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Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic

variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic var-

iation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate

cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for

prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal

cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and con-

trols was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For

each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Trun-

cated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggre-

gate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate

cancer in data combining GAME-ON and PLCO, after Bonferroni correction (ppathway<0.00625). The two most significant genes

were NPAS2 (pgene50.0062) and AANAT (pgene50.00078); the latter being significant after Bonferroni correction. For colorec-

tal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON (ppathway50.021); this asso-

ciation was not confirmed in GECCO (ppathway50.76) or the combined data (ppathway50.17). No significant association was

observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in

prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms.
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Circadian rhythm is driven by an internal biological clock,

which enables humans to sustain an approximate 24-hr cycle

of biological processes,1 and regulates diverse cancer-related

biological functions such as metabolism, immune regulation,

DNA repair and cell cycle control.2 Disruption of circadian

rhythm has been linked to carcinogenesis at the system, cell

and molecular levels.2 Based on sufficient evidence in experi-

mental animals for the carcinogenicity of light exposure during

the biological night, and limited epidemiological studies show-

ing increased risk of breast cancer among female nightshift

workers and flight attendants employed at least ten years, shift

work with disrupted circadian rhythm has been categorized as

a probable carcinogen to humans by the International Agency

for Research on Cancer.3 However, evidence for cancers other

than breast is limited. Increased cancer risks in other organs

have been observed in mouse models with ablated circadian

rhythm genes, such as the blood,4 liver,4 ovary,4 intestine,5

colon5 and skin,6 possibly due to constitutively elevated cell

proliferation,6 impaired DNA repair,7 and apoptosis8 and inef-

ficient immune response.9,10 There is growing evidence from

epidemiologic studies that other types of cancers including

prostate,11–14 colon15 and non-Hodgkin lymphoma16 also may

be associated with rotating and night shift work.

A few candidate gene studies have examined associations

between genes involved in circadian processes and several can-

cer sites,17–29 especially breast.21,24–26,29 In this study, we exam-

ined associations of the core genes involved in the circadian

rhythm and melatonin pathways with the risk of prostate,

colorectal, lung and ovarian cancer in population of European

descent, taking advantage of the large study populations from

the Genetic Associations and Mechanisms in Oncology

(GAME-ON) GWAS consortia. We conducted a pathway-level

analysis, aggregating association evidence across multiple

genes. Potentially interesting findings were further replicated

in independent populations of European descent.

Methods

Study populations

Our initial analyses used data from 20 GWAS studies on four

common cancer sites within the National Cancer Institute

GAME-ON Network (http://epi.grants.cancer.gov/gameon/),30

including 12,537 lung cancer cases and 17,285 controls from

the Transdisciplinary Research for Cancer of Lung (TRICL)

consortium; 5,100 colorectal cases and 4,831 controls from the

ColoRectal Transdisciplinary Study (CORECT); 10,218 prostate

cancer cases and 11,286 controls from the Elucidating Loci in

Prostate Cancer Susceptibility (ELLIPSE) consortium; as well

as 4,369 ovarian cancer cases and 9,123 controls from the

Follow-up of Ovarian Cancer Genetic Association and Interac-

tion Studies (FOCI; Table 1). For colorectal and prostate can-

cer, potentially interesting findings were carried forward and

replicated in additional independent data: 10,738 cases and

13,328 controls from the Genetics and Epidemiology of Colo-

rectal Cancer Consortium for colorectal cancer (GECCO)31;

4,600 cases and 2,941 controls from the Prostate, Lung, Colo-

rectal and Ovarian (PLCO) cancer screening trial for prostate

cancer.32 All participants were of European descent, and most

of the studies were conducted using Illumina genotyping plat-

forms (Table 1). Details of the genotyping and quality control

steps were published previously.30–32 All participating studies

obtained approval from the institutional ethics review board,

and informed consents were obtained from each study partici-

pant by the individual study coordinating center.

