
RESEARCH ARTICLE

DPP4 gene variation affects GLP-1 secretion,

insulin secretion, and glucose tolerance in

humans with high body adiposity
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Research (DZD), Tübingen, Germany, 3 Institute for Diabetes Research and Metabolic Diseases of the
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Abstract

Objective

Dipeptidyl-peptidase 4 (DPP-4) cleaves and inactivates the insulinotropic hormones gluca-

gon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide, collectively termed incretins.

DPP-4 inhibitors entered clinical practice as approved therapeutics for type-2 diabetes in

2006. However, inter-individual variance in the responsiveness to DPP-4 inhibitors was

reported. Thus, we asked whether genetic variation in the DPP4 gene affects incretin levels,

insulin secretion, and glucose tolerance in participants of the TÜbingen Family study for

type-2 diabetes (TÜF).

Research design and methods

Fourteen common (minor allele frequencies�0.05) DPP4 tagging single nucleotide poly-

morphisms (SNPs) were genotyped in 1,976 non-diabetic TÜF participants characterized

by oral glucose tolerance tests and bioimpedance measurements. In a subgroup of 168 sub-

jects, plasma incretin levels were determined.

Results

We identified a variant, i.e., SNP rs6741949, in intron 2 of the DPP4 gene that, after correc-

tion for multiple comparisons and appropriate adjustment, revealed a significant genotype-

body fat interaction effect on glucose-stimulated plasma GLP-1 levels (p = 0.0021). Notably,

no genotype-BMI interaction effects were detected (p = 0.8). After stratification for body fat

content, the SNP negatively affected glucose-stimulated GLP-1 levels (p = 0.0229), insulin
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secretion (p = 0.0061), and glucose tolerance (p = 0.0208) in subjects with high body fat con-

tent only.

Conclusions

A common variant, i.e., SNP rs6741949, in the DPP4 gene interacts with body adiposity and

negatively affects glucose-stimulated GLP-1 levels, insulin secretion, and glucose toler-

ance. Whether this SNP underlies the reported inter-individual variance in responsiveness

to DPP-4 inhibitors, at least in subjects with high body fat content, remains to be shown.

Introduction

Dipeptidyl-peptidase 4 (DPP-4, alias CD26) is a ubiquitously expressed single-pass type II

transmembrane protein that aggregates in cholesterol-rich lipid rafts and interacts with several

other proteins, e.g., caveolin 1, adenosine deaminase, fibroblast activation protein, insulin-like

growth factor 2 receptor, receptor-type protein tyrosine phosphatase C, and extracellular

matrix proteins [1]. The homodimer represents a proteolytically active enzyme (EC 3.4.14.5)

that cleaves N-terminal X-proline and X-alanine dipeptides from polypeptides with unsubsti-

tuted N-termini [2]. Among its known substrates are chemokines, growth factors, neuropep-

tides, and peptide hormones, such as the incretins glucagon-like peptide 1 (GLP-1) and gastric

inhibitory polypeptide (GIP) [1,3]. Cleavage of the incretins by DPP-4 results in loss of these

hormones’ insulinotropic activities and initiates their degradation [4]. A soluble form of DPP-

4 is known to be present in human plasma, urine, and seminal fluid and is thought to derive

from proteolytic cleavage of the transmembrane protein [5]. The regulation of this process is

however poorly understood.

DPP-4 exerts pleiotropic functions, e.g., in metabolism, immune reactions, and cancer

growth [6]. With respect to glucose metabolism, DPP-4 deficiency in rodent models was

shown to improve glucose tolerance and insulin sensitivity via enhanced glucose-stimulated

insulin secretion, probably due to increased circulating GLP-1 levels, and to confer resistance

to high-fat diet-induced body weight gain and hyperinsulinaemia as a result of reduced food

intake and increased energy expenditure [7–9]. Since pancreatic β-cell failure is a hallmark of

type-2 diabetes [10,11], a very promising strategy, intensely followed by pharmaceutical com-

