Advancing research:

One cell at a time One scientist at a time One discovery at a time

Proven solutions that further science

BD Accuri[™] C6 Plus BD FACSCelesta[™] BD LSRFortessa[™]

Discover more>

www.bdbiosciences.com/us/go/research-solutions

Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia

Fangyi Gu ^[]^{1,2}, Han Zhang¹, Paula L. Hyland¹, Sonja Berndt¹, Susan M. Gapstur³, William Wheeler⁴, the ELLIPSE consortium*, Christopher I. Amos⁵, Stephane Bezieau⁶, Heike Bickeböller⁷, Hermann Brenner^{8,9,10}, Paul Brennan¹¹, Jenny Chang-Claude¹², David V Conti¹³, Jennifer Anne Doherty¹⁴, Stephen B Gruber¹³, Tabitha A Harrison¹⁵, Richard B Hayes¹⁶, Michael Hoffmeister⁸, Richard S Houlston¹⁷, Rayjean J. Hung¹⁸, Mark A. Jenkins¹⁹, Peter Kraft²⁰, Kate Lawrenson²¹, James McKay¹¹, Sarah Markt²⁰, Lorelei Mucci²⁰, Catherine M. Phelan²², Conghui Qu¹⁵, Angela Risch^{23,24,25,26}, Mary Anne Rossing¹⁵, H.-Erich Wichmann^{27,28,29}, Jianxin Shi¹, Eva Schernhammer^{20,30,31}, Kai Yu¹, Maria Teresa Landi¹ and Neil E. Caporaso¹

- ¹ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
- ² Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
- ³ Epidemiology Research Program, American Cancer Society, Atlanta, GA
- ⁴ Information Management Services, Inc, Rockville, MD
- ⁵ Geisel School of Medicine at Dartmouth, Lebanon, NH
- ⁶ Service de Génétique Médicale, CHU Nantes, Nantes, France
- ⁷ Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
- ⁸ Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ⁹ Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹⁰ German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹¹ International Agency for Research on Cancer, Lyon, France
- ¹² Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹³ Keck School of Medicine, University of South California, Los Angeles, CA
- ¹⁴ Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- ¹⁵ Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- ¹⁶ Department of Population Health, New York University School of Medicine, New York, NY
- ¹⁷ Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
- ¹⁸ Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- ¹⁹ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
- ²⁰ Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA
- ²¹ Cedars-Sinai Medical Center, Los Angeles, CA
- ²² Department of Cancer Epidemiology, Population Sciences Division, Moffitt Cancer Center, Tampa, FL
- ²³ Division of Molecular Biology, University of Salzburg, Salzburg, Austria
- ²⁴ Cancer Cluster Salzburg, Salzburg, Austria
- ²⁵ Translational Lung Research Center, Heidelberg, Germany within the German Center for Lung Research (DZL), Giessen, Germany
- ²⁶ Division of Epigenomics and Cancer Risk Factors, DKFZ German Cancer Research Center, Heidelberg, Germany
- ²⁷ Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Bavaria, Germany
- ²⁸ Helmholtz Center Munich, Institute of Epidemiology II, Neuherberg, Germany
- ²⁹ Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
- ³⁰ Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

³¹Department of Epidemiology, Medical University of Vienna, Vienna, Austria

Key words: circadian rhythm, melatonin, prostate cancer, cancer

Additional Supporting Information may be found in the online version of this article.

Fangyi Gu and Han Zhang Co-first authors.

*The names of the consortium authors are listed in the supplementary materials.

Grant sponsor: National Institute of Health; Grant numbers: U19 CA148127-01 (PI: Amos) and 1U19CA148127-02 (PI: Bickeböller); Grant sponsor: Canadian Cancer Society Research Institute; Grant number: 020214 (PI: Hung); Grant sponsor: National Institute of Health; Grant number: U19 CA148065; Grant sponsor: National Institute of Health; Grant number: U19 CA148065; Grant sponsor: National Institute of Health; Grant number: U19 CA148065; Grant sponsor: National Institute of Health; Grant number: U19 CA148065; Grant sponsor: National Institute of Health; Grant number: U19 CA148065; Grant sponsor: National Institute of Health; Grant number: U19 CA14807; R01 CA81488, P30 CA014089; Grant sponsor: GAME-ON U19 initiative for prostate cancer; Grant number: U19 CA148537; Grant sponsor: National Institute of Health; Grant number: U19 CA148107; R01 CA81488, P30 CA014089; Grant sponsor: National Institutes of Health; Grant number: U19 CA148537; Grant sponsor: National Institute of Health; Grant number: U19 CA148107; R01 CA81488, P30 CA014089; Grant sponsor: National Institutes of Health; Grant number: U19 CA148537; Grant sponsor: National Institutes of Health; Grant number: U19 CA148537; Grant sponsor: National Institutes of Health; Grant number: U19 CA148537; Grant sponsor: National Institutes of Health; Grant number: U19 CA14812-01 (PI: Sellers) and R01-CA149429 (Phelan); Grant sponsors: National Cancer Institute, National Institutes

Cancer Epidemiology

Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction ($p_{pathway} < 0.00625$). The two most significant genes were NPAS2 ($p_{gene} = 0.0062$) and AANAT ($p_{gene} = 0.00078$); the latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON ($p_{pathway} = 0.021$); this association was not confirmed in GECCO ($p_{pathway} = 0.76$) or the combined data ($p_{pathway} = 0.17$). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms.

