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Abstract 

Systemic phenotyping of mutant mice has been established at large scale in the last 

decade as a new tool to uncover the relations between genotype, phenotype and 

environment. Recent advances in that field led to the generation of a valuable open 

access data resource that can be used to better understanding the underlying causes for 

human diseases. From an ethical perspective, systemic phenotyping significantly 

contributes to the reduction of experimental animals and the refinement of animal 

experiments by enforcing standardisation efforts. There are particular logistical, 

experimental and analytical challenges of systemic large-scale mouse phenotyping. On 

all levels, IT solutions are critical to implement and efficiently support breeding, 

phenotyping and data analysis processes that lead to the generation of high-quality 

systemic phenotyping data accessible for the scientific community. 

 

Introduction 

Phenotypic characterisation of mutant mouse lines has been used as a tool to study gene 

function since many decades. Usually, only a limited set of phenotypic traits is analysed 

in hypotheses-testing studies. Two decades ago, another paradigm of mouse 

phenotyping has emerged - the idea of systemic phenotyping. Large-scale random (ENU-

driven) mutagenesis projects tried to identify novel phenotype-causing mutations by 

characterising every potential mutant for a large set of phenotypes in many organs [1-

3]. Such genome-wide screening required a large panel of test procedures covering the 

whole physiological system of a mouse - thus the term systemic phenotyping. This led to 

the formation of so-called mouse clinics, with the German Mouse Clinic (GMC) as the first 

one established in 2001 [4-8]. Mouse clinics implement standardised breeding and 
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phenotyping pipelines for large-scale production of phenotype data to generate 

evidence-based hypotheses. Applying standardized systemic phenotyping on cohorts of 

mutant mouse strains is also known as "primary screening" [8], describing the fact  of 

providing a first and unbiased, hypothesis-free look for phenotypic deviations in such 

mutants. As a next step, consortia of mouse clinics were formed in projects like 

Eumorphia and Eumodic [9-12] on the European level as well as the on-going 

International Mouse Phenotyping Consortium (IMPC) [13,14] on a global scale. Thus, in 

this review, the term systemic phenotyping also implies a large-scale, high-throughput 

component.  

 

A rationale for large-scale systemic mouse phenotyping 

Systemic phenotyping is no replacement for specific, hypothesis-driven mouse studies. 

Rather, primary screening of mutant mouse lines helps generating new hypotheses by 

providing a full picture of the system-wide effects of a specific genotype mutation. 

Pleiotropic effects (i.e. one gene influences more than one phenotypic trait), which often 

are not visible in hypothesis-driven, focussed studies, can be uncovered this way. This 

has been shown many times by mouse clinics [15-20]. For example, a recent joint study 

showed that spermidine treatment protects the heart from age associated deterioriatons  

and leads to life time extention. The cardioprotective effects of spermidine may be due 

to several underlying mechanisms, including both direct cardiac effects and extracardiac 

(systemic and renal) effects.  Systemic effects by spermidine might involve anti-

inflammatory processes, as well as a blood-pressure-lowering effect [17].  
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Systemic phenotyping can be understood as physiology-wide or alternatively, as a 

phenome-wide approach. On a genome scale, the IMPC aims to produce an 

encyclopaedia of gene function for all mouse genes [14].  

 

Evidently, an open-access resource of well-structured systemic phenotype data can be 

subjected much better to data mining methods in order to identify biological 

mechanisms that cannot be uncovered otherwise. This is impressively supported by a 

series of first publications from the Eumodic and the IMPC projects [21-25]. For 

example, in order to study sexual dimorphism, IMPC scientists analysed up to 234 

characteristics of more than 50,000 mice, including over 40,000 mutant mice. It was 

shown that sex influences the prevalence, course and severity of the majority of 

common diseases and disorders [24]. The IMPC provides full public access to the 

generated results, including data visualisation tools and machine-to-machine interfaces 

(APIs) [26]. Phenotypic similarities between inherited human diseases and knockout 

mouse lines are presented at the IMPC webpage and can be used to find suitable disease 

models for clinical researchers [27].  

