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Since its identification in 2000, the interest ofesitists in the hepatokine fibroblast growth
factor (FGF) 21 has tremendously grown, and sihains high, due to a wealth of very
robust data documenting this factor’s favorable&# on glucose and lipid metabolism in
mice. For more than ten years now, inteimns@vo andex vivoexperimentation addressed the
physiological functions of FGF21 in humans as \aslits pathophysiological role and
pharmacological effects in human metabolic dise@Bis work produced a comprehensive
collection of data revealing overlaps in FGF21 esgion and function but also significant
differences between mice and men that have to bsidered before translation from bench
to bedside can be successful. This review sumnsawbat is known about FGF21 in mice
and humans with a special focus on this factorfs i glucose and lipid metabolism and in
metabolic diseases, such as obesity and type-2téisimellitus. We highlight the
discrepancies between mice and men and try to leictheir underlying reasons.

This article summarizes what is known about FGF21 in mice and humans with a special focus on this
factor’s role in glucose and lipid metabolism and in metabolic diseases.

Essential Points

* Fibroblast growth factor (FGF) 21 is a liver-dedl circulating hormone (hepatokine)
with very robust favorable effects on glucose apiiImetabolism in mice.

» First clinical trials with FGF21 analogues in ¢y@ diabetic patients revealed
improvements in plasma lipids, but also an unexqebleck of glucose-lowering
efficacy.

» Differences between mice and humans in FGF24&1& expression and physiological
functions may underlie unexpected clinical findings

* A better understanding of FGF21's role in humhggology and pathophysiology will
facilitate the translation of experimental findirfigsm bench to bedside.



Endocrine Reviews; Copyright 2017 DOI: 10.1210/er.2017-00016

* In both mice and men, FGF21 exerts adverse sffatbone mass and density, and this
has to be taken into account in the developmeRGH21-based therapeutics.

Abbreviations

AMPK — AMP-activated protein kinase; apo — apolipmpin; ATF — activating transcription factor;
ATGL — adipose triglyceride lipase; BAT — brown pdse tissue; BMAL — brain and muscle aryl
hydrocarbon receptor nuclear translocator-like; BMlody mass index; CLOCK — circadian
locomoter output cycles protein kaput; CoA — coengyA; CPT — carnitine palmitoyltransferase;
CREB - cAMP-response element-binding protein; CRtbricotropin-releasing hormone; DPP —
dipeptidyl peptidase; E4BP — E4-binding proteinr Egarly growth response; elF — eukaryotic
translation initiation factor; ER — endoplasmidaetlum; ERK — extracellular signal-regulated kinase
FAS — fatty acid synthase; FFA — free fatty aciiS§ — fibroblast growth factor; FGFR — FGF
receptor; Fox — forkhead box; GH — growth hormdBeUT — glucose transporter; HDL — high-
density lipoprotein; HFD — high-fat diet; HPA — hothalamic-pituitary-adrenal; HSL — hormone-
sensitive lipase; IGF — insulin-like growth factt&FBP — IGF-binding protein; LDL — low-density
lipoprotein; MAPK — mitogen-activated protein kieadHO — metabolically healthy obese; mTOR —
mammalian target of rapamycin; MUHO — metabolicalhhealthy obese; PEG — polyethylene glycol;
PGC - PPAR coactivator; Pl — phosphoinositide; PPAR - pesorie proliferator-activated receptor;
ROR - retinoic acid receptor-related receptor;-Ssirtuin; SNP — single nucleotide polymorphism;
SREBP - sterol regulatory element binding prote&3T,AT — signal transducer and activator of
transcription; STK — serine/threonine kinase; T2@ype-2 diabetes mellitus; UCP — uncoupling
protein; WAT — white adipose tissue

l. Introduction

With a prevalence of about eight percent in adtyfse-2 diabetes mellitus (T2D) is the most
prominent metabolic disease worldwide (WHO Facesigabetes at
http://www.who.int/mediacentre/factsheets/fs312/dime hallmark of the disease, i.e.,
hyperglycemia, results from insulin resistancei\adr, skeletal muscle, adipose tissue, and
brain and a concomitant failure of pancregiticells to compensate for this resistance by
increased insulin secretion (1). Current therapeajitions aim at reducing insulin resistance
(metformin, thiazolidinediones), enhancing inswdatretion (sulfonylureas, meglitinides,
dipeptidyl peptidase [DPP] IV inhibitors, incretimmetics), or excreting glucose via the
urine (sodium/glucose cotransporter 2 inhibitopsik, a progressive loss pfcell function

and mass is often observed (2). Eventually, thealtatio to normalize blood glucose is the
replacement of endogenous insulin by injectionwohln recombinant insulin or insulin
analogues. New insights into the molecular pathdraeisms behind insulin resistance and
B-cell failure point towards a crucial role for alisealanced humoral crosstalk between
metabolic relevant tissues (e.g. adipose, museks)l Highly relevant players and promising
targets for novel therapeutic strategies in thisstalk were recently identified, among them
fibroblast growth factor 21 (FGF21) (3-5). FGF&knh endocrine factor secreted by liver
acting as a metabolic regulator. The interest ilrEGs metabolic effects was aroused by the
emergence of FGF21 as hit in a screen testingteelcpeoteins of unknown function for
stimulation of glucose uptake in murine 3T3-L1 adigtes in an insulin-independent manner
(6). Based mainly on preclinical studies in micewgimg improvements in glucose- and lipid
metabolism, FGF21 emerged as an interesting nedidzte for T2D treatment, and several
pharmaceutical companies made huge efforts tohmutdea into practice. However, the
glucose-lowering potential of FGF21 in humans heenbquestioned.

Il. Molecular biology of FGF21 in mice and men

A. FGF21 gene and gene products

In 2000, murine and human FGF21 were identified @ratacterized at the cDNA level by
Nishimuraet al. (7). The murine gene is located on chromosomensists of three coding
exons, and gives rise to a single transcript thabdes a pre-protein of 210 amino acids (aa)
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including an N-terminal signal peptide of 28 aae Becreted form has an apparent molecular
weight of ~23 kDa (182 aa). The human orthologarsegresides on chromosome 19,
likewise consists of three coding exons (and omecuanling 5’-flanking exon), and gives rise
to two transcripts due to usage of alternative miems. Both transcripts encode the same
pre-protein of 209 aa including a signal peptide®fBa. Human FGF21 shares 146 aa with
the murine orthologue (79% identity) and the sextébrm has an apparent molecular weight
of ~23 kDa (181 aa).

B. FGF21 and the FGF superfamily

Depending on the species, between 19 and 27 FGIsgegre identified in vertebrates (8). In
mice and humans 22 genes (FGF 1-23) exist whiclbeghylogenetically grouped into
eight subfamilies (8). Functionally, FGFs may beugred into three subfamilies: Intracellular
FGFs (FGF 11-14) that lack a signal peptide, FG&&H19 (murine orthologue: FGF15) and
FGF21) with low heparin-/heparan sulfate-bindingagzties indicating release into
circulation and systemic action, and the remaii@d-s with high heparin-/heparan sulfate-
binding capacities thus potentially mainly actingan auto/paracrine manner (9).