of Health, US Department of Health and Human Services; Grant numbers: U01 CA137088 and R01 CA059045; Grant sponsors: Regional Council of Pays de la Loire, the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique and the Ligue Régionale Contre le Cancer [(LRCC); ASTERISK: a Hospital Clinical Research Program (PHRC)]; Grant sponsor: German Research Council; Grant numbers: BR 1704/6-1, BR 1704/6-3, BR 1704/6-4 and CH 117/1-1); Grant sponsor: German Federal Ministry of Education and Research; Grant numbers: 01KH0404 and 01ER0814; Grant sponsor: National Institutes of Health; Grant number: R01 CA48998 (to M.L.S.); Grant sponsor: National Institutes of Health; Grant numbers: P01 CA 055075, UM1 CA167552, R01 137178, R01 CA 151993 and P50 CA 127003; Grant sponsor: National Institutes of Health; Grant numbers: R01 CA137178, P01 CA 087969, R01 CA151993 and P50 CA 127003); Grant sponsor: National Institutes of Health; Grant number: R01 CA042182; Grant sponsor: National Institutes of Health (through funding allocated to the Ontario Registry for Studies of Familial Colorectal Cancer; see CFR section); Grant number: U01 CA074783; Grant sponsors: Ontario Research Fund, the Canadian Institutes of Health Research, and the Ontario Institute for Cancer Research, through generous support from the Ontario Ministry of Research and Innovation (Additional funding toward genetic analyses of OFCCR); Grant sponsors: National Cancer Institute [NIH, Division of Cancer Prevention, DHHS (PLCO: Intramural Research Program of the Division of Cancer Epidemiology and Genetics)]; Grant sponsor: National Institutes of Health (NIH) and Genes, Environment, and Health Initiative [GEI (Lung Cancer and Smoking study)]; Grant numbers: Z01 CP 010200, NIH U01 HG004446 and NIH GEI U01 HG 004438; Grant sponsor: GENEVA Coordinating Center provided assistance with genotype cleaning and general study coordination, and the Johns Hopkins University Center for Inherited Disease Research conducted genotyping (For the lung study); Grant sponsor: National Institutes of Health; Grant number: R01 CA076366 (to PA Newcomb); Grant sponsor: .; Grant sponsor: National Institutes of Health; Grant number: K05 CA154337; Grant sponsor: National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services; Grant numbers: HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C and HHSN271201100004C; Grant sponsor: Swedish Cancer Foundation; Grant numbers: 09-0677, 11-484, 12-823; Grant sponsor: The Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linneus Centre; Grant number: 70867902; Grant sponsor: Swedish Research Council; Grant numbers: K2010-70X-20430-04-3, 2014-2269; Grant sponsor: Canadian Institutes of Health Research (European Commission's Seventh Framework Programme grant agreement; CRUK GWAS); Grant number: 223175 (HEALTH-F2-2009–223175); Grant sponsor: Cancer Research UK; Grant numbers: C5047/A7357, C1287/ A10118, C5047/A3354, C5047/A10692 and C16913/A6135; Grant sponsor: National Institute of Health (NIH; Cancer Post-Cancer GWAS initiative grant); Grant number: 1 U19 CA 148537-01 (the GAME-ON initiative); Grant sponsors: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK and The National Cancer Research Institute (NCRI) UK; Grant sponsor: NIHR (NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust); Grant sponsor: The National Health and Medical Research Council, Australia (The Prostate Cancer Program of Cancer Council Victoria); Grant numbers: 126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394 and 614296,); Grant sponsors: VicHealth, Cancer Council Victoria, The Prostate Cancer Foundation of Australia, The Whitten Foundation, PricewaterhouseCoopers, and Tattersall's; Grant sponsor: National Human Genome Research Institute for their support (EAO, DMK, and EMK acknowledge the Intramural Program) DOI: 10.1002/ijc.30883

History: Received 2 Mar 2017; Accepted 16 June 2017; Online 12 July 2017

Correspondence to: Fangyi Gu, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NU, 14263, Tel.: 2404720551, E-mail: fangyigu@gmail.com or fangyi.gu@roswellpark.org

What's new?

Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. In this large SNP study, the authors found a significant association between both circadian-rhythm and melatonin-pathway gene variants and prostate-cancer risk. These results support a role for circadian-rhythm and melatonin pathways in prostate carcinogenesis.

Circadian rhythm is driven by an internal biological clock, which enables humans to sustain an approximate 24-hr cycle of biological processes,¹ and regulates diverse cancer-related biological functions such as metabolism, immune regulation, DNA repair and cell cycle control.² Disruption of circadian rhythm has been linked to carcinogenesis at the system, cell and molecular levels.² Based on sufficient evidence in experimental animals for the carcinogenicity of light exposure during the biological night, and limited epidemiological studies showing increased risk of breast cancer among female nightshift workers and flight attendants employed at least ten years, shift work with disrupted circadian rhythm has been categorized as a probable carcinogen to humans by the International Agency for Research on Cancer.³ However, evidence for cancers other than breast is limited. Increased cancer risks in other organs have been observed in mouse models with ablated circadian rhythm genes, such as the blood,⁴ liver,⁴ ovary,⁴ intestine,⁵ colon⁵ and skin,⁶ possibly due to constitutively elevated cell proliferation,⁶ impaired DNA repair,⁷ and apoptosis⁸ and inefficient immune response.9,10 There is growing evidence from epidemiologic studies that other types of cancers including prostate,¹¹⁻¹⁴ colon¹⁵ and non-Hodgkin lymphoma¹⁶ also may be associated with rotating and night shift work.

A few candidate gene studies have examined associations between genes involved in circadian processes and several cancer sites,^{17–29} especially breast.^{21,24–26,29} In this study, we examined associations of the core genes involved in the circadian rhythm and melatonin pathways with the risk of prostate, colorectal, lung and ovarian cancer in population of European descent, taking advantage of the large study populations from the Genetic Associations and Mechanisms in Oncology (GAME-ON) GWAS consortia. We conducted a pathway-level analysis, aggregating association evidence across multiple genes. Potentially interesting findings were further replicated in independent populations of European descent.