panies, to fight the disease is to improve β-cell function with the help of drugs that enhance the

incretin axis. With regard to the negative impact of DPP-4 on incretin levels and activities, two

options were conceivable: (i) application of DPP-4-resistant GLP-1 analogues or mimetics

with prolonged half-lives; and (ii) augmentation of endogenous incretin levels by DPP-4 inhi-

bition [12]. With the GLP-1 analogues [13], such as exenatide and liraglutide, and the DPP-4

inhibitors collectively termed ‘gliptins’ [14], such as sitagliptin, vildagliptin, linagliptin, and

saxagliptin, both approaches have found the way into clinical practice. While these drugs rep-

resent valuable anti-diabetic therapeutic options from a statistical point of view, very recent

studies report considerable biological variance between individuals in the responsiveness to

DPP-4 inhibitors [15–17]. The reasons for good versus diminished response to these drugs are

however largely unknown.

In this study, we therefore asked whether common genetic variation [minor allele frequency

(MAF)�0.05] in the DPP4 gene exists that affects incretin levels, insulin secretion, and glucose

tolerance in non-diabetic individuals recruited from the TÜbingen Family study for type 2 dia-

betes (TÜF). The identification of single nucleotide polymorphisms (SNPs) which determine

DPP4 genotype-body fat interaction
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differences in the aforementioned parameters could, after further corroboration in pharmaco-

genetic settings, support clinical decisions in terms of individualized therapy: for instance, sub-

jects who do not adequately respond to DPP-4 inhibitors due to genetically increased DPP-4

levels/activities would possibly better benefit from DPP-4-resistant incretin mimetics.

Materials and methods

Ethics statement

All participants gave informed written consent to the study which adhered to the Declaration

of Helsinki. The study protocol was approved by the Ethics Committee of the Eberhard Karls

University Tübingen.

Subjects

The overall study population consisted of 1,976 White Europeans from the Southwest of Ger-

many and was recruited from the ongoing TÜF study. TÜF currently comprises more than

3,000 non-related individuals at increased risk for type-2 diabetes, i.e., non-diabetic subjects

with a family history of type 2 diabetes, a BMI�27 kg/m2, impaired fasting glycaemia, and/or

previous gestational diabetes [18]. All TÜF participants underwent assessment of medical his-

tory, smoking status, and alcohol consumption habits; the subjects furthermore agreed to

undergo physical examination, routine blood tests, and oral glucose tolerance tests (OGTTs).

In the overall study population, only individuals with complete phenotypic data sets and docu-

mented absence of medication known to influence glucose tolerance, insulin sensitivity, or

insulin secretion were included. In a randomly selected subgroup of 168 subjects having blood

stored in the presence of protease inhibitor, plasma levels of the incretins GLP-1 and GIP were

determined. The clinical characteristics of the overall study population and the GLP-1/GIP

subgroup are presented in Table 1.

Table 1. Clinical characteristics of the study population.

Overall study population GLP-1/GIP subgroup

Sample size (N) 1,976 168

Women / men (N) 1,306 / 670 114 / 54

NGT / IFG / IGT / IFG&IGT (N) 1,392 / 223 / 194 / 167 113 / 24 / 13 / 18

Median IQR Median IQR

Age (y) 39 29–50 47 37–54

BMI (kg/m2) 27.6 23.5–34.5 29.4 26.7–34.9

Body fat (%) 31 23–41 33 27–39

Glucose0 OGTT (mmol/L) 5.11 4.78–5.44 5.28 4.89–5.59

Glucose120 OGTT (mmol/L) 6.20 5.17–7.28 6.44 5.56–7.49

ISI OGTT (*1015 L2*mol-2) 12.6 7.4–20.7 11.8 7.3–16.0

AUC Ins0-30/AUC Glc0-30 OGTT (*10−9) 36.1 23.3–56.5 38.3 22.8–57.5

AUC Cpep0-120/AUC Glc0-120 OGTT (*10−9) 308 248–376 291 231–361

GLP-10 OGTT (pmol/L) - - 17 12–22

GIP0 OGTT (pmol/L) - - 15 9–19

Medians and IQRs of the continous traits are given for the overall study population and the GLP-1/GIP subgroup unstratified for gender or glucose tolerance

status. AUC–area under the curve; BMI–body mass index; Cpep–C-peptide; GIP–gastric inhibitory polypeptide; Glc–glucose; GLP-1 –glucagon-like peptide