C. FGF 21 receptors and their signaling

At target sites, FGF21 binds and activates memtfettee FGF receptor (FGFR) family of
receptor tyrosine kinases. Mammals have seven pyiF@FR isoforms (1b, 1c, 2b, 2c, 3b,
3c, and 4) (10). FGFR activation by FGHAYitro andin vivois crucially dependent di
Klotho (KLB), an FGFR-binding single-pass transmeanie protein (11-15). Accordingly, a
clear preference of FGF21 for FGFR1c-KLB and FGFRBB complexes have been
demonstrated (13,16). Activation of these compldeBGF21 leads to a plethora of rapid
signaling events (review of general FGF signalibf)). Among these, the hitherto best
described events are phosphorylation of FGFR saflesix and subsequent activation of the
mitogen-activated protein kinase (MAPK) cascadéuniog Raf-1 and extracellular signal-
regulated kinases (ERK) 1 and 2 (6,11,18-21). &ateyn of FGF21 with FGFR4-KLB is
very weak and does not induce ERK phosphorylatl®n2@).

D. Tissue specificity of FGF21 and FGF21 receptor gene expression

In the initial paper discovering FGF21, Nishimetaal. reported predominant expression of
the murine FGF21 gene in liver and lower mRNA Iswedko in thymus (7). This preliminary
picture has been modified and several studies teghoalthough too a much lower extent,
expression of FGF21 mRNA also in pancreas, tegéestrointestinal tract, brain, skeletal
muscle, brown and white adipose tissue (BAT and \M&$pectively) (23,24). In humans,
the FGF21 gene under basal conditions is considerbd nearly exclusively expressed in
liver, and weaker signals were shown in the bra#) énd, according to unpublished results,
in the pancreas (25) (Figure 1).

Since FGFR1 and FGFR3 are rather ubiquitously egaain mice and humans,
FGF21's target organ selectivity is probably detesd by the restricted tissue expression of
B-Klotho: in keeping with a previous report by #bal. (26), large-scale RNA sequencing
data reveal that the murifieKlotho gene is predominantly expressed in livangreas, and
adipose tissue (no KLB expression in muscle) (Rdhumans, majop-Klotho expression
sites are, beyond liver and adipose tissue, begasbone marrow. Only weak expression
signals are observed in human pancreas (24)cdtriseivable that differences at fhlotho
expression level between mice and men may conéritausome of the divergent findings
regarding FGF21’s metabolic actions describedHerttvo species.

E. FGF21in thecirculation
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Serum FGF21 concentrations measured in chow-fed miege from 0.1 to 1 ng/mL (19,27—-
29) depending on the strain tested, the age ahibe, and the assay used. Serum
concentrations of healthy humans exhibit markeertiidividual variation ranging from 5
pg/mL to 5 ng/mL (30-34).

As to FGF21’s stability in blood, only limited irmimation is available for the half-life of
human recombinant (non-glycosylated) FGF21 withhdly deviating data ranging from 20
min to 2h in different mice strains, rats and cyiotgns macaques (18,35-37). Thus, a half-
life of less than 2h can be assumed for human rbgwnt FGF21. The vivo stability of
endogenous glycosylated FGF21 in animals and humansrently unknown. However, as
glycosylation generally confers relative resistatacproteolysis, we anticipate that the
physiologically occurring FGF21 form has an appbbi longer half-life in the circulation
compared to the bacterially produced recombinautiepr.

Very recently, Zheret al. characterized major cleavage events during prgieol
inactivation of human FGF21 in the circulation (3Bese include two N-terminal cleavage
events after proline residues 2 and 4 catalyze@PiyIV and/or fibroblast activation protein
(FAB) and one C-terminal cleavage event afteripeol 71 probably catalyzed by FAB (39).
As the C-terminus is important f@rKlotho binding and overall activity of FGF21 (4Q)4
inhibitors targeting FAB may increase full-lengéctive FGF21 blood concentrations. This
however remains to be tested.

lll.  Regulation of FGF21 in mice and men

In humans, FGF21 is considered nearly exclusivedgpced by liver and data from liver-
specific knockout animals suggest that circulat@f~21 in mice mainly derives from liver
(42). FGF21 is, however, also expressed in sekesametabolic tissues (see section II,
paragraph D), and certain physiological stimuli @athological conditions provoke
considerable increments in these extrahepatic sgjne sites which may influence this
hormone’s circulating levels. Additionally, thereaynbe metabolically relevant roles of
locally produced FGF21, e.g., in pancreas, brausale or adipose tissue (43,44).

A. Nutritional regulation

Nutrient deprivation/fasting, lipid intake via suicly, and consumption of ketogenic diets
(i.e. high-fat low-carbohydrate diet designed taudiate the fasting state) result in several-
fold raise of FGF21 serum levels in mice which seéonbe a result of increased blood
concentrations of free fatty acids (FFA) which eated PPAR-dependent FGF21 gene
induction in liver (29,45-47). Contrasting the FGR&duction by FFA in mice, elevation of
plasma FFA in humans does not increase, but rddmease circulating FGF21
concentrations as shown in two larger studies afthg volunteers during a lipid tolerance
test (48,49). Furthermore, humans demonstrate @ imtgy-individual range of FGF21 levels
and the effect of fasting (up to 48h) on FGF21 tlooncentrations are not consistent, either
showing no effect, only modest increased levelsven a drop in FGF21 levels
(30,31,33,50). One explanation for this discrepdmetyveen mice and men might be the
overall higher metabolism of mice as compared witn. Accordingly, elevations of FGF21
are only seen in humans after prolonged fastingpggiof at least seven days (30,31). In line,
mice fasted for 8h demonstrate no difference in EG&xpression (29). Therefore, the
physiological role for human FGF21 in adaptiontenang is still under debate.

Although the contribution to circulating FGF21 lé&/es questionable, starvation
regulates FGF21 expression in extrahepatic tisggree and protein expression of FGF21 in
the pancreas are reduced upon fasting in mice Bzljcreatic FGF21 expression, however,
does supposedly not contribute to circulating levAlrecent murine study rather suggests
that pancreatic FGF21 acts in an autocrine/paraecnanner as a pancreatic secretagogue to
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prevent ER stress/protein overload (43). Human diaastill missing. Muiset al.
demonstrated that fasting and high-fat diet (HFDybably via FFA-mediated PPAR
activation, induce the FGF21 gene in murine adipissee (52). Although not a predominant
expression site, FGF21 is upregulated in skeletelate upon fasting (53). Jiaegal.
investigated FGF21'’s role in testes and found ihatpntrast to liver, testicular FGF21
expression is not regulated by fasting (54). Ragarthymic FGF21 (major expression site
in mice), a recent mouse study demonstrates teadb-related decline in thymic FGF21
expression could be restored by caloric restrictt®).

Sugar ingestion (high-carb diets), in particulaictose, acutely provokes changes in
FGF21 blood levels and hepatic expression in nmiceraen (56—60). Within two hours after
fructose ingestion, FGF21 concentrations raisdddtin humans (60) and after 1 hour in
mice a 2-fold increase of FGF21 has been repontbth seems to be dependent on
ChREBP (58,59). Glucose led only to a modest atelydd increase in FGF21 levels in
humans (60). The robust effect of fructose on FGE2&ls in mice and men is intriguing.
Together with mouse data showing FGF21-inducedrasgmn of sugar ingestion (59) and
that sweet preference induced by FGF21 is depermuaetB expression in the brain (61),
provide evidence for a novel negative feedback @opg the liver-brain axis regulating
sugar consumption. A similar mechanism by which EG&cts on the reward system in the
brain to regulate food intake has now been indecatdthumans (62).

