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A DREAM Challenge to Build Prediction
Models for Short-Term Discontinuation of
Docetaxel in Metastatic Castration-
Resistant Prostate Cancer

abstract

Purpose Docetaxel has a demonstrated survival benefit for patients with metastatic castration-resistant
prostate cancer (mCRPC); however, 10% to 20% of patients discontinue docetaxel prematurely be-
cause of toxicity-induced adverse events, and the management of risk factors for toxicity remains a
challenge.

Patients andMethods Thecomparator armsof four phase III clinical trials in first-linemCRPCwerecollected,
annotated, and compiled, with a total of 2,070 patients. Early discontinuation was defined as treatment
stoppagewithin3monthsasaresultofadverse treatmenteffects;10%ofpatientsdiscontinued treatment.We
designed an open-data, crowd-sourced DREAMChallenge for developing models with which to predict early
discontinuation of docetaxel treatment. Clinical features for all four trials and outcomes for three of the four
trials were made publicly available, with the outcomes of the fourth trial held back for unbiased model
evaluation. Challenge participants from around the world trained models and submitted their predictions.
Area under the precision-recall curve was the primary metric used for performance assessment.

Results In total, 34 separate teams submitted predictions. Seven models with statistically similar area
underprecision-recall curves (Bayes factor£3)outperformedall othermodels. Apostchallengeanalysisof
risk prediction using these seven models revealed three patient subgroups: high risk, low risk, or dis-
cordant risk. Early discontinuation events were two times higher in the high-risk subgroup compared with
the low-risk subgroup. Simulation studies demonstrated that use of patient discontinuation prediction
models could reduce patient enrollment in clinical trials without the loss of statistical power.

ConclusionThiswork represents a successful collaborationbetween34 international teams that leveraged
open clinical trial data. Our results demonstrate that routinely collected clinical features can be used to
identify patients with mCRPC who are likely to discontinue treatment because of adverse events and
establishes a robust benchmark with implications for clinical trial design.

Clin Cancer Inform. Published by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Despite decades of research and advances in
treatment, the long-term prognosis of metastatic
castration-resistant prostate cancer (mCRPC) re-
mains poor.1 Docetaxel was the first cytotoxic drug
to improve survival andquality of life inpatientswith
mCRPC2,3 and has remained a standard first-line
chemotherapy for the treatment of mCRPC. Al-
though several clinical trials have confirmed the
population-level survival and palliative benefits of
docetaxel,4,5 a significant fraction of patients donot
respond to docetaxel, and within approximately
8 months, nearly all patients become resistant to
treatmentorstop therapy.2,3Ofpatientswho initially

experience a response to docetaxel, 10% to 20%
prematurely discontinue as a result of toxicity-
induced adverse events (AEs) that include anemia,
(febrile)neutropenia, fatigue,GIcomplications,and
neuropathies.6-8 Managing the risk factors for tox-
icity is a major challenge, as they may diminish a
patient’s quality of life without extending it.

As docetaxel-based chemotherapy continues to
play an important role in the treatment of mCRPC
and, more recently, hormone-sensitive metastatic
prostate cancer,9 it is important to prospectively
identify patients for whom a docetaxel-based reg-
imen is likely to be poorly tolerated and to result
in AE and potentially early treatment failure. In
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particular, such knowledge could be used to iden-
tify patients for pre-emptive clinical interventions
and/or supportive care before chemotherapy or to
direct patients to alternative treatment regimens.
Inaddition,establishingquantitativebenchmarks for
identifying patients who are at high risk for early
treatment discontinuation can be used to facilitate
moreefficient clinical trial design.Prognosticmodels
to predict overall patient survival in mCRPC have
been previously described10-14; however, whether
early treatmentdiscontinuationasa result of adverse
events can be predicted on the basis of a patient’s
baseline clinical characteristics remains an unan-
swered question. Within the clinical trial data used
in this study, approximately 10% of patients with
mCRPC discontinued treatment within 3 months
of starting docetaxel. Given this low percentage of
patients, access to a sufficiently powered data set
is a major factor in being able to address the
question of whether treatment discontinuation
can be predicted.

Here, we report the results from the Prostate Cancer
DREAM (Dialogue for Reverse Engineering Assess-
ment and Methodology) Challenge, the first crowd-
sourced competition in mCRPC. The aim of this
challengewas todeterminewhetherbaselineclinical
characteristics can be used to predict patients who
will discontinue their docetaxel-based treatment be-
causeofadverseevents.Thischallengebuildson the
open clinical trial data initiative of Project Data
Sphere, LLC, anonprofit initiative of theCEORound-
table on Cancer’s Life Consortium. The comparator
arms of four phase III clinical trials with a total of
2,070 patients were collected, cleaned, annotated,
and made public, removing the privacy and legal
barriers for open data access. During a 5-month
period, 34 teams from around the world worked
independently to address the challenge, which
resulted in novel models for the prediction of dis-
continuation and identification of clinical variables
that are associated with treatment discontinuation.
We also demonstrate howclinical trial design canbe
optimized through the use of these models. Finally,
we present a new paradigm for addressing chal-
lenges in biomedical clinical informatics through a
postchallenge, community-based collaboration be-
tween challenge organizers and participating teams
to evaluate and refine risk prediction models.