Due to the rather large panel of tests applied on a single animal, systemic phenotyping 

requires a well-defined pipeline - the composition as well as the order and time point of 

every test procedure. An example of such a primary screening pipeline from the GMC is 

shown in table 1.  

Standardisation also applies on phenotyping methods. In the IMPC, IMPReSS 

(International Mouse Phenotyping Resource of Standardised Screens, 

https://www.mousephenotype.org/impress), is a database of pipeline definitions and 

Standard Operation Procedures (SOPs) for all tests, including lists and definitions for 

every measured test parameter (e.g. body weight) and metadata (e.g. experimenter). 
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Such standardisation efforts ensure good scientific practice, improve reproducibility, 

enhance data quality and make data more suitable for common analysis methods [28].  

From an animal welfare perspective, systemic phenotyping directly means reduction of 

experimental animal use, as several hundred phenotypic parameters can be measured 

on an individual animal.  

 

Systemic phenotyping as a process 

Mouse clinic operations can best be described and handled in form of modular 

processes. A generic mouse clinic business process model has originally been developed 

at the GMC, but can also be applied to other mouse clinics, as shown in [29]. Large-scale 

mouse phenotyping requires a well-organised mutant generation and breeding pipeline 

to provide enough age-matched mice of desired genotype for phenotyping. Figure 1 

shows a simplified version of such a process model as a flowchart.  

 

The importance of electronic data management 

Systemic phenotyping produces large amounts of data, which need to be highly 

structured to be suitable for subsequent software-assisted data processing. For instance, 

any measured parameter (e.g. blood glucose concentration) needs attributes like data 

type (float, integer, text) or unit (mmol/l, g). Also demographic data (sex, genotype, date 

of birth) is captured and stored for every mouse.  

At the GMC, 695 test parameters and 410 metadata parameters (listed in IMPReSS, see 

above) are captured in 26 procedures in the IMPC phenotyping pipeline. These numbers 

show that spread sheet based data management is not possible here.  
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The IMPC data release 5.0, published 2 August 2016, includes data from 3532 mutant 

lines (80.781 mice) and 24.023 wild type control mice.  Total data is composed of 

8.107.737 categorical, 5.938.585 unidimensional and 111.319 text data points as well as 

8.772.128 time series and 270.804 image records 

(http://ww.mousephenotype.org/data/release). These figures illustrate the scale and 

complexity of large-scale systemic phenotyping data. 

The use of electronic Laboratory Information Management Systems (LIMS) is critical for 

capture and management of all phenotyping and demographic data. LIMS can support 

complex logistics processes with planning tools, so that every test is timely applied to a 

particular mouse according to the pipeline.  

Customised LIMS have been developed at different phenotyping facilities, which is 

described and discussed in detail in [29].  

 

Standardised quality control and data analysis 

In large-scale systemic phenotyping, data needs to undergo standardised procedures for 

quality control (QC) due to the sheer amount of data and the possibility for errors. In the 

IMPC, a thorough QC process has been established at the Data Coordination Centre 

PhenoDCC [30]. The process involves automated and manual checking of data 

consistency and out of range data points as well as a ticket system to track possible data 

quality issues. Such massive data quality control and standardisation efforts are usually 

not possible in individual research labs.  

Automated data analysis is crucial for working with large-scale phenotyping data. At the 

GMC, standardised R scripts [31] for data visualisation and statistics are developed for 
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every single phenotyping test and routinely applied to the data in order to determine 

genotype-related phenotype deviations. Another such toolkit, PhenStat, has been 

developed by the IMPC consortium for the same purpose [32].  

Systemic phenotyping is also challenged with the n<<p problem, because a large number 

of parameters (p) is measured on a single mouse, while the sample size (n) is much 

lower. In the standard pipeline of the GMC, a cohort size of n=15 animals per sex and 

genotype is used (15+15 male/female mutants, 15+15 male/female controls), while in 

the IMPC pipeline, this number is lower (n=7).  Sample size n directly affects the α and β 

error probabilities (false positives and false negatives). Keeping them low demands for 

increasing the sample size, which would result in higher statistical power, but also 

higher costs and animal use. Thus, the currently chosen numbers for n are a trade-off 

between these opposing requirements. 