Ketogenic diet (KD) strongly induces FGF21 in liard increases its circulating levels
in mice (29). In humans (healthy and obese/diapeid does not increase FGF21 serum
levels (30,33,50) and even decreases its levalbase patients when KD was combined with
low calorie intake (63). The observation that, upmrg-term fasting, ketone bodies appear in
the circulation days before FGF21 levels begirige (30) additionally argues against a
regulating role for FGF21 in ketogenesis in hum&nse has to consider, however, that KD
used for mouse studies have lower protein conkemt tontrol (chow) diet (9.5 vs 23.5 %
wt/wt) (29,64—66) whereas human KD are usually wetitrolled for adequate protein
content and sometimes are even combined with Higgeip intake (63). Accordingly,
supplementation of the murine KD with methionineast completely prevented the KD-
induced FGF21 induction (67). Several studies destnated that hepatic FGF21 production
is robustly induced by amino acid deprivation anatgin restriction, both mediated by the
elF20-ATF4-CHOP axis of the endoplasmic reticulum (ERgSs response in mice (66,68—
71). Just as in mice, FGF21 blood levels increaseimans in response to dietary protein
restriction (1.7-fold after 4 weeks (66) and ~afafter 6 weeks (72)). Although the human
FGF21 gene was identified as a target for ATF4elhaulture experiments (71), the
involvement of the ER stress involving etFATF4 pathway in vivo was not addressed in
humans yet. Recently, with a nutritional modelitgtform using data of mice that were fed
with one of 25 diets varying in protein, carbohydrdat, and total energy density, a major
role for low protein intake driving FGF21 expresggecretion has been demonstrated with a
maximal FGF21 induction when low protein contenswaupled to high carbohydrates (57).
It appears that FGF21 levels and its metabolioastare strongly coupled to the
macronutrient composition of the mouse diet, areolzion that should be considered in
human studies where diet cannot be controlledghs &is in murine studies.

B. Exercise

Interestingly, Kimet al.reported that acute exercise elevates FGF21 iweds in mice and
men, and this was associated with a rise in cititigdFA and enhanced hepatic expression
of FGF21, PPAR, and ATF4, but not with altered FGF21 gene exjpoess skeletal muscle
or adipose tissue (73). Thus, exercise promoteatitelpGF21 production probably via
adipose tissue lipolysis and subsequent fatty sigisling and ER stress in liver. In humans,
different exercise regimens stimulate FGF21 prddadn liver and increase blood FGF21
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(74-77). Hansent al.demonstrated that circulating glucagon which rth@sng exercise
enhances hepatic FGF21 production in humans (7&)diating a muscle-pancreas-liver
axis being responsible for elevated FGF21 bloodl&upon exercise.

C. Hormonal regulation

As mentioned above, hepatic FGF21 expression aodlaiing FGF21 levels are increased
by glucagon (via AMPK and PPARIn mice and humans (78,79). Additionally, insulin
moderately increases the FGF21 blood concentratiarice under hyperinsulinemic-
euglycemic clamp technique (80-83). In line, hurskeletal muscle does express
appreciable amounts of FGF21 under hyperinsuling&#a84). This increased expression,
however, does not significantly contribute to cleding FGF21 levels (82,84). Interestingly,
human data indicate suppression of FGF21 secrgbamliver by insulin which contrasts
mouse data showing no difference in FGF21 levelwan-specific insulin receptor knockout
(LIRKO) mice (85). Growth hormone (GH) acutely inases FGF21 serum levels (2.5 fold
after 2h, 10-fold peak at 6h) in mice, but thisrsedo be dependent on adipose lipolysis (86).
In healthy humans, GH had no acute effect on sétGiR21 levels (after 3h) (87). In mice,
additional hormonal stimuli of hepatic FGF21 exgres include thyroid hormones (TH) (via
TH receptom, retinoid X receptor, and PPAIR(88,89) and glucocorticoids (via
glucocorticoid receptor) (90). The effect of thésemones on FGF21 levels in humans has
not been addressed in detail so far. No differem¢&sF21 in hyperthyroidism or after
treatment with the liver-selective TH analogue éppme argues against regulation of
FGF21 levels by thyroid hormones in humans (91).

D. Circadian rhythm

A circadian rhythmicity of circulating FGF21 withdh levels during the fasting state and
low levels during feeding has been reported fohpotice and men (92,93). Anderssral.
reported circadian rhythmicity of human FGF21 blémekls during a 72-hour fast with peak
levels at 02:30 a.m. and nadirs at 08:30 a.m. @& }there are three circadian-responsive
elements (E-box, D-box, and a ROR-response elesitentwhich are hallmarks of a classical
circadian-regulated gene are located in the FGFahegtor (93,95,96), a direct control of
FGF21 levels by the core clock machinery is possilol primary murine hepatocytes, insulin
induced circadian output protein (i.e. E4BP4), wahga repressor of the FGF21 promoter
(92). Nevertheless, circadian FGF21 expressionurima liver seems to be dependent on
PPARx in mice (93), and in humans oscillating FFA levwalatch those of FGF21 (97). Thus,
insulin and FFA are physiological signals that reaplain the circadian rhythmicity of
circulating FGF21 with high levels during the fastistate (during the night) and low levels
during feeding (92,93,97).

E. Cold exposure

In BAT and WAT, but not in liver, cold exposure aadrenergic signaling potently induce
FGF21 gene expression in mice and men (98-102)patievay of cold-induced FGF21
induction includes cyclic AMP, protein kinase A8BIAPK, and ATF2 (100). Notably,
some reports show an increase in serum FGF21 leditsating that under certain conditions
adipose tissue may contribute to circulating leuelsiice and humans (100,101). No direct
mouse and human data are available, but in raf$eaethce in arteriovenous concentrations
of plasma FGF21 across interscapular BAT has beerodstrated further arguing for BAT
as a source of circulating FGF21 (100). In line,1B# cold exposed UCP1 knockout mice is
the source of circulating FGF21 (103), thus attleasodents, adipose tissue might contribute
to circulating levels under distinct conditions.

F. PPAR agonists
Treatment with PPAfRRagonists (thiazolidinediones), clinically usedrasulin sensitizers,
does not alter human FGF21 blood levels in humads0,104). In line, PPARagonist-
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treated mice have increased FGF21 protein leval¢AT but no elevated circulating levels
(27). Treatment with PPAdRactivating fibrates increases human FGF21 blowdl$e
pointing to a role of this FFA-dependent transaoiptfactor in FGF21 gene induction
reminiscent of that in mice, at least in this phatological setting (30,50,104,105). While
selective PPARagonists induce FGF21 in adipose tissue but nioten, selective PPAR
agonists do this in liver but not in adipose tisi&52), reflecting these PPARS’ tissue
specificity. Although, one mouse study demonstrétas PPAR agonist treatment results in
FGF21 secretion of WAT concomitantly with elevagan plasma FGF21 (52), future
studies are needed to explore if and under whidldition WAT is contributing to circulating
levels in particular in humans. It is certain ty faat WAT-FGF21 acts locally as an
autocrine/paracrine factor in mice and men.

In summary (Figure 2), the main expression andesiecr site in mice and men is the
liver. Beside the above mentioned stimuli, hepB@d-21 expression is regulated by bile
acids (via farnesoid X receptor) (106) and dietargplements/drugs such as all-trans-
retinoic acid (via retinoic acid receptdy (107),a-lipoic acid (via cyclic AMP response
element-binding protein H) (108), and resveratved SIRT1) (109,110). This list
demonstrates that hepatic FGF21 expression in amdanen is under complex nutritional
and hormonal control and is regulated by multipd@$cription factors in a combinatorial
way with a network of nuclear receptors being oftcd importance. As to the regulation of
circulating FGF21, mice and humans share the fatigywhysiological stimuli: nutrition
(protein restriction, fructose ingestion), exerdig@ pancreatic insulin and glucagon) and, to
a lesser extent, circadian clock machinery.