PATIENTS AND METHODS

Trial Selection, Patient Population, and Data
Processing

Dataused in this challengewere compiled on the
basis of provider-deidentified comparator arms
of four phase III prostate cancer clinical trials

(ASCENT215: n = 476, 105 patients discontinued
docetaxel within 3 months as a result of AE or pos-
sible AE; VENICE16: n = 598, 51 discontinued pa-
tients; MAILSAIL17: n = 526, 41 discontinued
patients; and ENTHUSE 3318: n = 470, 49 discon-
tinued patients). All trials were randomized and
sharedsimilar inclusionandexclusioncriteria.Eligible
patients included those with progressive mCRPC, no
previous chemotherapy, and an Eastern Cooperative
OncologyGroup (ECOG)performancestatusof0 to2.
Detailed inclusion and exclusion criteria of each trial
can be found in Guinney et al10 and the Data
Supplement. In total, data used in this challenge
consisted of 2,070 patients with first-linemCRPC
whowere treatedwith a docetaxel-based treatment
regimen. A total of 129 baseline clinical variables
were compiled for each trial with details of data
curation provided in the Data Supplement.

Patient Discontinuation

Theoutcomevariable—treatmentdiscontinuation—
was derived from two factors: reason for treatment
discontinuation (Data Supplement) and the time
from treatment initiation to discontinuation. Dis-
continuation of treatment was evaluated for the
first 3 months of treatment or the first four cycles
(12 weeks) of treatment in a 10-cycle regimen
(3 weeks per cycle). Patients were labeled as
discontinued if, and only if, they discontinued treat-
mentasaresultofAEorpossibleAEwithin3months
(91.5 days) after beginning treatment. Thenumber
and percentage of patients who were assigned to a
detailed list of categories are provided in the Data
Supplement.

Challenge Design, Scoring, and Evaluation

The challenge was hosted and managed on the
free, cloud-based Synapse platform.19

ASCENT2, VENICE, and MAINSAIL data sets—
clinical features and outcome—were combined to
create the training data set (n = 1,600). The out-
come variable for the ENTHUSE 33 data (n = 470)
was withheld and used as an independent valida-
tion set to evaluatemodel predictionperformance.
Teams were tasked with developing models to
predict early discontinuation of docetaxel as a
result of AE or possible AE (Data Supplement).
A team’s prediction was a ranked list of risk scores
for all patients in the ENTHUSE 33 data; teams
were allowed two submissions. Risk scores that
were submitted by each team were evaluated and
ranked by using the area under the precision-
recall curve (AUPRC).20 (NOTE. Precision = pos-
itive predictive value and recall = sensitivity.)
AUPRC was selected over the area under the
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receiver operating characteristic curve (AUROC)
to take into account the highly skewed distribution
of classes (10% to 20% of patients discontinuing
treatment). AUPRC, unlike AUROC, emphasizes
the ability of a model to predict patients who
discontinue treatment (true positives) and is rec-
ommended for imbalanced data.20-22

The following criteria were used to determine the
top teams and models: prediction performance
was significantly better than a random prediction
model,23 and performance was statistically indis-
tinguishable compared with the model that
achieved the highest AUPRC score. One-sided
P values were computed as the probability of
observing an AUPRC under the null distribution
that was at least as large as the AUPRC obtained
for a given team, then corrected for multiple hy-
pothesis testing.24Toassesswhetherconsecutively
ranked models were distinguishable in terms of
their AUPRC score, the Bayes factor25,26 was com-
puted between each model and the top-ranked
model. Submissions with a Bayes factor of , 3
weredeterminedtobestatistically indistinguishable
as suggested by Kass and Raftery.26 The Bayes
factor method generates a bootstrapped perfor-
mance distribution between two models, where a
Bayes factor of 3, for example, means that the first
methodoutperformed thesecondmethodat a3-to-
1 ratio. Additional details can be found in the Data
Supplement.

Risk scores submitted by each team were also
subjected to a cumulative lift chart analysis (Data
Supplement). For each team andmodel, we sum-
marized the results by computing the area under

the lift ratio curve and the lift ratio among patients
with the highest predicted risk of early treatment
discontinuation (top 5%, 10%, and 20%).

Postchallenge Community Collaboration to
Improve Patient Risk Predictions

After the completion of the challenge, hierarchical
clustering was performed over the ranked patient
risk scores to find a consensus pattern among the
top-performing teams to identifypatientswhowere
at highor low riskofdevelopingAEs.Unsupervised
hierarchical clusteringwasperformedbyusing the
Manhattan distance and Ward agglomerative
clustering. In addition to concordant high- and
low-risk patients, we found a group of patients
without anyconsensus risk stratificationacross the
models, which is referred to as the discordant
group. The elbow method was used to determine
the number of clusters for patients; we calculated
the within-group variation for different numbers of
clusters, ranging from1 to10.Theoptimalnumber
of clusters was determined at the point where the
variationbegins to flatten, arrivingat threeclusters.