1; IFG–impaired fasting glycaemia; Ins–insulin; IGT–impaired glucose tolerance; IQR–interquartile range; ISI–insulin sensitivity index; NGT–normal glucose

tolerance; OGTT–oral glucose tolerance test

https://doi.org/10.1371/journal.pone.0181880.t001

DPP4 genotype-body fat interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0181880 July 27, 2017 3 / 13

https://doi.org/10.1371/journal.pone.0181880.t001
https://doi.org/10.1371/journal.pone.0181880


OGTT

A standardized 75-g OGTT was performed following a 10-h overnight fast. For the determina-

tion of plasma glucose, insulin, and C-peptide levels, venous blood samples were drawn at

baseline and at time-points 30, 60, 90, and 120 min of the OGTT [18]. Incretin levels were

measured at baseline and at time-points 30 and 120 min.

Measurements of body fat content

BMI as a crude proxy for body fat content was calculated as weight divided by squared height

(in kg/m2). The percentage of body fat was measured by bioelectrical impedance (BIA-101,

RJL systems, Detroit, MI, USA).

Laboratory measurements

Plasma glucose levels (in mmol/L) were measured with a bedside glucose analyzer (glucose

oxidase method, Yellow Springs Instruments, Yellow Springs, OH, USA). Plasma insulin and

C-peptide levels (in pmol/L, both) were determined by commercial chemiluminescence assays

for ADVIA Centaur (Siemens Medical Solutions, Fernwald, Germany). Total GLP-1 and GIP

levels (in pmol/L, both) were quantified using radioimmunoassays specific for the C-terminal

parts of the peptides [19,20]. To avoid incretin degradation, venous blood was drawn into

chilled tubes containing EDTA and aprotinin (400 kallikrein inhibitor units/mL blood; Bayer,

Leverkusen, Germany) and kept on ice. After centrifugation at 4˚C, plasma for hormone anal-

yses was kept frozen at -20˚C.

Calculations

The OGTT-derived insulin sensitivity index (ISI OGTT) was estimated as proposed earlier

[21]: 10,000/[c(Glc0)�c(Ins0)�c(Glcmean)�c(Insmean)]½ (with c = concentration, Glc = glucose,

and Ins = insulin). OGTT-derived insulin secretion was estimated as area under the curve

(AUC) Cpep0-120/AUC Glc0-120 according to the trapezoid method: ½[½c(Cpep0)+c(Cpep30)

+c(Cpep60)+c(Cpep90)+½c(Cpep120)]/½[½c(Glc0)+c(Glc30)+c(Glc60)+c(Glc90)+½c(Glc120)]

(with Cpep = C-peptide). This insulin secretion index was recently shown to be superior to

several fasting state- and OGTT-derived indices for the detection of genetically determined

defects in the incretin axis [22].

Selection of tagging SNPs

Based on publicly available data of the International HapMap Project (phase III) derived from

the Central European (CEU) population (release #28 August 2010, http://hapmap.ncbi.nlm.

nih.gov/index.html.en), we analyzed in silico a genomic area on human chromosome 2q24.2

spanning the DPP4 gene (82.3 kb, 26 exons, 25 introns, located on the reverse strand), 5 kb of the

gene’s 5’-flanking region, and 5 kb of its 3’-flanking region (Fig 1). The DPP4 locus is flanked

~70 kb upstream by the GCG gene (encoding proglucagon, the source of glucagon, GLP-1, and