Methods

Study populations

Our initial analyses used data from 20 GWAS studies on four common cancer sites within the National Cancer Institute GAME-ON Network (http://epi.grants.cancer.gov/gameon/),³⁰ including 12,537 lung cancer cases and 17,285 controls from the Transdisciplinary Research for Cancer of Lung (TRICL) consortium; 5,100 colorectal cases and 4,831 controls from the ColoRectal Transdisciplinary Study (CORECT); 10,218 prostate cancer cases and 11,286 controls from the Elucidating Loci in

Prostate Cancer Susceptibility (ELLIPSE) consortium; as well as 4,369 ovarian cancer cases and 9,123 controls from the Follow-up of Ovarian Cancer Genetic Association and Interaction Studies (FOCI; Table 1). For colorectal and prostate cancer, potentially interesting findings were carried forward and replicated in additional independent data: 10,738 cases and 13,328 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium for colorectal cancer (GECCO)³¹; 4,600 cases and 2,941 controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial for prostate cancer.³² All participants were of European descent, and most of the studies were conducted using Illumina genotyping platforms (Table 1). Details of the genotyping and quality control steps were published previously.³⁰⁻³² All participating studies obtained approval from the institutional ethics review board, and informed consents were obtained from each study participant by the individual study coordinating center.

Candidate genes

For the circadian rhythm pathway, we included nine wellestablished core circadian rhythm genes that generate the mammalian circadian rhythm³³ and were selected for a previous cancer study to represent the circadian rhythm pathway²⁴: *CLOCK* and its paralogue *NPAS2* (neuronal PAS domain protein 2); *ARNTL* (aryl hydrocarbon receptor nuclear translocator-like; a.k.a. *Bmal1*); *CKI* ε (casein kinase I ε ; a.k.a. *CSNKIE*); Cryptochrome 1 (*CRY1*); *CRY2*; and three Period homologs (*PER1*, *PER2* and *PER3*).

Due to a close integration of melatonin to the circadian system, we also included four genes involved in melatonin biosynthesis (http://www.kegg.jp/kegg-bin/show_module?M00037)³⁴ and two melatonin receptor genes: arylalkylamine Nacetyltransferase (*AANAT*, a gene encoding the rate limiting enzyme in the melatonin biosynthesis), *TPH1* (tryptophan hydroxylase 1), *TPH2* and *DDC* (aromatic-L-amino-acid decarboxylase); *MTNR1* α (melatonin receptor 1 α) and *MTNR1\beta*. Another gene involved in the melatonin biosynthesis, *ASMT* (Acetylserotonin O-methyltransferase) was not included because we have no access to the data of the x chromosome where this gene is located.

Statistical analyses

The analytical methods of original studies and the cancerspecific results have been described previously^{31,32,35-38} and are summarized in Table 1. Briefly each original study

Consortium Name	Cancer Site	No. study ¹	Cases	Controls	Genotyping Platform	Reference Panel	Covariants
Initial data of	GAME-ON						
CORECT	Colorectal	6	5,100	4,831	Affymetrix Axiom	1,000 Genome ²	Age, sex, first four principal components (PCs) ³⁷
TRICL	Lung	6	12,537	17,285	Illumina 317K/ 550K/610K	1,000 Genome ²	Age, sex, PCs ³⁸
FOCI	Ovary	3	4,369	9,123	Illumina 317K/ 370K/550K/ 610K/670K/ 2.5M	1,000 Genome ²	Study, first five PCs ³⁶
ELLIPSE	Prostate	5	10,218	11,286	Illumina, Affymetrix	1,000 Genome ²	Age, study, PCs ³⁵
Replication data							
PLCO	Prostate	1	4,600	2,941	Illumina Human- Omni2.5 Beadchip	1,000 Genome ²	Age, two significant PCs ³²
GECCO	Colorectal	21	10,738	13,328	Illumina 550K/ 610K/ CytoSNP/ Omni; Affyme- trix for one study	1,000 Genome ²	Age, sex (when applicable), center/region (when applicable), batch (when applicable), smoking sta- tus (when applicable), first three PCs ³¹

Table 1. Summary of study populations and designs for each cancer site

CORECT: ColoRectal Transdisciplinary Study; TRICL: Transdisciplinary Research for Cancer of Lung; FOCI: Follow-up of Ovarian Cancer Genetic Association and Interaction Studies; ELLIPSE: Elucidating Loci in Prostate Cancer Susceptibility; PLCO: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; GECCO: Genetics and Epidemiology of Colorectal Cancer Consortium.

¹Contributed studies are listed in the Supporting Information Table 1;

²1,000 Genome March 2012 reference panel.

provided log odds ratios and standard errors on each SNP and each cancer risk, mostly adjusting for age, principal components (PCs), and sex (if applicable). For each cancer site, fixed-effect meta-analyses were conducted to combine summary association statistics of participating studies by the cohort consortium. The genotypes were imputed based on data of European populations from the 1000 Genomes Project (March 2012 reference panel),³⁹ using either MaCH⁴⁰ or IMPUTE.⁴¹ We extracted both the genotyped and imputed SNPs of the genetic regions from 20 kb upstream to 10 kb downstream of each candidate gene.

We conducted gene- and pathway-based meta-analyses using the summary based adaptive rank truncated product (sARTP) method, which combines SNP-level association evidence across SNPs in a gene or a pathway.⁴² The sARTP method automatically adjusts for the size of the gene (*i.e.*, number of SNPs in a gene) and the size of the pathway (*i.e.*, number of genes in a pathway) through a resampling procedure. The final gene- and pathway-level *p*-values were estimated from the resampled null distribution through one million resampling steps. The sARTP method accounts for the linkage disequilibrium (LD) between SNPs to maintain proper type I error. The LDs between SNPs were estimated from the 503 European subjects (CEU, TSI, FIN, GBR, IBS) in the 1,000 Genome Project (phase 3, v5, 2013/05/02).³⁹ We excluded SNPs with MAF < 5% and applied LD filtering to highly correlated SNP pairs ($r^2 > 0.95$). We also conducted a sensitivity analysis using a more stringent threshold for LD pruning ($r^2 > 0.8$).