To improve patient risk predictions, an ensemble-
based prediction model27 was generated as the
weighted average of the top seven models (Data
Supplement). To calculate a team’s weight, each
team trained their models on 70% of randomly
sampled patients from the ASCENT2, VENICE, and
MAINSAIL trials, then predicted risk scores for the
remaining 30% of patients. This team performance
established team weights. Finally, this ensemble
approach was applied to the ENTHUSE 33 data
andcomparedwith individualmodelperformances.
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Fig 1. Study design.
Data were acquired from
ProjectData SphereCancer
Research Platform and
centrally curated by the
organizing team to create
a standardized data set
across the four studies.
Three of the studies
(ASCENT2, VENICE, and
MAINSAIL) were selected
as training sets, anda fourth
dataset (ENTHUSE33)was
withheld as a validation set.
Teams submitted risk
scores for evaluation in the
validation set, which were
scored and rankedby using
the area under the
precision-recall curve
(AUPRC). The vertical
dashed line in the rightmost
panel represents the
bootstrap estimate of the
fraction of discontinuation
events in the ENTHUSE33
dataset. (NOTE.Precision=
positive predictive value,
recall = sensitivity.) ALB,
albumin; ALP, alkaline
phosphatase; BMI, body
mass index; HB,
hemoglobin; mCRPC,
metastatic castration-
resistant prostate cancer;
MI, myocardial infarction;
TURP, transurethral
resection of the prostate.
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Table 1. Summary of Selected Baseline Clinical Characteristics Across Trials

Characteristic

Training Set
Validation Set

ASCENT2 (n = 476) MAINSAIL (n = 526) VENICE (n = 598) ENTHUSE 33 (n = 470)

Age, years

18-64 111 (23.3) 171 (32.5) 219 (36.6) 160 (34.0)

65-74 211 (44.3) 246 (46.8) 254 (42.5) 217 (46.2)

> 75 154 (32.4) 109 (20.7) 125 (20.9) 93 (19.8)

ECOG PS*

0 220 (46.2) 257 (48.9) 280 (46.8) 247 (52.6)

1 234 (49.2) 247 (47.0) 291 (48.7) 223 (47.4)

2 22 (4.6) 20 (3.8) 27 (4.5) 0 (0.0)

Metastasis

Liver* 5 (1.1) 58 (11.0) 60 (10.0) 64 (13.6)

Bone* 345 (72.5) 439 (83.5) 529 (88.5) 470 (100)

Lungs 8 (1.7) 74 (14.1) 88 (14.7) 56 (11.9)

Lymph nodes 163 (34.2) 298 (56.7) 323 (54.0) 208 (44.3)

Analgesic use

No 338 (71.0) 347 (66.0) 419 (70.1) 339 (72.1)

Yes 138 (29.0) 179 (34.0) 179 (29.9) 131 (27.9)

LDH, U/L

1st quantile 176 174 NA 181

Median 202 210 NA 213

3rd quantile 250 267 NA 287

Missing 13 (2.7) 1 (0.2) 596 (99.7) 5 (1.1)

PSA, ng/mL

1st quantile 24.2 32.2 30.8 33.6

Median 68.8 84.9 90.8 99.6

3rd quantile 188.4 271.2 260.6 236.8

Missing 1 (0.2) 4 (0.8) 6 (1) 12 (2.6)

Hemoglobin, g/dL*

1st quantile 11.6 11.5 11.7 11.3

Median 12.6 12.7 12.7 12.5

3rd quantile 13.6 13.7 13.5 13.5

Missing 3 (0.6) 10 (1.9) 0 (0) 4 (0.9)

Albumin, g/L*

1st quantile NA 41 38 40

Median NA 43 42 43

3rd quantile NA 45 45 46

Missing 476 (100) 1 (0.2) 16 (2.7) 2 (0.4)

Alkaline phosphatase, U/L*

1st quantile 80 81 85 98

Median 113 124 135 155

3rd quantile 213 265 270 328

(continued on following page)
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Clinical Trial Model Simulations

A simulation study was conducted to quantify
the benefit of incorporating patient risk for early
treatment discontinuation into patient selection
in terms of the sample size requirements for
clinical trials (Data Supplement). We assumed
a balanced two-arm randomized controlled
trial—1-to-1 random assignment between treat-
ment and control arms—and survival time as the
end point. We used data from the ENTHUSE 33
trial to inform simulation parameters, then sim-
ulated 100 independent data sets in 10,000
patients using the survsim package in R.28 These
data were used to estimate the sample size that
was required to detect a survival difference (haz-
ard ratio [HR], 1.3, 1.4, …, 2.0) between the
groups at 80% statistical power and a false
positive rate of 5%. Patients who were identi-
fied as being at risk for early discontinuation
were excluded from random assignment, as-
suming different accuracies (0%, 25%, 50%,

75%, and 100%) of the baseline predic-
tion models at identifying true cases of early
discontinuation.

Data and Method Availability

Clinical trial data can be accessed at Project Data
Sphere, LLC.29 Method write-ups, code, and pre-
dictions for all teams are reported in the Data
Supplement. Challenge documentation, overall
results, scoring scripts, and data dictionary can
be found at Synapse.30

RESULTS

The overall challenge design is illustrated in
Fig 1. Across all trials, a total of 129 baseline
clinical variables were made available. Al-
though the majority of baseline clinical vari-
ables were consistent across the four trials,
notable differences in the distribution of binary
clinical features—primarily lesion sites—were
observed (Table 1 and Data Supplement). The
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Table 1. Summary of Selected Baseline Clinical Characteristics Across Trials (continued)

Characteristic

Training Set
Validation Set

ASCENT2 (n = 476) MAINSAIL (n = 526) VENICE (n = 598) ENTHUSE 33 (n = 470)

AST, U/L

1st quantile 20 19 20 20

Median 24 24 25 25

3rd quantile 31 31 33 33

Missing 4 (0.8) 1 (0.2) 8 (1.3) 3 (0.6)

NOTE. Data are presented as No. (%) or quantiles (1st, median, or 3rd). Albumin for ASCENT2 was missing, and LDH tests for VENICE were almost all missing.
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; NA, not available; PSA, prostate-specific antigen.
*Variables that show significant difference between training and validation data sets (K-S test or Chisq test P , .05).