GLP-2) and ~7 kb downstream by the SLC4A10 gene (encoding a sodium-dependent chloride/

bicarbonate exchanger with no known function in glucose metabolism). Notably, no obvious

high-linkage disequilibrium (LD) block overlapping the screened DPP4 locus and one of its adja-

cent genes was detected. Within the analyzed DPP4 locus, 44 informative HapMap SNPs with

Hardy-Weinberg p-values and MAFs�0.05 were found, and all of them are intronic or located

in the 3’-flanking region. Their LD data (r2-values from HapMap) are presented in Fig 1. Using

the tagger analysis tool of the Haploview freeware (http://www.broadinstitute.org/scientific-

community/science/programs/medical-and-population-genetics/haploview/haploview), 14

DPP4 genotype-body fat interaction
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tagging SNPs were identified covering all the other common HapMap SNPs with an r2�0.8

(100% coverage of the common genetic variation in the locus). These tagging SNPs were

rs2909443 (A/G) in the 3’-flanking region, rs2909448 (T/C), rs2389643 (C/T), and rs2909450

(G/A) in intron 20, rs1014444 (A/G) in intron 19, rs6432708 (T/C) in intron 8, rs12995983

(T/C) and rs3788979 (G/A) in intron 5, and rs6741949 (G/C), rs4664446 (A/G), rs741529 (G/A),

rs3788976 (C/T), rs12469968 (A/G), and rs1861978 (T/G) in intron 2 (Fig 1).

Genotyping

DNA was isolated from whole blood using a commercial kit (NucleoSpin, Macherey & Nagel,

Düren, Germany). The 14 DPP4 tagging SNPs were genotyped using the mass spectrometry

system massARRAY from Sequenom and the manufacturer’s iPLEX software (Sequenom,

Hamburg, Germany). The call rates were�98.9%. The mass spectrometric results were

Fig 1. DPP4 gene locus on human chromosome 2q24.2 and tagging SNPs. The DPP4 gene is located on the reverse strand, consists of 26 exons and

25 introns, and spans 82.3 kb from nucleotide position 162,848,755 to nucleotide position 162,931,052 (Ensembl reference data). A region from 5 kb

upstream to 5 kb downstream of the gene was analyzed. This genomic region does not overlap with other known gene loci. The 44 common HapMap SNPs

of the locus are shown (minor allele frequencies�0.05). The locations of the 14 tagging SNPs are highlighted by white circles. HapMap-derived linkage

disequilibrium data (r2x100) are indicated in shaded diamonds (black diamond without value stands for r2 = 1.0). SNP–single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0181880.g001
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validated in 50 randomly selected subjects by bidirectional sequencing, and both methods gave

100% identical results.

Statistical analyses

Hardy-Weinberg equilibrium was tested using χ2 test (based on one degree of freedom). LD

(D’-, r2-values) between the tagging SNPs was analyzed using the MIDAS 1.0 freeware (http://

www.genes.org.uk/software/midas). Continuous variables with non-normal distribution were

loge-transformed prior to statistical analysis. Multiple linear regression analysis was performed

using the least-squares method. In the regression models, the trait of interest (incretin level,

insulin secretion, or glucose level) was chosen as outcome variable, the SNP genotype (in the

additive inheritance model) as independent variable, and gender, age, and percentage of body

fat (and ISI OGTT when testing SNP associations with insulin secretion) as confounding

variables. In some analyses, glucose tolerance status was included in the multiple regression

models as additional confounding variable in form of a dummy variable (normal glucose toler-

ance = 0, impaired fasting glycaemia = 1, impaired glucose tolerance = 2, and impaired fasting

glycaemia + impaired glucose tolerance = 3). For analysis of SNP-body fat interaction effects

on incretin levels, the respective cross effects were tested with gender and age as confounding

variables. When testing all 14 tagging SNPs in parallel, a Bonferroni-corrected p-value <

0.0037 was considered statistically significant. In all subsequent follow-up analyses testing only

SNP rs6741949, the significance threshold was set at p<0.05. We did not correct for the tested

metabolic traits since these were not independent. For all analyses, the statistical software JMP

8.0 (SAS Institute, Cary, NC, USA) was used. Based on the observed MAFs, the study was suffi-

ciently powered (1-β�0.8) to detect SNP effects on insulin secretion�5% in the overall popu-

lation and to detect SNP effects on fasting GLP-1 levels�26% in the GLP-1/GIP subgroup

(two-sided p<0.05). Power calculations were performed using the Quanto 1.2.4 freeware

(http://hydra.usc.edu/gxe).