Candidate genes

For the circadian rhythm pathway, we included nine well-

established core circadian rhythm genes that generate the

mammalian circadian rhythm33 and were selected for a previ-

ous cancer study to represent the circadian rhythm path-

way24: CLOCK and its paralogue NPAS2 (neuronal PAS

domain protein 2); ARNTL (aryl hydrocarbon receptor

nuclear translocator-like; a.k.a. Bmal1); CKIE (casein kinase I

E; a.k.a. CSNKIE); Cryptochrome 1 (CRY1); CRY2; and three

Period homologs (PER1, PER2 and PER3).

Due to a close integration of melatonin to the circadian

system, we also included four genes involved in melatonin bio-

synthesis (http://www.kegg.jp/kegg-bin/show_module?M00037)34

and two melatonin receptor genes: arylalkylamine N-

acetyltransferase (AANAT, a gene encoding the rate limiting

enzyme in the melatonin biosynthesis), TPH1 (tryptophan

hydroxylase 1), TPH2 and DDC (aromatic-L-amino-acid decar-

boxylase); MTNR1a (melatonin receptor 1a) and MTNR1b.

Another gene involved in the melatonin biosynthesis, ASMT

(Acetylserotonin O-methyltransferase) was not included because

we have no access to the data of the x chromosome where this

gene is located.

Statistical analyses

The analytical methods of original studies and the cancer-

specific results have been described previously31,32,35–38 and

are summarized in Table 1. Briefly each original study

What’s new?

Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. In this

large SNP study, the authors found a significant association between both circadian-rhythm and melatonin-pathway gene var-

iants and prostate-cancer risk. These results support a role for circadian-rhythm and melatonin pathways in prostate

carcinogenesis.
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provided log odds ratios and standard errors on each SNP

and each cancer risk, mostly adjusting for age, principal com-

ponents (PCs), and sex (if applicable). For each cancer site,

fixed-effect meta-analyses were conducted to combine sum-

mary association statistics of participating studies by the

cohort consortium. The genotypes were imputed based on

data of European populations from the 1000 Genomes Pro-

ject (March 2012 reference panel),39 using either MaCH40 or

IMPUTE.41 We extracted both the genotyped and imputed

SNPs of the genetic regions from 20 kb upstream to 10 kb

downstream of each candidate gene.

We conducted gene- and pathway-based meta-analyses

using the summary based adaptive rank truncated product

(sARTP) method, which combines SNP-level association evi-

dence across SNPs in a gene or a pathway.42 The sARTP

method automatically adjusts for the size of the gene (i.e.,

number of SNPs in a gene) and the size of the pathway (i.e.,

number of genes in a pathway) through a resampling proce-

dure. The final gene- and pathway-level p-values were esti-

mated from the resampled null distribution through one

million resampling steps. The sARTP method accounts for

the linkage disequilibrium (LD) between SNPs to maintain

proper type I error. The LDs between SNPs were estimated

from the 503 European subjects (CEU, TSI, FIN, GBR, IBS)

in the 1,000 Genome Project (phase 3, v5, 2013/05/02).39 We

excluded SNPs with MAF< 5% and applied LD filtering to

highly correlated SNP pairs (r2> 0.95). We also conducted a

sensitivity analysis using a more stringent threshold for LD

pruning (r2> 0.8).

For prostate and colorectal cancer that have pathway p-

values <0.05, we replicated our findings in PLCO and

GECCO. We also repeated the gene- and pathway-based

analyses on data combing the initial and replication studies.

To eliminate the impact of potential systematic biases in

SNP-level association, we adjusted for the genomic control infla-

tion factor (lambda5 1.015) for data from the CORECT.37,42

The genomic control inflation factors for GECCO, ELLIPSE,

PLCO, TRICL and FOCI were close to or smaller than 1.0, thus

were not adjusted in our analyses. To take potential false-

positives from multiple-comparisons into account (two path-

ways, or 15 genes) for each of the four cancer sites, pathways

with p values< 0.00625 (0.05/(2 3 4)) and genes with p val-

ues< 0.00083 (0.05/(153 4)) were considered significant.