Fig 2. Rate and
frequency of treatment
discontinuation across
trials. (A) Trial-specific
cumulative incidence
functions for treatment
discontinuation as a result
of adverse events or
possible adverse events
(solid lines) and death
(dotted lines). (B) Fraction
of patients with metastatic
castration-resistant
prostate cancer who
discontinued treatment<3
months after initiation
because of adverse events
or possible adverse events.
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frequency of early discontinuation events was
similar between training and validation sets
(12% v 10% of patients, respectively), but var-
ied across individual trials (Fig 2).

A total of 34 independent, international teams
made 61 submissions to the challenge. A sum-
mary of each team’s approach is provided in the
Data Supplement. Among teams that responded
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Fig 3. Most frequent
clinical features used
across all prediction
models. Abbreviated terms
are provided in the Data
Supplement.
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Fig 4. Meta-analysis of risk scores computed by the seven top-performing teams. (A) Hierarchical clustering heatmap of patients in the ENTHUSE 33
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to a postchallenge survey, the five most common
clinical features used in prediction models were
hemoglobin (HB), alkaline phosphatase (ALP),
AST, prostate-specific antigen (PSA), and ECOG
performance status (Fig 3).

For evaluating team performance on the task of
predicting patient discontinuation using imbal-
anced data (10% to 20% discontinue rate), we
chose AUPRC (additional details provided in Pa-
tients and Methods and the Data Supplement).
Across all submissions, AUPRC ranged between
0.088 and 0.178 (AUROC ranged between 0.55
and 0.60), with 0.104 representing the expected
AUPRC for a random prediction model, which is
reflective of the 10% rate of discontinuation ob-
served in the ENTHUSE 33 trial (Fig 2 and Data
Supplement). Of the 34 teams, 30 performed
better than random, with seven teams performing
significantly better thana randommodel (adjusted
P , .10). In rank order, teams Yuanfang Guan,
TYTDreamChallenge, PC LEARN, JayHawks, Brig-
ham Young University, jls, and A Bavarian Dream
achievedAUPRCs thatwerewithinaBayes factor of
3 (DataSupplement); thus, theseseventeamswere
identified as the challenge top performers.

A cumulative lift chart analysis was performed on
each submission to provide context for their as-
sociated risk predictions. Across the top seven
models, the average measure of 1.34
represents a 34% improvement in predicting
short-term discontinuation compared with no risk
predictions being made (Data Supplement).
Restricting the above analysis to the top 10% of
patients with the highest predicted risk revealed
that models improved the identification of early
discontinuation events by a factor of two, on av-
erage, when compared with no risk predictions
being made (Data Supplement).

To compare the risk predictions generated by the
top seven performers, we hierarchically clustered
the ranked patient risk scores, which resulted in
three groups of patients: patients who were con-
sistently predicted to be at high risk of early dis-
continuation (concordant high risk; n = 50),
patients with a consistent low risk of early discon-
tinuation (concordant low risk; n = 170), and
patients with discordant risk scores (discordant
risk; n = 234 patients; Fig 4A). A nearly two-fold
increase in cumulative incidence of early discon-
tinuation was observed when the high-risk group
was compared with the low-risk and discordant
groups (Fig 4B). At 3months post-treatment, 26%
of patients in the concordant high-risk group dis-
continueddocetaxel comparedwithonly9%in the

low-risk and discordant groups. The competing
risk—that is, death—was considerably elevated in
the concordant high-risk group comparedwith the
low-risk and discordant groups.

A comparison of baseline characteristics across
the three groups revealed 11 statistically signifi-
cant laboratory values (adjusted P, .05), includ-
ing albumin, HB, lactate dehydrogenase, PSA,
sodium, RBC, ALP, calcium, AST, creatinine
clearance, and total protein (Fig 4C). In addition,
ECOG performance status and metastatic liver
lesions differed significantly between the concor-
dant high-risk and low-risk groups (adjusted
P , .05). Use of analgesics and angiotensin-
converting enzyme inhibitors was significantly el-
evatedamongpatients in thehigh-riskgroup (48%
and30%, respectively) comparedwith those in the
low-risk group (15% and 5%, respectively; Fig
4D). A similar trendwas observed in the frequency
of patients with liver metastasis; liver lesions were
reported for only 8% of patients in the concordant
low-risk groupcomparedwith 32% in thehigh-risk
group.

Results from previous DREAM Challenges have
demonstrated that integrating predictions from
multiple top-performing teams produces robust
and often better results than the top individual
teams.31-33 Motivated by these previous results
and the modest correlation of risk scores across
the top performers (Data Supplement), we
developed a weighted average ensemble predic-
tion model using the top seven models, with
weights empirically determined (Data Supple-
ment). Application of the ensemble-based model
to the ENTHUSE 33 trial resulted in an AUPRC of
0.230 (AUROC, 0.599; Fig 5A). The ensemble-
basedmodel outperformed the top individual per-
formers the majority of times (73% to 95% across
the top seven models), and achieved a Bayes
factor . 3 compared with all but one challenge
submission (team Yuanfang Guan, Bayes factor,
2.75; Data Supplement). A cumulative lift chart
analysis of risk predictions that were computed
from the ensemble-based model demonstrated a
14% improvement over the top challenge sub-
mission (Fig 5B). Additional analysis revealed a
statistically significant increase in the area under
the lift ratio curve at 20% (P , .01; Fig 5C).