Data availability

Data are available upon request from the principal investigators of the TÜF study. Please con-

tact us at http://www.med.uni-tuebingen.de/Mitarbeiter/Kliniken/Medizinische+Klinik/

Innere+Medizin+IV/Forschung+/Klinisches+Studienzentrum.html. The volume and com-

plexity of the data collected precludes public data deposition because the participants could be

identifiable from such extensive data which would compromise participants’ privacy.

Results

On average, the overall study population was young (median age 39 y) and overweight

(median BMI 27.6 kg/m2), two thirds were women and one third men (Table 1). Seventy per-

cent of the subjects had normal glucose tolerance, whereas the remaining 30% were prediabetic

having impaired fasting glycaemia and/or impaired glucose tolerance (Table 1). In the GLP-1/

GIP subgroup, the medians of age and BMI were slightly higher (47 y and 29.4 kg/m2, respec-

tively), the gender distribution and the proportion of prediabetic individuals were however

similar to the overall study population (Table 1). Furthermore, no major differences were

observed between the overall study population and the GLP-1/GIP subgroup with respect to

measures of insulin sensitivity and insulin secretion (Table 1).

All 14 tagging SNPs, covering 100% of the common (MAF�0.05) genetic variants in the

DPP4 locus, were genotyped in the overall study population (for locations and HapMap LD

data, see Fig 1). All but one of the tagging SNPs obeyed Hardy-Weinberg equilibrium

(p�0.05). SNP rs4664446 was not in Hardy-Weinberg equilibrium (p = 0.03). Since no

DPP4 genotype-body fat interaction
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genotyping error could be found, we included SNP rs4664446 in our correlational analyses. The

MAFs observed in our study population were similar to those reported for the HapMap CEU

population (S1 Table). Interestingly, the two SNPs with MAFs closest to 0.5, i.e., rs4664446 and

rs12469968, revealed inverted allele distributions: for both SNPs, the minor allele was the G-allele

in our study, whereas it was the A-allele in the HapMap CEU population. Based on the observed

LD data (r2-values), the linkage between the tagging SNPs ranged from very low (r2<0.001) to

moderate (r2 = 0.613) with the following exception: the three SNPs rs2909443, rs2909448, and

rs64322708 were in high linkage in our population (r2-values among all three>0.8; S2 Table). By

contrast, the r2-values between SNPs rs2909443 and rs2909448 as well as between SNPs

rs2909448 and rs6432708 did not reach 0.8 in the HapMap CEU population (Fig 1).

Initially, we screened all 14 tagging SNPs for association with fasting incretin levels and

with incretin increments during the first 30 min of the OGTT as assessed by the ratios GLP-

130/GLP-10 and GIP30/GIP0. After adjustment for gender, age, and percentage of body fat, no

associations that resisted Bonferroni correction for multiple comparisons (p<0.0037) could be

detected, and SNP rs6741949 was the only SNP to show a nominal association with oral glu-

cose-stimulated GLP-1 increase (p = 0.0447; S3 Table and Fig 2A).