For prostate and colorectal cancer that have pathway <u>p</u>-values <0.05, we replicated our findings in PLCO and GECCO. We also repeated the gene- and pathway-based analyses on data combing the initial and replication studies.

To eliminate the impact of potential systematic biases in SNP-level association, we adjusted for the genomic control inflation factor (lambda = 1.015) for data from the CORECT.^{37,42} The genomic control inflation factors for GECCO, ELLIPSE, PLCO, TRICL and FOCI were close to or smaller than 1.0, thus were not adjusted in our analyses. To take potential false-positives from multiple-comparisons into account (two pathways, or 15 genes) for each of the four cancer sites, pathways with *p* values < 0.00625 (0.05/(2 × 4)) and genes with *p* values < 0.00083 (0.05/(15 × 4)) were considered significant.

For prostate cancer, where we found significant associations with genetic variations of circadian and melatonin pathways after the Bonferroni correction, secondary analyses for aggressive prostate cancer were conducted at the gene and pathway level, using data combining six studies of ELLIPSE and PLCO (4,446 cases and 12,724 controls). For the SNPs with the smallest *p*-values in the genes with $p_{\text{gene}} \leq 0.05$ on the risk of overall prostate cancer, we also checked their SNP associations with aggressive prostate cancer.

Results

We found suggestive associations between genetic variation in both circadian rhythm and melatonin pathways and prostate cancer risk based on data of GAME-ON, with $(p_{\text{pathway}} = 0.014 \text{ and } 0.024, \text{ respectively; Table 2})$. These associations were not statistically significant in PLCO alone $(p_{\text{pathway}} = 0.28 \text{ and } 0.21)$, but were enhanced in the combined data of GAME-ON and PLCO ($p_{pathway} = 0.0016$ and 0.0060; Table 2), both being significant after Bonferroni correction. NPAS2 in the circadian rhythm pathway $(p_{\text{gene}} = 0.0062)$ and AANAT $(p_{\text{gene}} = 0.00078)$ in the melatonin pathway contributed the most to the association with the risk of prostate cancer, with AANAT survived Bonferroni correction (Table 3). Other genes with the gene-level p-values at borderline significance were CLOCK ($p_{\text{gene}} = 0.021$), CRY2 $(p_{\text{gene}} = 0.043), DDC (p_{\text{gene}} = 0.050), PER2 (p_{\text{gene}} = 0.060),$ and PER1 ($p_{gene} = 0.063$; Table 3). A sensitivity analysis with more stringent threshold in LD pruning $(r^2 > 0.8)$ produced consistent pathway-level and gene-level results (data not shown). SNPs with p values < 0.01 in NPAS2 and AANAT are presented in Table 4.

With a much smaller number of aggressive prostate cancer cases (4,446 cases, 12,724 controls), we did not observe significant association of aggressive prostate cancer with either pathway ($p_{pathway} = 0.29$ and 0.66), but we observed a suggestive association with *PER3* ($p_{gene} = 0.03$) (Supporting Information Table 2). For SNPs that have the smallest *p*-values in genes *CLOCK*, *CRY2*, *NPAS2*, *AANAT*, and *DDC* ($p_{gene} \leq 0.05$ with overall prostate cancer), the log odds ratios (β) estimated for overall and aggressive prostate cancer are comparable and have the same direction (Supporting Information Table 3).

For colorectal cancer (Table 2), we observed a suggestive association with circadian rhythm pathway in GAME-ON ($p_{pathway} = 0.021$), but not in GECCO ($p_{pathway} = 0.76$) or in the combined data ($p_{pathway} = 0.17$) (Supporting Information Table 4). No association was observed for ovarian cancer and lung cancer (Table 2, Supporting Information Table 5).

Discussion

We found common genetic variations in the circadian rhythm and melatonin pathways were associated with prostate cancer risk in the population of European descent. These associations were initially identified in the GAME-ON consortium, and further confirmed in the data combining the GAME-ON and PLCO studies. Our findings suggest that the circadian rhythm and melatonin pathways may be involved in prostate carcinogenesis.

Circadian disruption has been suggested as a prostate cancer risk factor based on epidemiological observation of increased prostate cancer risks among shift workers,¹¹⁻¹⁴ and countries with more light exposure at night.⁴³ In support of this hypothesis, three genetic epidemiology studies found suggestive associations between SNPs in core circadian genes

		Circadian rhythm pathway		Mel pat	atonin hway
Cancer	Data	N.SNP	<i>p</i> -value	N.SNP	<i>p</i> -value
Prostate	GAME-ON	520	0.014	258	0.024
	PLCO	521	0.28	223	0.21
	Combined data	521	0.0016 ¹	263	0.0060 ¹
Colorectal	GAME-ON	653	0.021	352	0.24
	GECCO	670	0.76	376	0.066
	Combined data	842	0.17	459	0.091
Lung	GAME-ON	510	0.71	243	0.22
Ovary	GAME-ON	521	0.14	263	0.26

¹Statistically significant after Bonferroni correction (p < 0.05/8 = 0.00625).

p values <0.05 in bold.

and prostate cancer^{19,23,27} or aggressive prostate cancer²³ in Caucasian^{23,27} and Asian¹⁹ populations, although these studies had limited power (sample sizes < 2,600) to adjust for multiple comparisons. By taking advantage of the large study population from cancer consortia and using a novel analytical tool, our study provided further evidence that the circadian rhythm and melatonin pathways may be involved in prostate carcinogenesis in humans.