Toevaluate ourensemble-basedpredictionmodel
within the broader context of clinical trial design,
we conducted a simulation study to compare the
sample size requirements of trials that incorporate
risk estimates for early treatment discontinuation
as a patient inclusion criterion for the treatment
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arm across a range of risk prediction accuracies
(Data Supplement). Results demonstrated that
when patient selection considered the risk of early
treatment discontinuation, fewer patients were
required for the trial without a loss of statistical
power. For example, if patient discontinuation was
not considered, an average of 1,548 patients was
needed to detect an HR of 1.30 at 80% statistical
power and a false-positive rate of 5%; however,
when selection into the trial was based on the
ensemble-basedmodel, the estimated sample size
that was required for detecting an HR of 1.30 was
reduced to 1,306 patients (Data Supplement).

DISCUSSION

A growing number of studies support the clinical
value of prediction models for early treatment
discontinuation on the basis of a patient’s clinical
characteristics.34-37 Our results show that clinical

features can be used to identify patients with
mCRPC who may respond adversely to docetaxel
treatment. Previous prognostic models have fo-
cused on overall survival and identified important
risk factors, including ALP, HB, albumin, PSA,
lactate dehydrogenase, ECOG performance sta-
tus, lesion site, and use of analgesics.10,11 By
using the results from the top seven teams in this
study, we confirmed that these variables are pre-
dictive of poor prognosis and also discovered
several predictive variables that are related to early
discontinuation of docetaxel treatment, including
PSA, RBC, calcium, AST, creatinine clearance,
andtotalprotein (Fig4).Of interest,ASTwasused in
many of the top-performingmodels and was found
to be significantly elevated in the high-risk versus
low-risk groups for discontinuation, which is con-
cordant with previous observations in patients who
were treated with first-line chemotherapeutics in
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non–small-cell lung cancer.37 Whereas additional
investigationsareneeded tounderstand theclinical
andbiologic implicationsof risk factors inpredicting
docetaxel-related AEs, our results present the first
findings, to our knowledge, focused on toxicity-
induced treatment discontinuation as a result of
docetaxel in the treatment of mCRPC.

Although the performance of the challenge and
postchallenge models remained modest and
lacked theaccuracyneeded for immediateclinical
application,38 this study is nevertheless a critical
first step in the development of viable clinical tools.
In particular, the challenge served to initiate the
postchallenge community effort, which led to an
ensemble-based prediction model that recorded
performances greater than any individual model,
demonstrating the power of collaborative commu-
nities as a paradigm for clinical informatics
research.39,40 The results presented here are
the product of 34 independent, international
teams that were focused on addressing a com-
mon,well-definedquestionwithin a short period of
time.

Of importance, this challenge is the first to
establish a performance benchmark for evaluat-
ing models that predict early failure of docetaxel
treatment inpatientswithmCRPC,whichwill serve
as a basis for developing future predictionmodels.
Our results are encouraging and in line with a
growing emphasis on the need for innovative
approaches for clinical trial design.41 Indeed,
we demonstrated through a simulation study that
identifying patients who discontinue treatment
could reduce patient enrollment in clinical trials
by significant numbers, especially when the de-
sired effect size between controls and treatment is
small.

We recognize that since the completion of the four
trials used here, several promising therapies have
emerged that have reshaped the treatment of
mCRPC.42 The predictive models were trained
on AEs that resulted from docetaxel treatment
andwould need to be evaluated against additional
trials andadditional treatments todetermine if they
are generalizable. A second limitation of this study
is that there were no restrictions imposed on the
number of clinical features that were used to de-
velop prediction models. We chose to impose few
restrictions on the model developers with the goal
of determining whether the provided baseline
clinical features could be used in any manner to
build predictive models of treatment discontinu-
ation. As a result, the models that were submitted
to the challengewere not necessarily optimized for
clinical translatability, but focused on addressing
the proposed question.