V. FGF21 in metabolic disease

Several metabolic disorders are associated witleased FGF21 levels in mice and humans.
In the following section we will discuss metabdliseases which demonstrate altered FGF21
levels with a special focus on human data. Theoreés increased serum FGF21 in these
pathological conditions is largely unknown (potah&GF21 resistance will be discussed at
the end of the section).

A. Obesity

Genetic and diet-induced murine models of obesiigh a®b/ob and HFD-fed C57BL/6
mice, display several-fold increased serum FGF2iteotrations (up to 3 ng/mL) that are
accompanied by increased FGF21 gene expressioreimahd to a lesser extent in WAT
(19,111). In humans, FGF21 blood concentratiorsitipely associate with body mass index
(BMI) and whole-body, visceral, pericardial, andcapdial fat mass and are elevated in the
obese state (32,33,81,104,112-116). Overfeedingzeatigain of weight and body fat results
in elevated human FGF21 concentrations (117,118rdBtrast, acute and pronounced
weight and body fat loss due to bariatric (RouxYegastric bypass) surgery does not lead to
reductions in circulating FGF21 (119,120) evidendimat adipose tissue is not a source of
circulating FGF21 in humans.

B. Metabolically unhealthy obesity

Common obesity can be dissociated into two subtypegabolically healthy obesity (MHO)
without serious metabolic complications (~20-409)ereas the remainder is metabolically
unhealthy obesity (MUHO) characterized by insuésistance, increased visceral fat mass,
ectopic fat deposition in skeletal muscle and liveitamed adipose tissue and liver, and
increased intima-media thickness of the carotidrgr{l21-124). Recently, Best al.
demonstrated that FGF21 blood levels are moretthasiold higher in MUHO as compared
to body fat-matched MHO subjects, and the authaggested that this reflects an adiposity-
independent role of FGF21 in the metabolic derareggsof MUHO (125). This is in
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agreement with studies, e.g., reporting BMI- andybfat mass-independent positive
associations of FGF21 levels with insulin resisea(i26,127).

Mouse models of obesity-associated diseases, tikeaftoholic fatty liver disease,
chronic hyperglycemia, and atherosclerosis, coarsilst reveal increased FGF21 blood levels
(128-131). Also in humans, FGF21 levels are in@@as several obesity-associated
disorders and the metabolic syndrome (32,113,132,13

C. Fatty liver and diabetes

The strongest BMI-independent determinant of hegaBF21 production and circulating
FGF21 concentrations is liver fat content (134—13a@yl fatty liver is a hallmark of MUHO
(121). Accordingly, FGF21 blood concentrations @asistently elevated in patients with
non-alcoholic fatty liver disease and steatohepd®3,134-136,138—-140). With respect to
the prominent role of fatty liver in the pathogesexf T2D (for review, see (141)), it is not
unexpected that FGF21 blood levels are increaspceiiabetic dysglycemia (34,142-144),
T2D (81,142-147), gestational diabetes (148,14%),chabetic retinopathy (150,151).
Additionally, in the blood of patients with (diab®tnephropathy elevated FGF21
concentrations were measured which may derive femuced glomerular filtration rates
(152-157).

D. Lipid profile and vascular complications

Higher circulating FGF21 concentrations associatke atherogenic lipid profiles, i.e.,
increased plasma triglycerides, total and low-dgrgoprotein (LDL) cholesterol and
decreased high-density lipoprotein (HDL) choledt€3@,34,104,113,114,137,158-162).
Among these lipids, circulating FGF21 most robustiyrelates with plasma triglycerides
possibly reflecting its strong association with &gsteatosis and steatosis-related increased
very-low-density lipoprotein secretion.

Elevated FGF21 blood levels with metabolic syndrdogether with increased intima-
media thickness, arterial stiffness, and atherostteplaque formation (147,163-167), as
well as coronary artery/heart disease (158,161, &) acute myocardial infarction (169)
argue for a complex, i.e., liver-fat-dependent andependent, relationship of this hormone
with vascular complications. This is additionaltyengthened by FGF21’s association with
hypertension (126,158,160,162,165,170) and pregdan{171).

E. Bone diseases

In keeping with FGF21’s inhibitory action on boregrhation in mice (172), Hanlet al.
reported an inverse relationship between circulgliGF21 and bone mineral density
measured by dual energy X-ray absorptiometry indms1(173). Moreover, elevated FGF21
levels are associated with reduced bone strengthwvamnsened bone microarchitecture
(decreased trabecular number and increased travesgdaration in the radius) (174) and
with bone loss in knee osteoarthritis (175).

F. Muscle diseases

In mouse models, manipulations inducing metabojsregulation in muscle lead to the
induction and release of FGF21 from muscle: Izuretyal. reported that muscle-specific
transgenic Aktl overexpression increases FGF2leegmn and blood concentrations,
providing evidence that muscle-derived FGF21 caaflsystemic relevance (53).
Mitochondrial myopathy, a stress situation accongxhby Akt activation, is associated with
FGF21 gene induction in skeletal muscle (176). Addally, muscle-specific autophagy
knockouts (ATG7) demonstrate mitochondrial-stre§$-A-dependent increased FGF21
expression in muscle, but not in liver, WAT or BAand an increase in serum FGF21 levels
(177). Similar regulation of the FGF21 gene is sedmeart muscle: fasting and ER stress,
the latter resulting from intracellular triglyceeidverload due to whole-body deficiency of
adipose triglyceride lipase (ATGL), provoke markecreases in FGF21 expression (178).
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Induction of muscular ER stress (evidenced by el&#d ATF4 activation) by ectopic
expression of uncoupling protein 1 results in mdlkenhanced FGF21 gene expression in
muscle, but not in liver or adipose tissue, anfivie-fold higher FGF21 blood levels even in
the absence of myopathy (179). Likewise, mice aedatimg intramyocellular triglycerides
due to skeletal muscle-specific transgenic pernlpioverexpression also exhibit pronounced
FGF21 expression in muscle and concomitantly iregéairculating FGF21 concentrations
(180). Also, human myopathy (mitochondrial and #suifur cluster scaffold homolog
(ISCU)) patients have higher expression of FGF2huscle and higher FGF21 serum levels
(181) indicating some similarities between mice arenh. It further indicates that under
extreme metabolic disarrangements, muscle mightibaite to circulating FGF21 levels in
mice and humans.

G. Mitochondrial diseases

Mitochondrial diseases represent a heterogeneowp @f rare genetic and acquired
metabolic disorders characterized by mitochondtyafunction (for review, see (182)).
Several groups demonstrated markedly elevated FGIB2H levels in mitochondrial
diseases (181,183-188). Although the molecularifrdurrently unclear, these findings are
in line with increased FGF21 levels observed in cmn diseases associated with
mitochondrial dysfunction, i.e., insulin resistanoen-alcoholic fatty liver disease,
myopathy, and T2D (189-191).