Although multiple genes are likely to contribute to pathway association signals, the most significant genes were NPAS2 and AANAT. Previous functional studies suggest that NPAS2 plays an important role in DNA damage response, cell cycle control and apoptosis by activating diverse downstream genes,^{44,45} consistent with a role as a tumor suppressor. In line with our finding, the Thr allele of rs23051560 $(p = 7.5 \times 10^{-4})$, a non-synonymous SNP (Ala394Thr) in the NPAS2, has been suggestively associated with lower risks of breast cancer,²⁸ prostate cancer¹⁹ and NHL,⁴⁶ three tumors that have been linked with circadian disruption in epidemiologic studies. This SNP has also been suggested to modify the association of night shift work and breast cancer risk, with Thr carriers more vulnerable to shift work effect.²⁴ AANAT (aka., serotonin N-acetyltransferase) is the rate limiting and originating enzyme for melatonin synthesis, through which the suprachiasmatic nucleus via a sympathetic multisynaptic pathway regulates rhythmic melatonin synthesis.⁴⁷ Melatonin acts as a chronobiotic molecule, optimizing phase relationships between oscillators in both central nervous system and peripheral organs, reinforcing circadian rhythms of body functions, and entraining body rhythms to the environmental light phase.48,49

A mechanism linking the circadian system, melatonin and prostate cancer may operate through the neuroendocrine gonadal axis. The pineal gland and melatonin have a role in the inhibition of the neuroendocrine gonadal axis⁵⁰; while sex hormones, such as androgen, are essential on prostate development. Androgen has been a prostate

		GAN (10218 ca con	NE-ON ases, 11286 trols)	P (4600 ca con	LCO ases, 2941 Itrols)	Combined data (14818 cases, 14227 controls)		
Gene	Chr	N.SNP	<i>p</i> -value	N.SNP	<i>p</i> -value	N.SNP	<i>p</i> -value	
Circadian rhythm	pathway							
ARNTL	11	80	0.41	80	0.40	80	0.29	
CK1E	22	48	0.67	48	0.11	48	0.30	
CLOCK	4	24	0.013	24	0.44	24	0.021	
CRYI	12	35	0.27	35	0.87	35	0.55	
CRY2	11	20	0.53	20	0.073	20	0.043	
NPAS2	2	167	0.051	167	0.14	167	0.0062	
PER1	17	29	0.24	30	0.12	30	0.063	
PER2	2	50	0.090	50	0.57	50	0.060	
PER3	1	67	0.020	67	0.94	67	0.24	
Pathway-level		520	0.014	521	0.28	521	0.0016 ¹	
Melatonin pathw	ay							
AANAT	17	34	0.071	38	0.043	38	0.00078 ¹	
DDC	7	84	0.033	77	0.63	84	0.050	
MTNR1A	4	35	0.041	18	0.52	35	0.35	
MTNR1B	11	23	0.94	7	0.92	23	0.96	
TPH1	11	18	0.72	18	0.17	18	0.15	
TPH2	12	64	0.081	65	0.12	65	0.21	
Pathway-level		258	0.024	223	0.21	263	0.0060 ¹	

Table 3. Pathway-based and gene-based results between circadian rhythm-melatonin pathway genes and prostate cancer

¹Statistically significant after Bonferroni correction (p < 0.05/8 = 0.00625 at pathway level; p < 0.05/60 = 0.00083 at gene level). p values < 0.05 in bold.

cancer inducer in animals,⁵¹ and associated with increased prostate cancer risk in humans.^{52,53} Therefore, it is possible that an increase in androgen, subsequent to disrupted circadian rhythm and/or suppressed melatonin,⁵⁴ may contribute to prostate carcinogenesis. Alternatively, melatonin may have a direct anti-tumor effect, by controlling the p53 pathway, or its antimitotic, antioxidant and immune-modulatory activities.¹ Both *in vitro* and *in vivo* studies provide evidence that melatonin inhibits prostate tumor growth,^{55,56} whereas melatonin suppression in rats increases tumor growth in a dose-dependent manner.⁵⁰ In agreement with the melatonin hypothesis, lower urinary 6-sulfatoxymelatonin has been associated with an increased risk of advanced prostate cancer in a prospective study.⁵⁷

Apart from mechanisms related to melatonin, the circadian clock may control cell proliferation and apoptosis through regulating the expression of genes involved in these processes at the transcription or translation level, such as *c*-*Myc* and *Mdm2*, *Trp53* and *Gadd45*, *cyclins* etc.²

We did not find any significant association for the risk of aggressive prostate cancer at the gene or pathway level. Given a much smaller number of aggressive prostate cancer cases, and the fact that genetic effects are generally small on cancer risk, the statistical power of gene- and pathway-based analyses was limited. However, we observed a suggestive association with *PER3* ($p_{\text{gene}} = 0.03$); a SNP (rs1012477) of this gene has been associated with prostate cancer aggressiveness in a previous report.²⁷ For SNPs with the smallest *p*-values associated with overall prostate cancer within *CLOCK*, *CRY2*, *NPAS2*, *AANAT*, and *DDC*, the estimated effect sizes for the risk of overall and aggressive prostate cancer are comparable and have the same direction. Given the poor prognosis and public health impact of aggressive prostate cancer, more focused study is needed for the role of circadian rhythm genes and prostate cancer aggressiveness.