A further statistical challenge is the multiple testing problem. Simultaneously testing 

large numbers of parameters with inferential methods, requires α adjustment to avoid 

inflation of false positive detection rate.  

Minimising metadata variability is another requirement. For instance, mutant and 

control mice should be measured by the same experimenter. Otherwise, a positive result 

could just indicate a possible experimenter influence rather than a genotype effect. 

Naturally, procedures that use a human scoring step are most prone to experimenter 

bias, although this can be reduced by experimenter training and procedure 

standardisation. While human scoring is not part of every test procedure, experimenter 

metadata is still routinely captured to allow retrospective studies of such influence on a 

growing data pool. Thus, experimenter bias can routinely be monitored and corrected 

for. 
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Standardisation of phenotyping results - the use of ontologies  

Direct raw data comparison is not always possible, since metadata may differ between 

mouse clinics and accordingly, shifts in data ranges can be observed. In such cases, 

mutant and control mice usually exhibit a similar shift and statistical analysis still leads 

to comparable results between clinics. However, a qualitative results level ("phenotypic 

difference yes/no?") is required in order to facilitate data comparison. 

Ontologies provide a perfect solution here. Ontologies are hierarchically organised 

structures of controlled vocabulary. The Mammalian Phenotype Ontology (MP) [33] 

currently includes almost 13.000 classes to describe any mammalian phenotype in a 

standardised way, e.g. "MP:0005559 increased circulating glucose level". Providing 

unique IDs, MP terms allow systematic and programmatic exploitation of phenotyping 

result databases [34]. The assignment of a distinct MP term to a mutant mouse line is 

based on statistical analysis of raw data to make a binary decision between "MP term 

assigned" and "MP term not assigned".  

The possibility of cross-linking phenotyping results with other public databases allows 

mapping of mouse phenotyping results to phenotyping results of other species, e.g. the 

Human Phenotype Ontology (HPO) [35,36]. Building such "data bridges" from biology to 

medicine have been subject of the recent EU-funded BioMedBridges project 

(http://www.biomedbridges.eu) and is followed up in the CORBEL project 

(http://www.corbel-project.eu).  
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Working with systemic phenotyping data - interactive, data mining and 

multivariate approaches 

While the use of ontologies requires bioinformatics expertise, a much simpler and even 

more intuitive approach is to apply so-called phenomaps, an adaptation of the heatmap 

visualisation well-known from the transcriptomics field. In this case, the phenotyping 

results are drastically reduced to a qualitative yes/no statement. As shown in figure 2, a 

simple matrix of mutant lines vs. physiological category allows intuitive identification of 

mutant mouse lines of interest for the non-expert user. An application of phenomaps is 

the use of clustering methods to identify mutant mouse lines that show a similar overall 

or partial phenotype profile.  

 A still very intuitive, however quantitative approach is using the full raw data set. It can 

be applied for interval-scaled phenotype parameters. For a given parameter, the mean 

value of mutants is divided by the mean value of control animals to form a 

mutant/control ratio. Mutant/control ratios from many lines can be plotted as a 

histogram, as shown in figure 3. In the resulting distribution, mutant/control ratios near 

1.0 correspond to "no genotype-related phenotype deviation", whereas mutant/control 

ratios at the left and right margins of the histogram mean "decreased/increased 

parameter phenotype". Being quantitative, this allows applying an individual threshold 

to factor in biological relevance. For example, this method can be used to rapidly identify 

mutant mouse lines showing an extreme deviation from blood glucose levels compared 

to control animals by selecting lower and upper 5% from a distribution of several 

thousand mutant lines - these can be considered candidate genes for a "low/high 

glucose" phenotype and put in a gene set enrichment analysis. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

More advanced data mining methods include data integration approaches to link 

phenotype information with other public databases (e.g. Gene Ontology (GO) [37] or 

KEGG [38,39]) and then apply data mining algorithms or gene set enrichment analysis 

(GSEA). For instance, PhenoDigm (Phenotype comparisons for DIsease Genes and 

Models) [40] uses an association rule mining approach to automatically integrate data 

from a variety of model organisms using several scoring methods to identify only 

strongly data- supported gene candidates for human genetic diseases. The PhenoDigm 

automated pipeline and manual curation lead to the analysis of the frequency of IMPC 

models that correspond to Mendelian Disease-Genes  in OMIM or Orphanet. 650  rare 

disease-gene associations were identified leading to valuable mouse models for these 

genetic diseases, published in Meehan et al., 2017 [25]. 