As DPP-4 was recently described to be an adipokine that is preferentially released by hyper-

trophic adipocytes [23], we then addressed whether any of the tagging SNPs demonstrates

interaction effects with body fat on incretin levels. Using analysis of covariance with gender

and age as covariates, only one SNP revealed significant interaction with bioimpedance-

derived body fat content: it was SNP rs6741949 that showed an interaction effect on the oral

glucose-stimulated GLP-1 increase (p = 0.0021; S3 Table). Notably, no interaction effect of

SNP rs6471949 on the GLP-1 increment was seen when BMI was used instead of percentage of

body fat (p = 0.8). None of the tagging SNPs showed association with fasting or glucose-stimu-

lated GIP levels in these analyses (p�0.07; S3 Table). Nominal interaction results of SNPs that

were not associated with incretin levels in our initial analysis were not followed up.

To assess whether SNP rs6471949 reveals effects in subjects with high body fat content (i.e.,

with hypertrophic adipose tissue) only, we divided the overall study population and the GLP-

1/GIP subgroup in body fat strata. Since genotype-trait interactions are often driven by the

more extreme parts of a trait’s data distribution, we excluded the area around the median as

“grey zone”. On the other hand, we intended to keep the excluded sample small in order not to

lose statistical power. Therefore, we chose quintiles and stratified the subjects in a low body fat

group (lowest two quintiles combined) and a high body fat group (highest two quintiles com-

bined) and excluded the middle quintile from the analysis. In these follow-up analyses, the sig-

nificance threshold was set at p<0.05. After adjustment for gender and age, the minor C-allele

of SNP rs6741949 was associated with a lower glucose-induced GLP-1 increment in subjects

with high, but not in subjects with low, body fat content (p = 0.0229 versus p = 0.9; Fig 2B and

2C). This result was unaffected by additional inclusion of glucose tolerance status in the multi-

ple regression models (high body fat: p = 0.0284; low body fat: p = 0.9).

Next, we tested whether this SNP’s effect on GLP-1 is reflected by a concordant effect on

insulin secretion in the overall study population. After adjustment for gender, age, body fat,

and ISI OGTT, no SNP effect on insulin secretion was detectable in the unstratified study pop-

ulation (p = 0.8; Fig 2D). After stratification for body fat and adjustment for gender, age, and

ISI OGTT, the minor C-allele of SNP rs6741949 showed the expected insulin secretion-impair-

ing effect in the high, but not in the low, body fat group (p = 0.0061 versus p = 0.1; Fig 2E and

2F). Again, this result was unaffected by additional inclusion of glucose tolerance status in the

multiple regression models (high body fat: p = 0.0275; low body fat: p = 0.2).

Then, we asked whether the SNP additionally affects fasting glycaemia and/or glucose toler-

ance. Again, no effects on fasting or 2-h glucose levels were seen in the unstratified study

DPP4 genotype-body fat interaction
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population after adjustment for gender, age, and body fat (p = 0.6 and p = 0.7, respectively; Fig

3A and 3D). After stratification for body fat and adjustment for gender and age, the minor C-

allele increased fasting and 2-h glucose levels in the high, but not in the low, body fat group

(fasting glucose: p = 0.0133 versus p = 1.0; 2-h glucose: p = 0.0208 versus p = 0.6; Fig 3B, 3C,

3E and 3F).

Since SNP rs6741949 is intronic and may influence DPP-4 expression or mRNA stability,

we measured fasting plasma DPP-4 levels in the GLP-1/GIP subgroup. However, we did not

detect SNP-dependent differences in circulating DPP-4 levels either in the unstratified group

(p = 0.5; adjusted for gender, age, and body fat) or in the low and high body fat strata (p�0.1;

adjusted for gender and age).