Our study did not find associations in the circadian rhythm or melatonin pathway genes with colorectal, lung or ovarian cancer. Several important factors need to be considered before concluding that circadian rhythm has no effect on these cancer sites. First, gene functions differ by organs and although we studied the core genes in each pathway, there might be other critical circadian-related genes missed in this study. ROR α , for example, suggested as an important regulator for homeostasis in intestinal epithelium,⁵⁸ as well as newly identified circadian genes⁵⁹ are worthwhile to be evaluated in the future. Second, the statistical power of gene- and pathway-based analyses for studying ovarian cancer may be limited by small sample size Cancer Epidemiology

Table 4. Association between the SNPs in AANAT and NPAS2 and prostate cancer, with meta-analyses for prostate cancer association p values < 0.01

		Al	lele		GAME-ON (ELLIPSE) PI		PLCO	Fixed-effect meta- analyses		
SNP	Loc	Ref	Effect	RAF^1	β	р	β	р	β	p
Gene: AANAT										
rs150316415	74475409	G	А	0.94	0.34	$4.33 imes 10^{-3}$	0.25	$2.15 imes 10^{-3}$	0.28	$3.41 imes 10^{-5}$
rs3744045	74475024	G	А	0.08	-0.27	$5.04 imes 10^{-3}$	-0.21	$2.85 imes 10^{-3}$	-0.23	$4.80 imes 10^{-5}$
rs61742551	74472998	G	А	0.98	N/A	N/A	0.41	$8.12 imes 10^{-4}$	0.41	$8.12 imes 10^{-4}$
rs9894765	74456426	G	С	0.24	-0.07	0.16	-0.10	$2.11 imes 10^{-2}$	-0.09	$7.14 imes 10^{-3}$
rs12945905	74456758	С	Т	0.80	0.13	$1.67 imes 10^{-2}$	0.07	0.14	0.09	$8.08 imes 10^{-3}$
Gene: NPAS2										
rs1542178	101595475	G	А	0.67	-0.08	$6.50 imes10^{-4}$	-0.09	$9.88 imes 10^{-3}$	-0.08	$2.03 imes 10^{-5}$
rs2305160	101591304	G	А	0.67	-0.08	$7.70 imes 10^{-4}$	-0.09	$1.52 imes 10^{-2}$	-0.08	$3.47 imes 10^{-5}$
rs2305159	101591443	С	А	0.32	-0.08	$4.84 imes 10^{-4}$	-0.04	0.24	-0.07	$3.37 imes10^{-4}$
rs1542179	101595235	G	А	0.32	-0.08	$5.50 imes 10^{-4}$	-0.04	0.28	-0.07	$4.55 imes 10^{-4}$
rs4851392	101581976	G	А	0.74	-0.07	2.26×10^{-3}	-0.06	8.68×10^{-2}	-0.07	$4.71 imes10^{-4}$
rs13019460	101461099	G	С	0.21	-0.06	0.18	-0.13	1.70×10^{-3}	-0.10	$1.24 imes 10^{-3}$
rs6747874	101578489	G	А	0.74	0.08	$2.77 imes 10^{-3}$	0.05	0.19	0.07	$1.27 imes 10^{-3}$
rs6747755	101578458	G	А	0.74	0.08	3.18×10^{-3}	0.05	0.19	0.07	$1.46 imes 10^{-3}$
rs12622050	101579454	G	А	0.76	0.08	2.47×10^{-3}	0.05	0.27	0.07	$1.65 imes 10^{-3}$
rs12619710	101579487	С	Т	0.26	-0.07	$3.56 imes 10^{-3}$	-0.05	0.21	-0.07	$1.73 imes 10^{-3}$
rs2278728	101598312	С	Т	0.32	-0.07	2.02×10^{-3}	-0.04	0.33	-0.06	$1.80 imes 10^{-3}$
rs876060	101576964	Т	А	0.24	-0.08	2.47×10^{-3}	-0.04	0.31	-0.07	$1.92 imes 10^{-3}$
rs13012930	101460947	G	А	0.82	0.04	0.18	0.15	$9.93 imes10^{-4}$	0.08	$2.56 imes10^{-3}$
rs4851391	101579811	G	С	0.24	-0.07	6.25×10^{-3}	-0.05	0.26	-0.06	3.60×10^{-3}
rs4851377	101522266	С	Т	0.46	-0.05	5.54×10^{-2}	-0.07	3.33×10^{-2}	-0.06	$4.98 imes 10^{-3}$
rs13017728	101481348	G	Т	0.09	-0.10	0.1.8	-0.15	1.24×10^{-2}	-0.13	$5.42 imes 10^{-3}$
rs965519	101470349	G	А	0.18	-0.04	0.22	-0.13	2.53×10^{-3}	-0.07	$6.15 imes 10^{-3}$
rs2309993	101499264	С	Т	0.67	0.07	0.10	0.08	3.24×10^{-2}	0.07	$7.25 imes 10^{-3}$
rs4851386	101566938	С	Т	0.52	-0.05	3.58×10^{-2}	-0.06	9.42×10^{-2}	-0.05	$7.48 imes 10^{-3}$
rs3739006	101566184	G	А	0.52	-0.04	$4.22 imes 10^{-2}$	-0.06	$8.14 imes 10^{-2}$	-0.05	7.91×10^{-3}
rs4851385	101566323	G	С	0.48	0.04	4.22×10^{-2}	0.06	8.14×10^{-2}	0.05	7.91×10^{-3}
rs3739005	101566070	С	Т	0.48	0.05	3.46×10^{-2}	0.05	0.13	0.05	$9.19 imes 10^{-3}$

¹Reference allele frequency. The frequencies are calculated from 503 European subjects in the 1,000 Genomes data.

compared with other cancer sites considered in this article. Third, for lung and colorectal cancer, where environmental and life style risk factors play a dominant role, the contribution of disrupted circadian rhythm might be small and/or may be indirectly associated with cancer through modifying the toxicity of environmental carcinogens,⁶⁰ or altering the DNA damage response.^{6,7} Therefore, incorporating data on environmental carcinogens and measures of toxicity into the study of circadian rhythm and cancer may be important. Fourth, although genetic variation does not suffer from confounding bias by other life style factors, it may have a smaller impact on circadian rhythm disruption than light exposure at night and night shift work. Therefore, future studies of both

environmental or life style inducers of circadian disruption coupled with mechanistic or genetic marker studies in circadian rhythm pathways are needed.