For prostate cancer, where we found significant associa-

tions with genetic variations of circadian and melatonin path-

ways after the Bonferroni correction, secondary analyses for

aggressive prostate cancer were conducted at the gene and

pathway level, using data combining six studies of ELLIPSE

and PLCO (4,446 cases and 12,724 controls). For the SNPs

with the smallest p-values in the genes with pgene� 0.05 on

the risk of overall prostate cancer, we also checked their SNP

associations with aggressive prostate cancer.

Table 1. Summary of study populations and designs for each cancer site

Consortium
Name

Cancer
Site

No.
study1 Cases Controls

Genotyping
Platform

Reference
Panel Covariants

Initial data of GAME-ON

CORECT Colorectal 6 5,100 4,831 Affymetrix Axiom 1,000 Genome2 Age, sex, first four principal
components (PCs)37

TRICL Lung 6 12,537 17,285 Illumina 317K/
550K/610K

1,000 Genome2 Age, sex, PCs38

FOCI Ovary 3 4,369 9,123 Illumina 317K/
370K/550K/
610K/670K/
2.5M

1,000 Genome2 Study, first five PCs36

ELLIPSE Prostate 5 10,218 11,286 Illumina,
Affymetrix

1,000 Genome2 Age, study, PCs35

Replication data

PLCO Prostate 1 4,600 2,941 Illumina Human-
Omni2.5
Beadchip

1,000 Genome2 Age, two significant PCs32

GECCO Colorectal 21 10,738 13,328 Illumina 550K/
610K/
CytoSNP/
Omni; Affyme-
trix for one
study

1,000 Genome2 Age, sex (when applicable),
center/region (when
applicable), batch (when
applicable), smoking sta-
tus (when applicable),
first three PCs31

CORECT: ColoRectal Transdisciplinary Study; TRICL: Transdisciplinary Research for Cancer of Lung; FOCI: Follow-up of Ovarian Cancer Genetic Associa-
tion and Interaction Studies; ELLIPSE: Elucidating Loci in Prostate Cancer Susceptibility; PLCO: Prostate, Lung, Colorectal and Ovarian Cancer Screen-
ing Trial; GECCO: Genetics and Epidemiology of Colorectal Cancer Consortium.
1Contributed studies are listed in the Supporting Information Table 1;
21,000 Genome March 2012 reference panel.
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Results

We found suggestive associations between genetic variation

in both circadian rhythm and melatonin pathways and pros-

tate cancer risk based on data of GAME-ON, with

(ppathway5 0.014 and 0.024, respectively; Table 2). These asso-

ciations were not statistically significant in PLCO alone

(ppathway5 0.28 and 0.21), but were enhanced in the com-

bined data of GAME-ON and PLCO (ppathway5 0.0016 and

0.0060; Table 2), both being significant after Bonferroni cor-

rection. NPAS2 in the circadian rhythm pathway

(pgene5 0.0062) and AANAT (pgene5 0.00078) in the melato-

nin pathway contributed the most to the association with the

risk of prostate cancer, with AANAT survived Bonferroni

correction (Table 3). Other genes with the gene-level p-values

at borderline significance were CLOCK (pgene5 0.021), CRY2

(pgene5 0.043), DDC (pgene5 0.050), PER2 (pgene5 0.060),

and PER1 (pgene5 0.063; Table 3). A sensitivity analysis with

more stringent threshold in LD pruning (r2> 0.8) produced

consistent pathway-level and gene-level results (data not

shown). SNPs with p values< 0.01 in NPAS2 and AANAT

are presented in Table 4.

With a much smaller number of aggressive prostate can-

cer cases (4,446 cases, 12,724 controls), we did not observe

significant association of aggressive prostate cancer with

either pathway (ppathway5 0.29 and 0.66), but we observed a

suggestive association with PER3 (pgene5 0.03) (Supporting

Information Table 2). For SNPs that have the smallest p-val-

ues in genes CLOCK, CRY2, NPAS2, AANAT, and DDC

(pgene� 0.05 with overall prostate cancer), the log odds ratios

(b) estimated for overall and aggressive prostate cancer are

comparable and have the same direction (Supporting Infor-

mation Table 3).