Fig 2. Association of DPP4 SNP rs6741949 with GLP-1 levels and insulin secretion during an OGTT. GLP-1 levels (a-c) are presented

as ratio of GLP-1 at 30 min of the OGTT divided by GLP-1 at baseline adjusted for gender, age, and, in the unstratified subgroup,

bioimpedance-derived percentage of body fat. Insulin secretion (d-f) is presented as ratio of AUC C-peptide during the complete 2-h OGTT

divided by AUC glucose (x10-9) adjusted for gender, age, OGTT-derived insulin sensitivity, and, in the unstratified overall population,

percentage of body fat. For stratification, the population was divided into quintiles of percentage of body fat. The lowest two quintiles were

combined to form the low body fat group (b and e), the highest two quintiles to form the high body fat group (c and f). The middle quintile was

excluded. Individual data and mean diamonds (green) are plotted. The top and the bottom of the mean diamond mark the 95% confidence

interval; the mean line across the middle of the diamond represents the group mean; and the lines above and below the group mean represent

overlap marks. AUC–area under the curve; GLP-1 –glucagon-like peptide 1; OGTT–oral glucose tolerance test; SNP–single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pone.0181880.g002
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Finally, we interrogated publicly available data of the Meta-Analyses of Glucose and Insu-

lin-related traits Consortium (MAGIC). In these unstratified datasets, SNP rs6741949 revealed

weak trends for congruent association with three parameters of insulin secretion, i.e., insulin

concentrations at 30 min of the OGTT (p = 0.06, N = 4,483), 30-min insulin concentrations

adjusted for 30-min glucose concentrations and BMI (p = 0.09, N = 4,409), and incremental

insulin concentrations 0–30 min (p = 0.08, N = 4,447). Data stratified for body adiposity were

not available.

Discussion

In this study, we identified by a tagging SNP approach a common intronic variant, i.e., SNP

rs6741949, in the DPP4 gene that negatively affects glucose-stimulated GLP-1 levels, insulin

secretion, and glucose tolerance in humans. Most interestingly, the SNP effect was detectable

Fig 3. Association of DPP4 SNP rs6741949 with fasting glucose levels and glucose levels at 120 min of the OGTT. Fasting glucose

levels (in mmol/L; a-c) and 2-h glucose levels (in mmol/L; d-f) are presented after adjustment for gender, age, and, in the unstratified overall

population, bioimpedance-derived percentage of body fat. For stratification, the population was divided into quintiles of percentage of body

fat. The lowest two quintiles were combined to form the low body fat group (b and e), the highest two quintiles to form the high body fat group

(c and f). The middle quintile was excluded. Individual data and mean diamonds (green) are plotted. The top and the bottom of the mean

diamond mark the 95% confidence interval; the mean line across the middle of the diamond represents the group mean; and the lines above

and below the group mean represent overlap marks. OGTT–oral glucose tolerance test; SNP–single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0181880.g003
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in subjects with high body adiposity only, whereas no phenotypic differences were seen in sub-

jects with low body adiposity. This is in agreement with the recent in vitro finding that DPP-4

represents an adipokine released by hypertrophic adipocytes [23], with the in vivo observation

of higher DPP-4 levels/activity in obese rodent models [24] and humans [25–27], and with

accordingly lower postprandial GLP-1 levels in obese subjects, as reported by two larger

human studies [28,29]. Thus, only overweight and obese subjects may release sufficient DPP-4

to allow the SNP effect to become apparent. A lack of stratification for body fat content may

also be the reason for the negative findings reported in an earlier DPP4 tagging SNP study

[30].

It is noteworthy that the SNP effects were only observed when we tested for genotype-body

fat interaction using bioimpedance-derived percentage of body fat, but not when using BMI.

The latter is probably an insufficient proxy for body fat content in this context. This limits the

possibility to replicate our results since many pre-existing human studies of comparable sam-

ple size use BMI to assess body adiposity. Thus, novel studies with more precise body fat mea-

surements are urgently needed. The use of BMI could also be the reason why a recent meta-

analysis failed to detect a significant impact of body adiposity on the efficacy of vildagliptin

[31].

As to the SNP’s role in different ethnicities, we can just speculate. The allele frequency of

the minor C-allele considerably varies between the ethnicities analyzed in the 1000 Genomes

Project (http://grch37.ensembl.org/Homo_sapiens/Info/Index), from 5% in Han Chinese to

50% in subjects from Los Angeles with Mexican ancestry. Moreover, the SNP exerts its effects

predominantly in subjects with high body fat, and Chinese and Mexicans also considerably

vary in the prevalence of obesity (~11% vs. ~30%, World Obesity Federation). Based on these

data, we would expect that the SNP plays a more important role in Mexicans than in Han

Chinese.