In this study, like other candidate pathway-based analyses,⁶¹ we assigned SNPs to each of the circadian genes based on genomic location. Approaches that assign SNPs to a gene based on functionality such as a genetic influence on gene expression or expression quantitative risk loci (eQTL) might reveal more signals, but this type of approach relies heavily on the known eQTL function of the SNPs in the tissue of interest and, in fact, the eQTL effects on gene expression are typically tissue-specific.⁶² We attempted to evaluate the involvement of the top prostate cancer risk SNPs of *AANAT* and *NPAS2* as functional

Cancer Epidemiology

eQTLs using RNA-seq and SNP data from ten normal brain tissues (GTEx). We observed modest eQTL effects on *AANAT* and *NPAS2* mRNA levels by the top risk SNPs, but no risk eQTL survived correction for multiple comparisons (data not shown). Importantly, published data suggest that the target tissue for melatonin synthesis is the pineal gland, while for circadian rhythm it is the superchiasmatic nucleus (SCN).¹ RNA-seq data for these normal brain tissues are not available in GTEx or to our knowledge from any other publically available database. Thus, whether the observed prostate cancer risk SNPs of *AANAT* and *NPAS2* circadian genes are functional eQTLs, and whether the changes in mRNA levels in the pineal gland and SCN are associated with prostate cancer susceptibility remains to be determined.

Our study has many strengths. Using genetic markers to examine circadian hypotheses minimizes the bias due to potential confounders, and therefore is a valuable complement to traditional epidemiologic studies (*e.g.*, in night shift workers). We used an analytical tool that combines signals across SNPs within genes and pathways, and therefore found

References

- Brzezinski A. Melatonin in humans. N Engl J Med 1997;336:186–95.
- Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. *Nat Rev Cancer* 2003;3: 350–61.
- Straif K, Baan R, Grosse Y, et al. Carcinogenicity of shift-work, painting, and fire-fighting. *Lancet* Oncol 2007;8:1065–6.
- Lee S, Donehower LA, Herron AJ, et al. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. *PLoS One* 2010;5:e10995.
- Wood PA, Yang X, Taber A, et al. Period 2 mutation accelerates ApcMin/+ tumorigenesis. *Mol Cancer Res* 2008;6:1786–93.
- Geyfman M, Kumar V, Liu Q, et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci USA 2012;109: 11758–63.
- Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. *Cell* 2002;111:41–50.
- Gery S, Komatsu N, Baldjyan L, et al. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. *Mol Cell* 2006;22:375–82.
- Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. *Nat Med* 2014;20:919– 26.
- Rahman SA, Castanon-Cervantes O, Scheer FA, et al. Endogenous circadian regulation of proinflammatory cytokines and chemokines in the presence of bacterial lipopolysaccharide in humans. *Brain Behav Immun* 2015;47:4–13.
- Kubo T, Ozasa K, Mikami K, et al. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. *Am J Epidemiol* 2006; 164:549–55.

- Conlon M, Lightfoot N, Kreiger N. Rotating shift work and risk of prostate cancer. *Epidemiology* 2007;18:182–3.
- Parent ME, El-Zein M, Rousseau MC, et al. Night work and the risk of cancer among men. Am J Epidemiol 2012;176:751–9.
- Papantoniou K, Castano-Vinyals G, Espinosa A, et al. Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. *Int J Cancer* 2015;137:1147–57.
- Schernhammer ES, Laden F, Speizer FE, et al. Nightshift work and risk of colorectal cancer in the nurses' health study. J Natl Cancer Inst 2003;95:825–8.
- Lahti TA, Partonen T, Kyyronen P, et al. Nighttime work predisposes to non-Hodgkin lymphoma. *Int J Cancer* 2008;123:2148–51.
- Alexander M, Burch JB, Steck SE, et al. Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation. Oncol Rep 2015;33:935–41.
- Cao Q, Gery S, Dashti A, et al. A role for the clock gene per1 in prostate cancer. *Cancer Res* 2009;69:7619–25.
- Chu LW, Zhu Y, Yu K, et al. Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 2008;11:342–8.
- Couto P, Miranda D, Vieira R, et al. Association between CLOCK, PER3 and CCRN4L with nonsmall cell lung cancer in Brazilian patients. *Mol Med Rep* 2014;10:435–40.
- Grundy A, Schuetz JM, Lai AS, et al. Shift work, circadian gene variants and risk of breast cancer. *Cancer Epidemiol* 2013;37:606–12.
- Jim HS, Lin HY, Tyrer JP, et al. Common genetic variation in circadian rhythm genes and risk of epithelial ovarian cancer (EOC). J Genet Genome Res. 2015;2.
- Markt SC, Valdimarsdottir UA, Shui IM, et al. Circadian clock genes and risk of fatal prostate cancer. *Cancer Causes Control* 2015;26:25–33.
- 24. Monsees GM, Kraft P, Hankinson SE, et al. Circadian genes and breast cancer susceptibility in

significant results that would not have been detectable by single SNP analysis. To our knowledge, the sample sizes in our study are the largest to date for colorectal, lung, and prostate cancer. The data quality of the included GWAS studies is well established. To control potential false positive findings, we adjusted for multiple comparisons, and replicated our findings in independent data.

In summary, our study suggests that common genetic variation in and around circadian rhythm and melatonin pathways may be involved in human prostate carcinogenesis, in support of circadian disruption as a potential human carcinogen.

Acknowledgements

The authors thank Dr. Andrew Bergen and Shailesh Kumar (NIH/NHLBI) for the discussion on functional annotation and circadian rhythm. We recognize the following contributors from CORECT: Stephanie L. Schmit, Fredrick R. Schumacher, Christopher K. Edlund, Gad Rennert, Eric Jacobs, Peter T. Campbell, John L. Hopper, Daniel D. Buchanan, Li Li, Michael Woods, Graham Giles. Other contributors from GECCO are listed in the Supporting Information materials.

rotating shift workers. Int J Cancer 2012;131: 2547-52.