H. Pancreatitis

One of the major FGF21 mRNA expression site in nsqeancreas. Pancreatic FGF21 gene
expression derives from endocrieandp-cells as well as exocrine acinar cells (43,192—
194). In the latter, FGF21 is induced in experiméntodels of pancreatitis in mice
(43,193,194). In line, FGF21 is elevated in serdrpatients with pancreatitis (195).

l. Lipodystrophies

Patients with human-immunodeficiency-virus-assecatongenital, and acquired
lipodystrophies, i.e., pathologies characterizeddujced adipose tissue mass, marked
ectopic lipid deposition, and insulin resistancendastrate elevated FGF21 levels (196,197).

J. FGF21 resistance

With respect to FGF21’s beneficial effects on meghucose and lipid metabolism, the
elevated FGF21 blood concentrations observed inmaand human diseases with disturbed
glucose and lipid metabolism are completely unetquecThis has prompted the hypothesis
of FGF21 resistance as it is comparable to higtutating insulin and leptin concentrations
in insulin- and leptin-resistant states, respegtiv&ccordingly, treating diet-induced obese
mice with recombinant human FGF21 leads to no saamt decline in blood glucose
concentrations and only a small decrease in pld&dfaconcentrations together with
attenuated ERK signaling and impaired inductiothefFGF21 target genes Egr-1 and c-Fos
in liver and adipose tissue (19,198). In line, harohesity is accompanied by elevated
FGF21 levels and reduced levels of KLB in WAT (199Yecent study demonstrated
impaired FGF21-induced ERK-phosphorylation in WATobese mice, which could not be
restored by maintaining KLB expression in WAT iratiog FGF21 resistance in WAT is
downstream of KLB (200). Murine studies furtherigate that thiazolidinediones may
increase KLB expression thus potentially enhancEBZBGsignaling (201) and recently it has
been demonstrated that dietary fish oil increasgzhtic FGF21 sensitivity by increasing
KLB (202). However, there are also mouse studigaiag against FGF21 resistance: Heille
al. tested HFD-fed obese and genetically olmsebmice (111) and found that even though
WAT expression op-Klotho and FGFR1c are reduced, dose-response cwitke
recombinant human FGF21 reveal no right-shifted EfREsphorylation in liver or adipose
tissue. Moreover these obese animals were mgpemsi/e to glucose- and weight-lowering
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effects of FGF21 than lean mice (111). Whetherdlwmtradictory results derive from the
different obesogenic diets or mouse strains usmeires to be determined. More work is
needed to prove or reject the hypothesis of FGE&iktance in particular in human obesity
and its associated metabolic complications.

In summary, any changes (physiological or pathojohygical) in metabolism (whole-
body or just tissue-specific) are characterizethiduction of FGF21 in mice and men. Thus,
FGF21 emerge as an energy (nutritional) stresserditactor not only in liver (Figure 2) but
also in muscle, BAT/WAT, and pancreas (Figure 3)e Tontribution, however, of
extrahepatic expression sites (adipose tissue aisgle) to circulating levels has only been
suggested for some mouse models/conditions anct dia¢éa in humans are missing.
Furthermore, it is not known how certain conditipmevoke FGF21 release from the tissue
into the circulation while others do not.

V. Metabolic effects of FGF21 in mice and men

A. Effects on whole-body glucose and lipid metabolism

Administration of (human or murine) recombinant &Ko nutritional (HFD-fed) or

genetic (i.e.pb/ob anddb/db) mouse models of obesity and diabetes increassifiagation

and energy expenditure, reduce body weight, whotélfat mass, and liver triglyceride
content (6,203,204). Furthermore, FGF21 adminisingtrovokes resistance to HFD-induced
weight gain, improves glucose tolerance and hepaicperipheral insulin sensitivity
(without triggering hypoglycemia), and normalizggérinsulinemia and
hypertriglyceridemia (6,203,204 vivo, FGF21-mediated GLUTL1 induction and glucose
uptake in WAT is only seen in lean, but not in ahesice suggesting that the robust
reduction in blood glucose concentration obserneatcutely FGF21-treated obese mouse
models results from FGF21’s indirect suppressiWeceon hepatic glucose output
(18,198,204). In the apolipoprotein (apo) E-defitimouse model of atherosclerosis, FGF21
inhibits atherosclerotic plaque formation in partduppressing hepatic expression of the
transcription factor SREBP-2 thereby attenuatingghie cholesterol synthesis and improving
hypercholesterolemia (131). Conversely, whole-bBe@¥21 deficiency due to genetic
knockout promotes weight gain, hepatosteatosisgammbse intolerance upon ketogenic diet
(64). The findings in mice about improvements pidi and glucose metabolism prompted
pharma companies all over the world to develop FlGii@sed novel therapies for metabolic
diseases, especially for T2D.

Due to the instability of recombinant non-glycosgthFGF21 in the circulation, for
humans only results with stabilized FGF21 analogu¥2405319 and PF-05231023) are
available (205-208). LY2405319 represents a hun@f22 molecule modified by
introduction of an additional disulfide bond, deetof four N-terminal amino acids, and
elimination of an O-linked glycosylation site (209F-05231023 is an artificial
macromolecule formed by covalent conjugation of madified human FGF21 molecules
(desHis FGF21 Alal29Cys) to the Fab regions of aculmnal scaffold antibody (36).
LY2405319 was already tested in T2D patients iaralomized placebo-controlled double-
blind proof-of-concept trial (205): four weeks o¥2405319 treatment reduced plasma
triglycerides, total and LDL cholesterol conceritras, increased plasma HDL cholestefal,
hydroxybutyrate, and serum adiponectin concentnatibut did not reveal a significant effect
on blood glucose levels. Similar effects on pladipids as well as a lack of effect on blood
glucose were also observed for PF-05231023 afterghe intravenous dose administered to
T2D patients (206). Talukdat al. performed a four-week randomized placebo-contiolle
phase-1b trial with twice-weekly administrationRF-05231023 (5-140 mg) in T2D patients
and reported, apart from improvements in plasmddigsignificantly decreased body weight,
increased blood adiponectin concentrations, redbt®st markers of bone formation,
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increased markers of bone resorption, elevatedddiG& 1 levels, and no effect on plasma
glucose upon treatment (207). Another study usmgeeneekly injection of PF-05231023
(25-150 mg) in obese hypertriglyceridemic subjeefrted reduced TG levels and increased
adiponectin levels without changes in body weight,again no improved glucose
metabolism (208). It is unclear whether the obsgmweight loss in the study of Talukdar et
al. are due to side effects, i.e., diarrhea andeay(seen in 29 and 26 % of PF-05231023-
treated patients, respectively) that may have inepdiood intake (207). These human studies
recapitulated the beneficial effects of FGF21 pidimetabolism found in mouse studies, but
revealed one crucial deviation: FGF21 analogudsdao lower blood glucose in humans. It
has to be noted, however, that analogues (for mwref existing analogues see (210,211))
do not represent wild-type (regular) human FGF2ier&fore, it is currently unknown
whether the reported effects of analogues reflbgsiplogical functions of the endogenous
protein.

B. Effects on growth and lifespan

FGF21 transgenic mice are markedly smaller tham #il-type littermates (212), and
FGF21 causes hepatic GH resistance by bluntingiGiakng at the extra- and intracellular
level (212). Additionally, transgenic FGF21 overgegsion extends lifespan of C57BL/6
mice by 36 % by interfering with GH/IGF1 signalimgliver without affecting food intake,
physical activity, energy expenditure, or AMPK, mRCand Sirt signaling in liver, muscle,
and adipose tissue (213). Recently, it has beerodsimated that an increase in lifespan by
FGF21 overexpression involves the prevention ofiadaced loss of naive T cells (55).
Given that these observations have been made witbuzse model that is hypermetabolic
and growth-restricted due to transgenic overexpess FGF21, an effect of FGF21 on
lifespan and growth in humans is very speculativetudy investigating the association of
FGF21 and growth or IGF-1 in obese children rewvieale connection (116), contrasting
another study demonstrating an inverse relationshipGF21 with linear growth rate in
infancy (214). Thus, FGF21 as a negative regulaitbuman growth has not been
established, but awaits further studies.