Phenotypic readout for a given disease or syndrome typically involves several 

phenotypic parameters. A well-known example is the metabolic syndrome, which 

involves abdominal obesity, elevated blood pressure, plasma glucose, serum 

triglycerides and low HDL levels [41,42]. Multivariate methods are therefore needed to 

address the large-scale analysis of such phenotypic patterns and comorbidity. Clustering 

and heatmap displays of phenotype data, as performed in [22], support the visual 

identification of such patterns. However, this approach has limitations, e.g. the handling 

of missing data.  

In general, missing data is frequently observed in large-scale mouse phenotyping. 

Reasons are: phenotyping may not have been performed due to animal welfare 

procedures. Far more frequent are scheduling issues: as every test is scheduled for a 

particular age of mice, no data can be taken if a test is skipped due to a broken 

phenotyping device. However, a certain missing data portion is counterbalanced by the 
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advantage of having a large, consistent data set that cannot be obtained by collecting 

data from individual labs in a meta study approach. 

 

Conclusions 

The complex logistics to organise high-throughput phenotyping, to manage large data 

sets and to ensure standardized and transparent QC and analysis of the data, is a major 

challenge in large-scale systemic phenotyping performed by mouse clinics. Electronic 

data management solutions support these processes. Large-scale data sets obtained in 

well-structured, quality controlled and standardized format enable further and 

comprehensive analysis of systemic phenotyping data, even across different centres. 

Employing data analysis tools linking phenotypic traits to known biological pathways 

and other information in public databases, aims for the discovery of disease-associated 

network of genes that can be investigated as a next step in more depth. Importantly, 

these data sets are the prerequisite to reach a new level in combining data sets from 

different species and disciplines to unravel the complexity of health and disease. 

Currently, about 1/4 of all mouse genes have phenotyping data in the IMPC project. 

However, phenotyping data collection continues while at the same time, automation 

(e.g. histological image analysis), data integration and analysis methods (e.g. machine 

learning) are further developed, investigated and improved. During the next years, this 

will result in a high quality and highly annotated comprehensive phenotyping data set 

for every mouse gene. The complete, publicly available data set and the associated 

methods and tools will provide a valuable ressource for big data projects involving 

mammalian gene function.  
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Figure and Table Legends 

 

Table 1 

Overview of the primary phenotyping pipeline performed by the German Mouse 

Clinic 

The tests of the primary phenotyping pipeline cover all relevant organ systems in order 

to have a full picture of disease-associated alterations a deficient gene might cause in the 

organism. The first column ("Screens") names the principal physiological field 

respectively the organ system, the second column ("Methods") specifies the applied 

phenotyping procedure, e.g. IpGTT (Intraperitoneal glucose tolerance test). Columns 

3-11 indicate the age (in weeks) in which mice are subjected to the particular procedure 

(marked by "x"). For example, IpGTT is applied at age 14 weeks. Optional tests are 

presented in light grey.  
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Figure 1 

Systemic phenotyping as a process 

Systemic phenotyping is not an isolated task, but a complex process embedded in a 

whole process workflow. Mouse clinic operations can be described and handled in form 

of modular processes to cope with the complex logistics needed for the different areas. 