The DREAM Challenge described here exem-
plifies how open clinical trial data can be used
to explore new questions and highlights the role of
open challenges as a tool for the development and
objective evaluation of clinical models. We also
demonstrated thewillingnessof the researchcom-
munity towork together. It shouldbenoted that the
group of researchers who performed the postchal-
lenge analysis, developed theensemble predictor,
and wrote this manuscript had never worked
together before. The challenges we face in bio-
medical scienceare too great for siloed research to
be the status quo moving forward. Fostering re-
search in this manner is additional evidence that
the biomedical research of tomorrow can and will
be a team effort.
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APPENDIX Prostate Cancer DREAM Challenge Community Members
Kald Abdallah, AstraZeneca, Gaithersburg, MD; Antti Airola, Department of Information Technology, University of Turku,
Turku,Finland;TeroAittokallio,DepartmentofMathematicsandStatistics,University ofTurku,Turku; Institute forMolecular
MedicineFinland,University ofHelsinki,Helsinki, Finland;CatalinaAnghel, Informatics andBiocomputingProgram,Ontario
Institute for Cancer Research, Toronto, Canada; Donna P. Ankerst, Department of Mathematics, Technische Universität
München, Munich, Germany; Helia Azima, Electrical and Computer Engineering Department, Ryerson University, Toronto,
Canada; Robert Baertsch, Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering,
University of California, Santa Cruz, CA; Pedro J. Ballester, Cancer Research Centre of Marseille, Marseille, France; Sage
Bionetworks, Seattle, WA; Chris Bare, Sage Bionetworks, Seattle, WA; Vinayak Bhandari, Ontario Institute for Cancer
Research, Toronto, Canada; Brian M. Bot, Sage Bionetworks, Seattle, WA; Ann-Sophie Buchardt,University of Copenhagen,
Copenhagen, Denmark; Ljubomir Buturovic, Clinical Persona, East Palo Alto, CA; Da Cao, University of Pennsylvania,
Philadelphia, PA; Prabhakar Chalise, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS;
Billy H.W. Chang, Division of Biostatistics, Jockey Club School of Public Health and Primary Care, The Chinese University of
HongKong; JunwooCho,DepartmentofStatistics,KyungpookNationalUniversity,Daegu,SouthKorea;Tzu-MingChu,JMPLife
SciencesDivision, SAS Institute, Cary, NC; R. Yates Coley,Department of Biostatistics, JohnsHopkinsUniversity, Baltimore,
MD; Sailesh Conjeti, Computer Aided Medical Procedures, Technische Universität München, Munich, Germany; Sara
Correia,Departmentof Informatics, CentreofBiological Engineering,University ofMinho,Minho,Portugal; JamesC.Costello,
Department ofPharmacology&ComputationalBiosciencesProgram,University ofColoradoComprehensiveCancerCenter,
University of Colorado, AnschutzMedical Campus, Aurora, CO; Ziwei Dai,Center for Quantitative Biology, PekingUniversity,
Beijing, China; Junqiang Dai, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS; Cuong C.
Dang, Cancer Research Centre of Marseille, Marseille, France; Sage Bionetworks, Seattle, WA; Philip Dargatz, Johannes
WeslingKlinikumMinden,Minden,Germany;SamDelavarkhan,Electrical andComputer EngineeringDepartment, Ryerson
University, Toronto, Canada; Detian Deng, Department of Biostatistics, Johns Hopkins University, Baltimore, MD; Ankur
Dhanik, Regeneron Pharmaceuticals, Tarrytown, NY; Yu Du, Department of Biostatistics, Johns Hopkins University,
Baltimore, MD; University of Copenhagen, Copenhagen, Denmark; Aparna Elangovan, Computer Science Department,
University of Melbourne, Melbourne, Australia; Shellie Ellis, Department of Health Policy and Management, University of
KansasMedical Center, Kansas City, KS; Laura L. Elo, Turku Centre for Biotechnology, University of Turku and Åbo Akademi
University; Department of Mathematics and Statistics, University of Turku, Turku, Finland; Shadrielle M. Espiritu, Fan Fan,
Ontario Institute for CancerResearch, Toronto, Canada;AshkanB. Farshi,Electrical andComputer EngineeringDepartment,
Ryerson University, Toronto, Canada; Ana Freitas, Centre of Biological Engineering, University of Minho, Minho, Portugal;
Brooke Fridley,Department of Biostatistics, University of KansasMedical Center, Kansas City, KS; Christiane Fuchs, Institute
of Computational Biology, Helmholtz Zentrum München; Department of Mathematics, Technische Universität München,
Munich, Germany; Eyal Gofer, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew
University, Jerusalem, Israel; Agnieszka K. Golińska, Faculty of Mathematics and Informatics, University of Bialystok,
Bialystok, Poland; Stefan Graw, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS; Russ
Greiner,DepartmentofComputingScience,University ofAlberta;Alberta InnovatesCentre forMachineLearning,Edmonton,
Alberta, Canada; Justin Guinney, Sage Bionetworks, Seattle, WA; Jing Guo, Cancer Science Institute of Singapore, National
University of Singapore, Singapore; Research and Development Department, Annoroad Gene Technology Co Ltd, Beijing,
China; Pankaj Gupta, Computer Aided Medical Procedures, Technische Universität München, Munich, Germany; Anna I.
Guyer, Department of Biology, Brigham Young University, Provo, UT; Jiawei Han, Department of Computer Science, The
University of Illinois at Urbana-Champaign, IL; Niels R. Hansen, University of Copenhagen, Copenhagen, Denmark; Outi
Hirvonen, Department of Oncology and Radiotherapy, Turku University Central Hospital, Turku, Finland; Barbara Huang,