C. Effects on glucose and lipid metabolism mediated by adipose tissue

As WAT has high FGFR1c and KLB expression and t6&R1c/KLB complex is the
preferred signaling complex for FGF21, adiposaugiss considered FGF21’'s major target. In
HFD-fed mice, adipose tissue-selective ablatioaitbfer3-Klotho or FGFR1 impairs FGF21
effects, such as weight loss, insulin sensitizataom improvement of glucose tolerance,
hyperinsulinemia, and hypertriglyceridemia (14,21%). Additionally, the beneficial effects
of FGF21 are absent in a mouse model of lipodyblydyt restored after WAT
transplantation (217) indicating a central roleWsAT in mediating FGF21 improvements on
whole-body metabolism.

It has become clear that FGF21 plays a role in igdlysis, but there are conflicting
reports if FGF21 promotes or inhibits lipolysis.darticular, cell culture experiments using
FGF21 treatment or gain- and loss-of-function stsdin human or murine primary
adipocytes or murine 3T3-L1 adipocytes, demonddrateonsistent results (218—-220).
vivo studies suggest a difference between chronic wte affects: Administration of a single
dose of rhFGF21 acutely lowered plasma FFA conagatrs and WAT HSL expression in
lean and ob/ob mice (19,220). In contrast, mouseatsownith chronically altered FGF21
levels (knockout, overexpression and FGF21 admatist) support the lipolysis-promoting
effect of FGF21 with increased expression of liga#¢SL, ATGL), reduced adipocyte size,
and elevated plasma FFA concentrations (45,64,2213.argues for a more indirect and
context-depend effect of FGF21on WAT lipolysis whinight also explain inconsistent cell
culture results using different conditions. Reageouse data indicate that inflammation (e.g.
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mediated by IL6) might affect FGF21-mediated ligay(222) which is commonly observed
in obesity and its associated metabolic disorders.

FGF21 acutely affects the production and releaskec&dipocyte-derived hormone
(adipokine) adiponectin: a single FGF21 dose dauatiéponectin concentration in the blood
(215). Adiponectin is an insulin-sensitizing, aimflammatory, and atheroprotective
adipokine with a major role in glucose and lipidtatmlism (223,224). When adiponectin is
genetically ablated, HFD-induced and genetic mongdels of obesity are refractory to
FGF21-induced improvements in hyperglycemia, hymgyceridemia, hepatic and muscle
insulin resistance, and hepatosteatosis (225,246)ote, the protective function of FGF21
on vascular inflammation and atherosclerotic plagueation in apoE-deficient mice is at
least in part dependent on its adiponectin-elegatioperties (131). In humans,
administration of the FGF21 analogue LY2405319@10B231023 led to increased
adiponectin levels in obese/diabetic patients @05,.208) indicating that also human
metabolism might benefit indirectly from FGF21 adisiration by increased adiponectin
levels.

FGF21 stimulates glucose uptake in murine and husdgocytes (6) and Gat al.
demonstrated that this is due to transcriptionavaiton of the GLUT1 gene via ERK1/2,
serum response factor, and Ets-like protein-1 (19821 effects on glucose uptake are
more pronounced in BATn vivo, injecting native FGF21 into diet-induced obeseami
increased glucose uptake in WAT but to a much higkeent in BAT (227,228), and mice
having no circulating FGF21 (liver-specific FGF2DHKnice) show reduced glucose uptake
specifically in BAT, not WAT, muscle or heart (42).

Schleinet al.reported that WAT and BAT contribute to FGF21-stiated reductions in
plasma triglyceride concentrations by enhancedatez of triglyceride-rich lipoproteins in
these depots (229). Additionally, Cosketnal. reported that chronic FGF21 administration in
obese mouse models (HFD-fed alob mice) reduces body weight and adiposity via
increased energy expenditure and fat utilizatiaggesting the involvement of BAT (and/or
browning of WAT) in these fat mass-regulating FGIEHEcts (203). Adipose tissue
browning (conversion of white adipocytes into brelike UCP1-positive cells (230))
depends, at least in part, on FGF21 as FGF21-defianice display significantly diminished
browning capacity (98). Furthermore, chronic FGE2htment and FGF21 gene transfer to
the mouse liver are accompanied by induction aflegenic genes (e.g. uncoupling protein
1 (UCP1)) and of genes favorifigoxidation of fatty acids (e.g. CPTe&nd -3B) in BAT
(52,203,231). Finally, induced hepatic FGF21 prdiducmay also be involved in activation
of thermogenesis during the fetal-to-neonatal itemms a critical period where newborns
have to compensate a dramatic drop in ambient textyse (47). There is uncertainty
whether FGF21-induced adipose tissue browningatusively a direct effect on adipocytes:
recent evidence, based on cenfirédlotho knockout and lateral ventricle infusionfeGF21,
suggests that hypothalamic FGF21 signaling stirmgatympathetic nerve activity
contributes to adipose tissue browning (232,238nhdde, two reports support the notion that
pharmacological FGF21 effects are independent off\Wrowning (234,235). Although
there seems to be a connection between FGF21 amdrBAumans as well (236), the rather
low capacity for browning and the low amount of BAiThumans (usually at
thermoneutrality) as compared with mice (commordyded not at thermoneutrality) might
explain at least partly the differences of FGFZifects on glucose metabolism between the
two species.

D. Effects on glucose and lipid metabolism mediated by liver

Among the earliest findings about FGF21 effectsine was the stimulation of hepatic fatty
acid oxidation (via induction of PGGzland -B) and ketogenesis (via induction of ketone
body-synthesizing enzymes) in the fasting stateuasnttr fasting state-mimicking conditions
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(ketogenic diets) (29,45). Additionally, FGF21 stggses hepatite novdipogenesis (via
repression of the lipogenic genes encoding stegpllatory element binding protein
[SREBP] 1c and fatty acid synthase [FAS]) (29,238)2Thus, FGF21 transgenic mice
display decreased hepatic triglyceride content} 48 FGF21 KO mice store fatty acids
from fasting-associated adipose tissue lipolysigigly/cerides in the liver (29,64).

Chronic FGF21 treatment led to increased Akt phospéation, decreased diacylglycerol
concentrations, and reduced protein kinas@a@ivity in liver specimens indicating insulin
sensitization at the hepatocellular level (237,289)ine, FGF21 KO mice demonstrate
hepatic insulin resistance and elevated hepatiogkel production (240). Data obtained from
liver-specific insulin receptor knockout (LIRKO) o& demonstrate that FGF21 effects on
glucose metabolism are not due to direct effectven but to activation of BAT and
browning of WAT, leading to increased energy meliaboand substrate use (85). These
data further suggest that insulin action in therdis not required for FGF21 to correct
hyperglycemia but to mediate its effect on lipidtaimlism in diabetic mice (85).