In the top row, basic processes of systemic phenotypic are depicted in boxes, connected 

by arrows. In the middle row, processes are described in more details, starting from 

timely production of age-matched mutant and control cohorts, performing the actual 

phenotyping procedures according to the pipeline and finally the assignment of MP 

terms after data quality control and analysis. Throughout the whole process, tight 

scheduling and tracking of activities and resources is necessary (bottom row) in order to 

identify workflow problems and to ensure continuous data flow.  
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Figure 2 

Phenomap of the German Mouse Clinic 

The phenotyping results of mutant mice analysed at the German Mouse Clinic are 

provided to the scientific community by presenting them in the form of a so-called 

phenomap. A tabular phenomap provides a very condensed qualitative summary of 

phenotypes for a set of mutant mouse lines, details of which are given in the first three 

columns. The other columns represent the investigated physiological fields respectively 

organ systems. The colour fields in the matrix depict the qualitative findings of the tests 

performed (clear/no/subtle phenotype) according to the legend (top). A graph symbol 

indicates a link to more detailed graphs and data. For example, clear genotype-related 

differences could be identified in Cap2-deficient mice in the behaviour and neurology 

fields (red cells, bottom row). Filters (table header row) can be used to identify mutant 

lines that show a particular phenotype of interest in one or more physiological fields. 
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Figure 3 

Mutant/control ratio histogram as a tool to identify phenotypic hits in big data 

sets 

This quantitative approach can be applied for interval-scaled phenotype parameters. 

For each parameter, the ratio of the mean value for mutant and control mice is 

calculated. Performed on a large number of mutant lines, this can be used to produce a 

histogram with "Mutant/Control Ratio" on the x-axis and the respective "Number of 

mutant lines" on the y-axis. Please note: the shown histogram is based on simulated 

data. Ratios around 1.0 show no strong difference between mutants and controls and 

the respective mutant lines are therefore classified as "normal phenotype" (top middle). 

Defined thresholds (dashed vertical lines) are used to identify mutant lines showing an 

unusual high or low ratio (top left/top right) for a given parameter of interest. The 

definition of upper and lower thresholds can be based on different criteria, e.g. prior 

knowledge about biological relevance or mere statistical considerations (percentile-

based thresholds). 
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  Age (weeks) 9 10 11 12 13 14 15 16 17 18 19 

Screens Methods                       

Behavior Open Field X                     

  Acoustic startle response & PPI   X                   

Neurology Modified SHIRPA, grip strength X                     

  Rotarod   X                   

Clinical Chemistry Clinical Chemistry after fasting     X                 

Nociception Hot Plate       X               

Dysmorphology Anatomical observation       X               

Allergy Transepidermal water loss (TEWL), body 

surface temperature 

      X               

Energy 

Metabolism 

Indirect calorimetry, NMR         X             

Clinical Chemistry IpGTT           X           

Cardiovascular Awake ECG/Echocardiography             X         

Eye Scheimpflug imaging, OCT, LIB, drum               X       

Neurology ABR (Auditory brain stem response)                 X     

Dysmorphology X-ray, DEXA                 X     

Energy 

Metabolism 

NMR                   X   

Clinical Chemistry Clinical Chemical analysis, hematology                     X 

Immunology FACS analysis of PBCs                     X 

Allergy BIOPLEX ELISA (IG concentration)                     X 

Steroid Metabolism, 

optional 

Corticost., Androst., Testosterone                     X 

Lung Function, 

optional 

Lung function measurements                     X 

Molecular 

Phenotyping 

Expression profiling                     X 

Pathology Macro & microscopic analysis                     X 
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Abbreviations: PPI – prepulse inhibition; SHIRPA - SmithKline Beecham, Harwell, Imperial College, Royal London Hospital, phenotype assessment; NMR – nuclear magnetic resonance;  
IpGTT - intraperitoneal glucose tolerance Test; ECG – electrocardiography; OCT - optical coherence tomography; LIB - laser interference biometry ; DXA - dual-energy X-ray absorptiometry; 
FACS -  fluorescence- activated cell sorting; PBC – peripheral blood cell ; IG - immunoglobulin 
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Production Phenotyping QC Analysis Annotation

N mutants

N controls

MP terms

Scheduling 

Tracking/Controlling

time-matched test-procedures
following 
pipeline

Quality control statistics
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Highlights 

• Importance of standardized large-scale phenotyping of mice 

• High-throughput phenotyping as a logistic challenge 

• Data management solutions and standardised procedures for quality control are 

crucial 

• Working with systemic phenotyping data 

• Systemic standardized phenotyping data of mice as basis for translational 

approaches 

 