Ontario Institute for Cancer Research, Toronto, Canada; Chao Huang, Biostatistics and Imaging Analysis Lab, University of
North Carolina at Chapel Hill, NC; Jinseub Hwang,Department of Computer Science and Statistics, DaeguUniversity Daegu,
South Korea; Joseph G. Ibrahim,Biostatistics and ImagingAnalysis Lab,University of North Carolina at ChapelHill, NC; Vivek
Jayaswal, Biocon Bristol-Myers Squibb Research Centre, Bangalore, India; Jouhyun Jeon, Informatics and Biocomputing
Program, Ontario Institute for Cancer Research, Toronto, Canada; Zhicheng Ji, Department of Biostatistics, Johns Hopkins
University, Baltimore, MD; Deekshith Juvvadi, Jeevomics Pvt Ltd, New Delhi, India; Sirkku Jyrkkiö, Department of Oncology
and Radiotherapy, Turku University Central Hospital, Turku, Finland; Kimberly Kanigel-Winner, University of Colorado,
Anschutz Medical Campus, Aurora, CO; Amin Katouzian, Computer Aided Medical Procedures, Technische Universität
München, Munich, Germany;Marat D. Kazanov, Research and Training Center on Bioinformatics, Institute for Information
TransmissionProblems,RussianAcademyof Sciences,Moscow,Russia;SuleimanA. Khan, Institute forMolecularMedicine
Finland, University of Helsinki, Helsinki, Finland; Shahin Khayyer, Electrical and Computer Engineering Department,
Ryerson University, Toronto, Canada; Dalho Kim, Department of Statistics, Kyungpook National University, Daegu, South
Korea;DevinKoestler,DepartmentofBiostatistics,University ofKansasMedicalCenter, KansasCity,KS; FernandaKokowicz,
Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Brazil; Ivan
Kondofersky, Norbert Krautenbacher, Institute of Computational Biology, Helmholtz Zentrum Mu ̈nchen; Department of
Mathematics, TechnischeUniversitätMünchen,Munich,Germany;DamjanKrstajic,ResearchCentre for Cheminformatics,
Beograd, Serbia; Clinical Persona, East Palo Alto, CA; Luke Kumar,Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada; Christoph Kurz, Institute of Health Economics and Health Care Management, Helmholtz
Zentrum München, Munich, Germany; Matthew Kyan, Electrical Engineering and Computer Science Department, York
University, Toronto, Canada; Teemu D. Laajala, Department of Mathematics and Statistics, University of Turku, Turku;
Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Michael Laimighofer, Institute of
Computational Biology, Helmholtz Zentrum München; Department of Mathematics, Technische Universität München,
Munich, Germany; Eunjee Lee, Biostatistics and Imaging Analysis Lab, University of North Carolina at Chapel Hill, NC;
Wojciech Lesiński, Faculty of Mathematics and Informatics, University of Bialystok, Bialystok, Poland; Miaozhu Li,
Biodemography of Aging Research Unit, Center for Population Health and Aging, Social Science Research Institute, Duke
University,Durham,NC;Ye Li,School of ComputerScience,ShanghaiKey LabofDataScience, FudanUniversity, Shanghai,
China; Qiuyu Lian, Tsinghua University, Beijing, China; Xiaotao Liang, School of Computer Science, Shanghai Key Lab of
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Intelligent Information Processing, Fudan University, Shanghai, China;Minseong Lim,Department of Statistics, Kyungpook
National University, Daegu, South Korea; Henry Lin, Department of Computer Science, The University of Illinois at Urbana-
Champaign, IL; Xihui Lin, Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada;
Jing Lu, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI; Mehrad
Mahmoudian, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Roozbeh
Manshaei, Electrical and Computer Engineering Department, Ryerson University, Toronto, Canada; Richard Meier, De-
partment of Biostatistics, University of Kansas Medical Center, Kansas City, KS; Dejan Miljkovic, Computer Aided Medical
Procedures, Technische Universität München, Munich, Germany; Tuomas Mirtti, Institute for Molecular Medicine Finland,
University of Helsinki; Department of Pathology, Helsinki University Hospital, Helsinki, Finland; Krzysztof Mnich, Compu-
tational Centre, University of Bialystok, Bialystok, Poland; Nassir Navab, Computer Aided Medical Procedures, Technische
Universität München, Munich, Germany; Elias C. Neto, Sage Bionetworks, Seattle, WA; Yulia Newton, Department of
Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA;
Thea Norman, Sage Bionetworks, Seattle, WA; Tapio Pahikkala,Department of Information Technology, University of Turku,
Finland; Subhabrata Pal, Centre for Cellular and Molecular Platforms, Bangalore, India; Byeongju Park, Department of
Statistics, Kyungpook National University, Daegu, South Korea; Jaykumar Patel, Department of Computing Science,
University of Alberta, Edmonton, Canada;Swetabh Pathak, Jeevomics Pvt Ltd, NewDelhi, India;Alejandrin Pattin,Computer
Aided Medical Procedures, Technische Universität München, Munich, Germany; Gopal Peddinti, Institute for Molecular
Medicine Finland, University of Helsinki, Finland; Jian Peng, Department of Computer Science, The University of Illinois at
Urbana-Champaign, IL; Anne H. Petersen, University of Copenhagen, Copenhagen, Denmark; Robin Philip, Jeevomics Pvt
Ltd, New Delhi, India; Stephen R. Piccolo,Department of Biology, Brigham YoungUniversity, Provo, UT; Sebastian Pölsterl,
Computer AidedMedical Procedures, TechnischeUniversität München,Munich, Germany; Aneta Polewko-Klim, Faculty of
Mathematics and Informatics, University of Bialystok, Bialystok, Poland; Karthik Rao, School of Medicine, Johns Hopkins