Berglundet al.and Xuet al.demonstrated that chronic FGF21 treatment supguless
hepatic glucose output and enhanced hepatic glycsipeage (18,204). By contrast,
transgenic FGF21 mice demonstrated enhanced glagenesis already during the fed state,
and acute FGF21 treatment leads to P@@atlependent induction of the key gluconeogenic
enzymes glucose-6-phosphatase and phosphoenolgpgcarboxykinase, reflecting
FGF21’s prominent role during fasting (20,241).

However, a direct effect of FGF21 on livarvivo has been questioned as FGFR4 being
the main FGF receptor isoform expressed in livek B8F21 does not activate down-stream
signaling through the FGFR4/KLB-complex (no phogptaiion of ERK) (10). Besides
indirect effects of FGF21 on liver, another explaorafor a more direct FGF21 effect on
liver has recently been proposed: FGF21 antagotineesffect of FGF15/19 on hepatic
FGFR4/KLB complex thereby increasing the bile gmid| (242). Several reports on FGF21
effects on human liver used HepG2 cells as a modélepatocytes, but in contrast to
primary hepatocytes, HepG2 cells do express highuaits of FGFR1c, therefore these data
cannot be extrapolated into the human in vivo cdntéevertheless, human and murine liver
do express FGFR1c, although to a much lower dabeseadipose tissue, and hepatic
FGFR3c expression is even higher than in adipssedi(243). Notably, the regulating effect
of FGF21 on cholesterol metabolisms has been steghjgsbe at least partly mediated via
FGFR2-KLB complex in the liver (131), and FGFR2he second most abundant FGFR
isoform in liver (10).

E. Effects on pancreas

Pancreatic acinar and islet cells are FGF21 tagrgats FGF21 treatment triggers ERK
signaling in both cell types (51). Wergeal. demonstrated that short-term FGF21 treatment
of healthy C57BL/6 mice and diabetib/dbmice lowers blood insulin concentrations after
an oral glucose load (244). By contrast, constamg-term infusion of FGF21 idb/dbmice
raises insulin (244). In the absence of enhandetdasll proliferation, long-term treatment
provokes increments in pancreatic islet numberiasdin content per islet (244). On the
other hand, FGF21 knockout mice display distorbbislet morphology and impaired
glucose-stimulated insulin secretion, the lattesgialy due to unblocked GH signaling in the
islets (245). Moreover, HFD-fed FGF21-deficient endevelop islet hyperplasia and
periductal lymphocytic inflammation (51). NotabRGF21 has recently been discovered as a
pancreatic secretagogue which mainly functionsiiaw@tocrine/paracrine manner to alleviate
ER stress that can occur in pancreas under eithysiglogical conditions such as
fasting/refeeding or pathological conditions suslpancreatitis (43). Altogether, these
findings point to islet-protective functions of F&E Interestingly, hyperglycemia a@b/db

mice and high glucose concentratiomsitro down-regulatgl-Klotho expression and FGF21
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signaling in pancreatic islets providing prelimiypavidence of hyperglycemia-induced
FGF21 resistance in the pancreas of diabetic i2i4€)( No published in vivo data on FGF21
expression or direct action on human pancreasvaithble.

F. Effectson brain

Very recently, it was demonstrated that FGF21 messed in different murine brain regions,
including substantia nigra and striatum (247), encerebellar neurons upon treatment with
cell adhesion molecule L1 (248). FGF21 expresgiahe brain in mice and most
importantly in humans still needs further confirioat and so far nothing is known about
potential regulatory stimuli or mechanisms. Notablgwever, FGF21 is able to pass the
murine blood-brain barrier (249) and this seemsetérue also for humans (250). In the brain
of C57BL/6 mice, FGFR1c and FGFR3c, the two maf6FRs, are broadly expressed,
wherea$3-Klotho expression is restricted to the suprachagmucleus of the hypothalamus
(SCN), where the circadian pacemaker is located tla@ dorsal vagal complex (DVC) and
nodose ganglia of the hindbrain (251). FGF21 adtidhe murine brain vig-Klotho

increases corticosterone levels, lowers insulielE\vinhibits growth and alters circadian
rhythm all representing features of starvation (252). Additionally, central FGF21 action

is needed for its effect on energy expenditure WHT browning), weight loss and lowering
cholesterol in mouse models (232,233,251,252). ¢J6BF21 knockout and
intracerebroventricular FGF21 injection, Liaegal. demonstrated that acute stimulation of
hepatic gluconeogenesis by FGF21, at least in isatgused by FGF21's activation of the
HPA axis triggering adrenal corticosterone relgase ERK-CREB-induced CRH gene
expression in hypothalamic neurons) (252). Anotleertral action of FGF21 has very
recently been demonstrated in a mouse study: FGE&2dressed consumption of simple
sugars and non-caloric sweeteners, but not of ecewrgarbohydrates, proteins, or lipids via
hypothalamic neurons (59). Human genetic datagedtion V) point towards the existence
of similar mechanisms in humans (62). These obsensconstitute a novel and
multifunctional liver-brain axis with the hepatokifrfGF21 as a crucial player in mice and
men. Some controversial reports about actions &fZA3n mice and men may be attributable
to central effects as it has not been shown for FAGinalogues if or how efficient they cross
the blood-brain barrier. Additionally, although teere indications of KLB, FGFR1 and
FGFR3 expression in human brain (c.f. proteinailas, restricted expression to specific
areas within the hypothalamus for instance, hadbeenh demonstrated so far.

G. Effectson bone
The negative regulation of bones by FGF21 is orta@tdverse effects which may
jeopardize the use of FGF21 as a therapeutic (89, EXen though the presencepeKlotho
in osteoblasts and/or osteoclasts remains to beepré-GF21 has effects on bones: using
transgenic overexpression and pharmacological egipin of FGF21, Weet al. reported
striking decreases in bone mass together @utliivoassay data demonstrating inhibition of
osteoblastogenesis and stimulation of adipogemesisne marrow-derived mesenchymal
stem cells by FGF21 (172). By contrast, FGF21 KO@engxhibit a high-bone-mass
phenotype (172) and are protected from transiesst &6 bone mass during lactation (253).
Even though FGF21 has no direct impact on ostesclagpromotes IGFBP1 release from
liver, and IGFBP1 stimulates bone resorpiionivo (254). Thus, FGF21 promotes bone loss
via direct inhibition of bone formation and inditemhancement of bone resorption. In
humans, the FGF21 analogue PF-05231023 leads ngesian bone biomarkers with body
weight changes (207) but also without body weidtanges (208). Thus, adverse effects on
bones need to be carefully addressed in future hignalies.