For colorectal cancer (Table 2), we observed a suggestive

association with circadian rhythm pathway in GAME-ON

(ppathway5 0.021), but not in GECCO (ppathway5 0.76) or in

the combined data (ppathway5 0.17) (Supporting Information

Table 4). No association was observed for ovarian cancer and

lung cancer (Table 2, Supporting Information Table 5).

Discussion

We found common genetic variations in the circadian

rhythm and melatonin pathways were associated with pros-

tate cancer risk in the population of European descent. These

associations were initially identified in the GAME-ON con-

sortium, and further confirmed in the data combining the

GAME-ON and PLCO studies. Our findings suggest that the

circadian rhythm and melatonin pathways may be involved

in prostate carcinogenesis.

Circadian disruption has been suggested as a prostate can-

cer risk factor based on epidemiological observation of

increased prostate cancer risks among shift workers,11–14 and

countries with more light exposure at night.43 In support of

this hypothesis, three genetic epidemiology studies found sug-

gestive associations between SNPs in core circadian genes

and prostate cancer19,23,27 or aggressive prostate cancer23 in

Caucasian23,27 and Asian19 populations, although these stud-

ies had limited power (sample sizes< 2,600) to adjust for

multiple comparisons. By taking advantage of the large study

population from cancer consortia and using a novel analytical

tool, our study provided further evidence that the circadian

rhythm and melatonin pathways may be involved in prostate

carcinogenesis in humans.

Although multiple genes are likely to contribute to path-

way association signals, the most significant genes were

NPAS2 and AANAT. Previous functional studies suggest that

NPAS2 plays an important role in DNA damage response,

cell cycle control and apoptosis by activating diverse down-

stream genes,44,45 consistent with a role as a tumor suppres-

sor. In line with our finding, the Thr allele of rs23051560

(p5 7.5 3 1024), a non-synonymous SNP (Ala394Thr) in

the NPAS2, has been suggestively associated with lower risks

of breast cancer,28 prostate cancer19 and NHL,46 three tumors

that have been linked with circadian disruption in epidemio-

logic studies. This SNP has also been suggested to modify the

association of night shift work and breast cancer risk, with

Thr carriers more vulnerable to shift work effect.24 AANAT

(aka., serotonin N-acetyltransferase) is the rate limiting and

originating enzyme for melatonin synthesis, through which

the suprachiasmatic nucleus via a sympathetic multisynaptic

pathway regulates rhythmic melatonin synthesis.47 Melatonin

acts as a chronobiotic molecule, optimizing phase relation-

ships between oscillators in both central nervous system and

peripheral organs, reinforcing circadian rhythms of body

functions, and entraining body rhythms to the environmental

light phase.48,49

A mechanism linking the circadian system, melatonin

and prostate cancer may operate through the neuroendo-

crine gonadal axis. The pineal gland and melatonin have a

role in the inhibition of the neuroendocrine gonadal

axis50; while sex hormones, such as androgen, are essential

on prostate development. Androgen has been a prostate

Table 2. Pathway results for each cancer site

Circadian
rhythm pathway

Melatonin
pathway

Cancer Data N.SNP p-value N.SNP p-value

Prostate GAME-ON 520 0.014 258 0.024

PLCO 521 0.28 223 0.21

Combined data 521 0.00161 263 0.00601

Colorectal GAME-ON 653 0.021 352 0.24

GECCO 670 0.76 376 0.066

Combined data 842 0.17 459 0.091

Lung GAME-ON 510 0.71 243 0.22

Ovary GAME-ON 521 0.14 263 0.26

1Statistically significant after Bonferroni correction (p<0.05/
850.00625).
p values <0.05 in bold.
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cancer inducer in animals,51 and associated with increased