University,Baltimore,MD;XiangRen,DepartmentofComputerScience,TheUniversity of Illinois atUrbana-Champaign, IL;Miguel
Rocha, Department of Informatics, Centre of Biological Engineering, University of Minho, Minho, Portugal; Witold R. Rudnicki,
Faculty of Mathematics and Informatics, Computational Centre, University of Bialystok, Bialystok; Interdisciplinary Centre for
Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland; Charles J. Ryan, Genitourinary Medical
Oncology Program, Division of Hematology & Oncology, University of California, San Francisco, CA; Hyunnam Ryu,Department of
Statistics, Kyungpook National University, Daegu, South Korea; Oliver Sartor, Tulane Cancer Center, Tulane University, New
Orleans, LA; Hagen Scherb, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany; Raghav
Sehgal, JeevomicsPvtLtd,NewDelhi, India; FatemehSeyednasrollah,TurkuCentre forBiotechnology,UniversityofTurkuandÅbo
Akademi University; Department of Mathematics and Statistics, University of Turku, Turku, Finland; Jingbo Shang,Department of
Computer Science, TheUniversity of Illinois atUrbana-Champaign, IL;BinShao,Center forQuantitativeBiology, PekingUniversity,
Beijing,China; Liji Shen,Sanofi,Bridgewater,NJ;HowardSher,SidneyKimmelCenter forProstateandUrologicCancers,Memorial
Sloan-KetteringCancerCenter andWeill CornellMedical College,NewYork,NY;Motoki Shiga,Department of Electrical, Electronic
and Computer Engineering, Gifu University, Gifu, Japan; Artem Sokolov, Department of Biomolecular Engineering and Center for
Biomolecular Science andEngineering, University of California, Santa Cruz, CA; Julia F. Söllner, Institute of Computational Biology,
Helmholtz ZentrumMünchen,Munich, Germany; Lei Song,National Cancer Institute,National Institutes of Health, Rockville,MD;
Howard Soule, Prostate Cancer Foundation, Santa Monica, CA; Gustavo Stolovitzky, IBM T.J. Watson Research Center, IBM,
YorktownHeights,NY; JoshStuart,DepartmentofBiomolecularEngineeringandCenter forBiomolecularScienceandEngineering,
University of California, Santa Cruz, CA; Ren Sun, Informatics and Biocomputing Program, Ontario Institute for Cancer Research;
Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Christopher J. Sweeney, Department of
Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;
Nazanin Tahmasebi,Department of Computing Science, University of Alberta, Edmonton, Canada; Kar-Tong Tan, Cancer Science
Institute of Singapore, National University of Singapore, Singapore; Lisbeth Tomaziu, University of Copenhagen, Copenhagen,
Denmark; Joseph Usset, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS; Yeeleng S. Vang,
Department of Computer Science, University of California Irvine, Irvine, CA; Roberto Vega, Department of Computing Science,
University ofAlberta, Edmonton,Canada;Vitor Vieira,Centre ofBiological Engineering,University ofMinho,Minho,Portugal;David
Wang,Ontario Institute forCancerResearch,Toronto,Canada;DifeiWang,DepartmentofBiochemistryandMolecular andCellular
Biology, Georgetown University Medical Center, Washington, DC; Junmei Wang, University of Texas Southwestern, Dallas, TX;
Lichao Wang, Computer Aided Medical Procedures, Technische Universität München, Munich, Germany; Sheng Wang, De-
partment of Computer Science, The University of Illinois at Urbana-Champaign, IL; TaoWang,Quantitative Biomedical Research
Center,DepartmentofClinicalSciences;Center for theGeneticsofHostDefense,University ofTexasSouthwesternMedicalCenter,
Dallas, TX; YueWang,Biostatistics and Imaging Analysis Lab, University of North Carolina at Chapel Hill, NC; RussWolfinger, JMP
Life Sciences Division, SAS Institute, Cary, NC; ChrisWong,Department of Biomolecular Engineering and Center for Biomolecular
Science and Engineering, University of California, Santa Cruz, CA; Zhenke Wu, Department of Biostatistics, Johns Hopkins
University, Baltimore, MD; Jinfeng Xiao, Center for Biophysics and Quantitative Biology, The University of Illinois at Urbana-
Champaign, IL; Xiaohui Xie,Department of Computer Science, University of California Irvine, Irvine, CA; Doris Xin,Department of
ComputerScience,TheUniversityof IllinoisatUrbana-Champaign, IL;HojinYang,BiostatisticsandImagingAnalysisLab,University
of North Carolina at Chapel Hill, NC; Nancy Yu, Informatics and Biocomputing Program, Ontario Institute for Cancer Research,
Toronto, Canada; Thomas Yu, Sage Bionetworks, Seattle, WA; Xiang Yu, University of Pennsylvania, Philadelphia, PA; Sulmaz
Zahedi,TheInstituteofBiomaterialsandBiomedicalEngineering,UniversityofToronto; iBEST-LiKaShingInstituteofKnowledge,St
Michael’sHospital, Toronto,Canada;MassimilianoZanin, INNAXISFoundation&Research Institute,Madrid,Spain;ChihaoZhang,
NationalCenter forMathematicsandInterdisciplinarySciences,AcademyofMathematicsandSystemsScience,ChineseAcademy
of Sciences, Beijing, China; Jingwen Zhang,Biostatistics and Imaging Analysis Lab, University of North Carolina at Chapel Hill, NC;
Shihua Zhang, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China; Yanchun Zhang, School of Computer Science, Shanghai Key Lab of Data Science,
Fudan University, Shanghai, China; Fang Liz Zhou, Sanofi, Bridgewater, NJ; Hongtu Zhu, Biostatistics and Imaging Analysis Lab,
University of North Carolina at Chapel Hill, NC; Shanfeng Zhu, School of Computer Science, Shanghai Key Lab of Intelligent
InformationProcessing,Centre forComputationalSystemsBiology,FudanUniversity,Shanghai,China;andYuxinZhu,Department
of Biostatistics, Johns Hopkins University, Baltimore, MD.
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