Figure 4 summarizes effects (chronic and acuteggilar, i.e., wild-type, FGF21 on
metabolically relevant tissues/organs in mice amthdns as derived from treatment studies
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and, for mice, from genetic manipulation as weillbrief, very similar FGF21 effects on lipid
and glucose metabolism are reported in the twoispedth respect to adipocyte glucose
uptake and mitochondrial oxidative capacity, fdt lsewning, as well as hepatic fatty acid
oxidation andde novdipogenesis. On the other hand, obvious differerecest between mice
and humans when looking closer at FGF21'’s effetadipocyte lipolysis and hepatic
ketogenesis. BAT seems to be the major tissue iiegliBGF21 effects on glucose uptake
and this might represent the reason for the missifegt of FGF21 on glucose in obese
patients, which have only low or even no BAT (2562

VI.  Human genetic data

In line with a potential role of FGFR2-KLB signadjiin liver being responsible for FGF21
effects on cholesterol metabolism (131), a genatiant ofFGFR2(SNP rs2071616) is
associated with LDL-C in humans (255). Consisteith & potential role of FGF21 in the
brain, as proposed by mouse data, two large genadeassociation studies provided
evidence that single nucleotide polymorphisms (§NPsr near the human FGF21 gene
modulate macronutrient intake in humans indepemglenBMI: minor allele carriers of the
synonymous SNP rs838133 in exon 1 of the FGF21 gehibit reduced energy intake from
protein and increased energy intake from carbohgdr@56); and the minor allele of SNP
rs838145, about 10 kb upstream of the FGF21 getiénamoderate linkage disequilibrium
with rs838133 (r?=0.7), is associated with highsergy intake from carbohydrates, lower
energy intake from fat, and higher circulating FG&E®ncentrations (257). The SNP
rs838133 has recently been associated not onlysuiar preference but also with more
consumption of alcohol and tobacco, thus other $oofireward-seeking behavior.
Interestingly, variations in KLB, the obligate FGIF2o-receptor have also been identified to
be associated with alcohol drinking in humans §2E8en though functional data on how
the SNPs alter FGF21 function/expression are lackhese data suggest that genetic
variation in the FGF21 gene and its receptor datesnnutrient choices in humans by acting
on the reward system.

VII.  Summary and Conclusions

FGF21 represents a fascinating hormone with impressiplications in whole-body
homeostasis and several metabolically relevantysts in particular in lipid and glucose
metabolism in both mice and men. This is why mostkvhitherto published was primarily
driven by pharmacological interests and not by apad interests in this hormone’s role in
physiology and pathophysiology. Since 2000, the pé#s discovery, FGF21 has been
intensely studied in mice, and a wealth of veryusililata has been generated in mice that,
with the exception of a negative impact on bonealmatism, consistently document
favorable roles of FGF21 in lipid and glucose metisin. The last ten years of vivo andex
vivo analyses in humans have also created a considdyadd} of data complicating the
translation of several of the mouse findings tolbiman situation. Human treatment studies
assessing the systemic effects of regular FGF2tuwarently lacking due to the instability of
recombinant non-glycosylated FGF21 in the circalatbut results from three treatment
studies using FGF21 analogues are available (209-Zf@ese studies revealed one crucial
deviation from what is seen in mice: FGF21 analsdaéed to lower blood glucose, and this
is the reason why all pharmaceutical companiesgetym the development of FGF21-based
anti-diabetic drugs (such as FGF21 analogues anagtwg anti-FGFR1¢-Klotho
antibodies, for review (210,211)) have now stopibedr programs.

Based upon all what is hitherto known about FGH2§,insufficient to explain the
observed discrepancies of the pharmacological edfed€eGF21 analogues on blood glucose
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between mice and humans merely by limited avaitgtwf human data or by the ultimately
unproven existence of FGF21 resistance. Rathisrmbre obvious that the differences have
species-specific reasons and derive from techhioéhtions associated with the use of mice
as model organism for human physiology and disessespecies-inherent limitations,
divergences due to adaptations of mice and huneatieir specific habitats, dietary habits,
and environmental constraints are conceivable. Véigfard to metabolism, it is well known
that mice considerably differ from humans in lipajgin metabolism and susceptibility to
atherosclerosis (259) as well as in inflammatogpomses to different traumata (260). A
possible technical limitation of mouse studies raage from housing temperatures that exert
dramatic effects on inflammatory and atheroscleretients (261) and BAT/WAT biology.

As BAT and WAT are major targets of FGF21's beniefieffects on metabolism, we assume
that this is the reason for the divergent findibgsveen mice and men in particular on
glucose metabolism. In line, it has been shownnmase model that FGF21'’s glucose
lowering effect is blunted when KLB is specificaliplated in UCRcells (262). There is no
beneficial effect of FGF21 on glucose clearandd@P1-deficient mice (263), and UCP1

KO mice treated with FGF21-Fc (another long-act#@f21 analogue) demonstrated no
reduction in plasma glucose (234). The relativelsamal varying amount of UCPXells in
humans may explain the divergent effect of FGF2g§lanose metabolism in mice and men.

We have to stress that the vast majority of humaiivo data is of correlational nature. If
correctly adjusted for known confounders, thesa dah help unmask real relationships.
However, we have to admit that correlational dat@ot give mechanistic insights or solve
the problem of causation/reverse causation (the damel egg’ problem) inherent to all
association analyses. In addition, only very fewrEGtreatment studies that harbor the
potential to provide mechanistic clues are hithegfmrted in humans. Apart from these
limitations, an interesting observation is theust positive correlation of FGF21 levels with
many human metabolic disorders and diseasesneetabolically unhealthy obesity, non-
alcoholic hepatosteatosis, gestational diabetesT2D, coronary artery/heart disease,
preeclampsia, myopathy, lipodystrophy and mitochiahdisease. Although, FGF21 as an
anti-diabetic drug may not be feasible in huma@-ZL might be a good biomarker and/or
predictor for muscle-related mitochondrial disegd88,264) or arteriosclerosis (265).

We should not abandon to further explore FGF21o$olgly, but follow-up investigations
are required to ultimately solve the FGF21 puz@leen FGF21's prominent role in lipid
metabolism in mice and men, patients suffering froatabolic disorders other than diabetes
such as atherosclerosis might benefit from FGF2faties (131). But future studies need to
carefully address issues such as the kind (e.ginmuersus human recombinant FGF21),
dose and timing of FGF21 treatment. Maybe, new ahinodels closer to humans, e.g.,
omnivores like (mini)pigs, will provide functionahd mechanistic data that can better be
translated to the human situation. With respetii¢cemerging role of the brain in metabolic
diseases (266—268), one of the most exciting aswrabst challenging areas of future
research is certainly the assessment of the efficREGF21 and its analogous in the brain.
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Figure 1. Comparison of major anatomical expressiosites of FGF21 in mice and
humans. The most prominent expression sites are highlightedsing bold fonts. The
intensity of expression is indicated by font/pietsize. Brackets: skeletal muscle FGF21
expression signals were found in mice already énbtisal state, in humans only upon
hyperinsulinemia. Figure was produced using SeMiedical Art (http://www.servier.com).

Figure 2. Regulation of hepatic FGF21 production immice and menData on signaling
and nuclear/transcriptional factors (see revievé®(270)) are mainly derived from genetic
mouse studies and cell culture systems. Stimulafiects are indicated by plus (+), the
inhibitory effects by minus (-). Stimuli/mediatarsmice and humans are blue,
stimuli/mediators that are different between mind humans are red and stimuli/mediators
with only mice data available are black. ER — enasmic reticulum; FFA — free fatty acids.
Figure was produced using Servier Medical Art (iMtpvw.servier.com).

Figure 3. Regulation of extrahepatic production anctirculating FGF21 in mice and

men. Stimulatory effects are indicated by plus (+), ithigbitory effects by minus (-). Stimuli
rendering extrahepatic tissues as source of ctingl& GF21 levels are indicated in blue. ER
— endoplasmic reticulum; FFA — free fatty acidgufe was produced using Servier Medical
Art (http://www.servier.com).

Figure 4. FGF21 effects on metabolism in mice anden. Stimulatory effects are indicated
by plus (+), the inhibitory effects by minus (-¥fécts that are similar in mice and humans
are indicated in blue, effects that are differegtilieen mice and humans (or controversial in
the literature) are indicated in red and effectssbich human data are missing are black.
Figure was produced using Servier Medical Art (iMtpvw.servier.com).
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