- Rabstein S, Harth V, Justenhoven C, et al. Polymorphisms in circadian genes, night work and breast cancer: results from the GENICA study. *Chronobiol Int* 2014;31:1115–22.
- Truong T, Liquet B, Menegaux F, et al. Breast cancer risk, nightwork, and circadian clock gene polymorphisms. *Endocr Relat Cancer* 2014;21: 629–38.
- Zhu Y, Stevens RG, Hoffman AE, et al. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. *Cancer Res* 2009;69:9315–22.
- Zhu Y, Stevens RG, Leaderer D, et al. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. *Breast Cancer Res Treat* 2008;107:421–5.
- Zienolddiny S, Haugen A, Lie JA, et al. Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts. *Breast Cancer Res* 2013;15:R53.
- Hung RJ, Ulrich CM, Goode EL, et al. Cross cancer genomic investigation of inflammation pathway for five common cancers: lung, ovary, prostate, breast, and colorectal cancer. *JNCIJ* 2015;107.
- Peters U, Jiao S, Schumacher FR, et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. *Gastroenterology* 2013;144:799–807.e24.
- Berndt SI, Wang Z, Yeager M, et al. Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun 2015;6:6889
- Kondratov RV, Gorbacheva VY, Antoch MP. The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. *Curr Top Dev Biol* 2007;78:173–216.
- Konturek SJ, Konturek PC, Brzozowski T. Melatonin in gastroprotection against stress-induced acute gastric lesions and in healing of chronic gastric ulcers. J Physiol Pharmacol 2006;57 Suppl 5:51–66.
- Eeles RA, Kote-Jarai Z, Al Olama AA, et al. Identification of seven new prostate cancer

susceptibility loci through a genome-wide association study. *Nat Genet* 2009;41:1116–21.

- Pharoah PD, Tsai YY, Ramus SJ, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. *Nat Genet* 2013;45:362–70. 70e1–2.
- Schumacher FR, Schmit SL, Jiao S, et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. *Nat Commun* 2015;6:7138.
- Timofeeva MN, Hung RJ, Rafnar T, et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. *Hum Mol Genet* 2012;21:4980–95.
- Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. *Nature* 2015;526:68–74.
- Li Y, Willer CJ, Ding J, et al. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet Epidemiol* 2010;34:816–34.
- Marchini J, Howie B, Myers S, et al. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat Genet* 2007; 39:906–13.
- 42. Zhang H, Wheeler W, Hyland PL, et al. A powerful procedure for pathway-based meta-analysis using summary statistics identifies 43 pathways associated with type II diabetes in European populations. *PLoS Genet* 2016;12:e1006122
- 43. Rybnikova NA, Haim A, Portnov BA. Is prostate cancer incidence worldwide linked to artificial light at night exposures? Review of earlier findings and analysis of current trends. *Arch Environ Occup Health* 2017;72:111–22.

- Hoffman AE, Zheng T, Ba Y, et al. The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. *Mol Cancer Res* 2008;6:1461–8.
- Yi CH, Zheng T, Leaderer D, et al. Cancer-related transcriptional targets of the circadian gene NPAS2 identified by genome-wide ChIP-on-chip analysis. *Cancer Lett* 2009;284:149–56.
- Zhu Y, Leaderer D, Guss C, et al. Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin's lymphoma. *Int J Cancer* 2007;120:432–5.
- Sengupta ATG. THE PINEAL GLAND, 2011.
 Hardeland R, Madrid JA, Tan DX, et al. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012;52:139–66.
- Pevet P, Agez L, Bothorel B, et al. Melatonin in the multi-oscillatory mammalian circadian world. *Chronobiol Int* 2006;23:39–51.
- Toma JG, Amerongen HM, Hennes SC, et al. Effects of olfactory bulbectomy, melatonin, and/or pinealectomy on three sublines of the Dunning R3327 rat prostatic adenocarcinoma. J Pineal Res 1987;4:321–38.
- Brown CE, Warren S, Chute RN, et al. Hormonally induced tumors of the reproductive system of parabiosed male rats. *Cancer Res* 1979;39:3971–6.
- Gann PH, Hennekens CH, Ma J, et al. Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst 1996;88:1118–26.
- Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003;349:215–24.
- 54. Papantoniou K, Pozo OJ, Espinosa A, et al. Increased and mistimed sex hormone production

in night shift workers. *Cancer Epidemiol Bio*markers Prev 2015;24:854–63.

- 55. Xi SC, Siu SW, Fong SW, et al. Inhibition of androgen-sensitive LNCaP prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with mt1 receptor protein expression. *Prostate* 2001;46:52–61.
- Siu SW, Lau KW, Tam PC, et al. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. *Prostate* 2002;52:106–22.
- Sigurdardottir LG, Markt SC, Rider JR, et al. Urinary melatonin levels, sleep disruption, and risk of prostate cancer in elderly men. *Eur Urol* 2015; 67:191–4.
- Mukherji A, Kobiita A, Ye T, et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. *Cell* 2013;153:812–27.
- Lane JM, Vlasac I, Anderson SG, et al. Genomewide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. *Nat Commun* 2016;7:10889.
- Levi F, Okyar A, Dulong S, et al. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 2010;50:377–421.
- Sung H, Yang HH, Zhang H, et al. Common genetic variants in epigenetic machinery genes and risk of upper gastrointestinal cancers. *Int J Epidemiol* 2015;44:1341–52.
- Hernandez DG, Nalls MA, Moore M, et al. Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. *Neurobiol Dis* 2012;47:20–8.

Cancer Epidemiology