependent on the structure of the variables and the

466requirements of the subsequent clustering methods. Thus, the

467implementation of outlier exclusion and data transformation has

468to be decided individually. If the number of clustering variables

469exceeds one per ten observations, application of data-reduction

470analyses like PCA or multiple-correspondence analysis must be

471considered to avoid over adjustment(77). In many studies

472included in this review, standardisation has been applied to the

473cluster variables to avoid bias from different scales and units in

474the grouping analysis(78,79). The most commonly used method

475is z-standardisation z = X�mean
SD

� �

:

476Concerning the different clustering methods(78–82), k-means

477cluster analysis and hierarchical cluster analysis were applied

478most commonly. Each clustering method has its own advan-

479tages and disadvantages and must be selected depending on

480the characteristics of the respective data set (e.g. depending on

481the scale level or the sample size). k-Means cluster analysis

482seems to be more suitable for large data sets than hierarchical

483clustering. However, the number of clusters has to be specified

484in advance for k-means cluster analysis, whereas hierarchical

485clustering does not need the number of clusters to be

486determined(82). In addition, there are novel clustering

487techniques available in the field of bioinformatics, for example

488the so-called machine learning methods(83).

489The selection of validation criteria like statistical tests

490and clustering indices is also dependent on the structure of the

491data. The reproducibility of metabotypes should be tested in a

492validation data set to confirm the results and to prove their

493generalisability.

494Differences in the main findings

495The aim of most studies was to examine metabolic differences

496between the established metabotypes and to test associations

497with certain diseases. However, the application of metabotypes,

498especially the development of targeted interventions for

499responsive subgroups, is rather limited in the literature. In

500addition, intervention by supplementation may increase serum

501levels in all subgroups but with possibly either larger effects in

502some subgroups or attainment of a threshold concentration
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503 considered to be within the normal range. Thus, responsivenessQ9

504 to an intervention does not necessarily mean benefit and,

505 therefore, outcome parameters also need to be properly defined

506 to evaluate the benefit of interventions, which so far

507 has been rare in previous studies. Only few studies investigated

508 the responsiveness of the established metabotypes to dietary

509 interventions with regard to a specific disease. O’Sullivan et al.(30)

510 identified a subgroup with a positive response to vitamin-D

511 supplementation concerning the metabolic syndrome; Vázquez-

512 Fresno et al.(32) detected a subgroup of patients at cardiovascular

513 risk responsive to red wine polyphenols; and Moazzami et al.(47)

514 identified individuals with reduced insulin sensitivity after

515 consumption of bread. There is only one study that developed

516 tailored dietary recommendations for subgroups using a

517 decision-tree approach(31). Until now, the established metabo-

518 types have not been transferred to larger populations for specific,

519 tailored interventions.

520 Conclusion

521 In conclusion, this literature review shows that metabotyping can

522 help identify metabolically similar subpopulations or patient

523 subgroups responding differently to defined nutritional inter-

524 ventions. Consequently, better tailored and, thus, more precise

525 dietary recommendations than generalised advice may be

526 provided to whole populations at a metabotype group level. The

527 aim of future studies should be the refinement of the definition of

528 generally valid metabotypes in large samples, especially with a

529 possibly more precise phenotype description of individuals

530 based on different ‘-omics’ data, particularly metabolomics data.

531 Another aim should be the development of stricter definitions of

532 specific metabotypes for metabolic pathways. The metabotypes

533 should then be tested for differential reactions to diverse dietary

534 factors with regard to properly defined outcome parameters.

535 On the basis of such results, populations can be better stratified

536 in order to provide effective tailored prevention and intervention

537 programs. The implementation of these recommendations in

538 populations may become a future task. Finally, individual health

539 benefits may be improved and the rising costs in the health-care

540 system originating from obesity and other diet-related metabolic

541 diseases may be better controlled.
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