With respect to the functionality of the SNP, it has to be noted that the proglucagon gene

(GCG) is adjacent and located ~70 kb upstream of the DPP4 gene, and therefore, the SNP

could theoretically influence the expression of proglucagon, the precursor of glucagon, GLP-1,

and GLP-2. Thus, the SNP’s effect on GLP-1 formation/release could be a direct one. However,

careful analysis of publicly available genetic linkage data (from the 1000 Genomes Project)

revealed that no obvious linkage block spans both loci. Therefore, this possibility is rather

unlikely, and the SNP might directly affect the DPP4 gene.

A limitation of the study is that our blood samples were drawn and stored in the absence of

DPP-4 inhibitors and thus were inappropriate to quantify the fraction of intact/active GLP-1

in addition to the total GLP-1 concentration. This measurement would have allowed the

assessment of SNP rs6741949’s impact on DPP-4 activity. It is therefore also possible that the

SNP affects GLP-1 secretion rather than inactivation by modulating DPP-4’s feedback effect

on GLP-1-producing intestinal L-cells, a phenomenon recently discussed in [32]. Moreover,

the SNP could have provoked a delay in GLP-1 secretion that was not detectable with our

time-points of GLP-1 measurement (0, 30, and 120 min of the OGTT). Further investigations

are required to assess these points.

Since the SNP is intronic, it might impact DPP-4 expression or mRNA stability rather than

its enzymatic function. Therefore, we measured plasma DPP-4 concentrations in the subgroup

that revealed sufficient statistical power to detect SNP effects on glucose-stimulated GLP-1

increase. However, we did not detect SNP-dependent differences in circulating DPP-4 levels.

This could be due to the fact that DPP-4 is a ubiquitously expressed transmembrane protein

and our measurement was restricted to the proteolytically generated circulating form of DPP-

4. Clearly, the exact mechanism underlying the observed SNP effects requires further in-

vestigation. In particular, studies addressing the SNP’s effects on DPP-4 gene expression in
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sufficiently large collections of relevant tissues would help elucidate the SNP’s functionality. In

addition, the SNP did not affect fasting or glucose-stimulated GIP levels. Since GLP-1 and GIP

are cleaved by DPP-4 with comparable rates [3], this could reflect divergent feedback effects of

DPP-4 on incretin secretion by L- versus K-cells. This aspect of GLP-1 selectivity needs further

clarification as well.

Finally, we emphasize that this is not a pharmacogenetic study and, thus, cannot give an

appropriate answer to the question whether SNP rs6741949 is causative for the reported bio-

logical variance in response to DPP-4 inhibitors. Based on the presented results, however,

pharmacogenetic investigations addressing the effect of DPP-4 inhibitors on blood glucose

and/or HbA1c levels as a function of the rs6741949 genotype would be promising and would

have a good chance to increase our understanding of the biological causes of limited response/

non-response to DPP-4 inhibitors.

In conclusion, we identified a common tagging SNP, i.e., rs6741949, in the DPP4 gene that

negatively affects glucose-stimulated GLP-1 secretion, insulin secretion, and glucose tolerance.

This variant interacts with body fat, and its effects are unmasked by stratification for body adi-

posity. Even though the mechanism behind these effects remains to be established, common

genetic variation in the DPP4 gene tagged by SNP rs6741949 could possibly underlie the

reported inter-individual variance in responsiveness to DPP-4 inhibitors, especially in subjects

with high body fat content. If corroborated in respective pharmacogenetic studies, this gene

variation could influence clinical decisions, e.g., regarding the use of DPP-4 inhibitors versus

incretin mimetics, in terms of individualized therapy of type-2 diabetes.
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Writing – original draft: Anja Böhm, Harald Staiger.
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