prostate cancer risk in humans.52,53 Therefore, it is possi-

ble that an increase in androgen, subsequent to disrupted

circadian rhythm and/or suppressed melatonin,54 may

contribute to prostate carcinogenesis. Alternatively, mela-

tonin may have a direct anti-tumor effect, by controlling

the p53 pathway, or its antimitotic, antioxidant and

immune-modulatory activities.1 Both in vitro and in vivo

studies provide evidence that melatonin inhibits prostate

tumor growth,55,56 whereas melatonin suppression in rats

increases tumor growth in a dose-dependent manner.50 In

agreement with the melatonin hypothesis, lower urinary

6-sulfatoxymelatonin has been associated with an

increased risk of advanced prostate cancer in a prospective

study.57

Apart from mechanisms related to melatonin, the circa-

dian clock may control cell proliferation and apoptosis

through regulating the expression of genes involved in these

processes at the transcription or translation level, such as c-

Myc and Mdm2, Trp53 and Gadd45, cyclins etc.2

We did not find any significant association for the risk of

aggressive prostate cancer at the gene or pathway level. Given a

much smaller number of aggressive prostate cancer cases, and

the fact that genetic effects are generally small on cancer risk,

the statistical power of gene- and pathway-based analyses was

limited. However, we observed a suggestive association with

PER3 (pgene5 0.03); a SNP (rs1012477) of this gene has been

associated with prostate cancer aggressiveness in a previous

report.27 For SNPs with the smallest p-values associated with

overall prostate cancer within CLOCK, CRY2, NPAS2, AANAT,

and DDC, the estimated effect sizes for the risk of overall and

aggressive prostate cancer are comparable and have the same

direction. Given the poor prognosis and public health impact of

aggressive prostate cancer, more focused study is needed for

the role of circadian rhythm genes and prostate cancer

aggressiveness.

Our study did not find associations in the circadian rhythm

or melatonin pathway genes with colorectal, lung or ovarian

cancer. Several important factors need to be considered before

concluding that circadian rhythm has no effect on these cancer

sites. First, gene functions differ by organs and although we

studied the core genes in each pathway, there might be other

critical circadian-related genes missed in this study. RORa, for

example, suggested as an important regulator for homeostasis

in intestinal epithelium,58 as well as newly identified circadian

genes59 are worthwhile to be evaluated in the future. Second,

the statistical power of gene- and pathway-based analyses for

studying ovarian cancer may be limited by small sample size

Table 3. Pathway-based and gene-based results between circadian rhythm-melatonin pathway genes and prostate cancer

GAME-ON PLCO Combined data

(10218 cases, 11286
controls)

(4600 cases, 2941
controls)

(14818 cases, 14227
controls)

Gene Chr N.SNP p-value N.SNP p-value N.SNP p-value

Circadian rhythm pathway

ARNTL 11 80 0.41 80 0.40 80 0.29

CK1E 22 48 0.67 48 0.11 48 0.30

CLOCK 4 24 0.013 24 0.44 24 0.021

CRYI 12 35 0.27 35 0.87 35 0.55

CRY2 11 20 0.53 20 0.073 20 0.043

NPAS2 2 167 0.051 167 0.14 167 0.0062

PER1 17 29 0.24 30 0.12 30 0.063

PER2 2 50 0.090 50 0.57 50 0.060

PER3 1 67 0.020 67 0.94 67 0.24

Pathway-level 520 0.014 521 0.28 521 0.00161

Melatonin pathway

AANAT 17 34 0.071 38 0.043 38 0.000781

DDC 7 84 0.033 77 0.63 84 0.050

MTNR1A 4 35 0.041 18 0.52 35 0.35

MTNR1B 11 23 0.94 7 0.92 23 0.96

TPH1 11 18 0.72 18 0.17 18 0.15

TPH2 12 64 0.081 65 0.12 65 0.21

Pathway-level 258 0.024 223 0.21 263 0.00601

1Statistically significant after Bonferroni correction (p<0.05/850.00625 at pathway level; p<0.05/6050.00083 at gene level).
p values< 0.05 in bold.
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compared with other cancer sites considered in this article.

Third, for lung and colorectal cancer, where environmental

and life style risk factors play a dominant role, the contribu-

tion of disrupted circadian rhythm might be small and/or may

be indirectly associated with cancer through modifying the

toxicity of environmental carcinogens,60 or altering the DNA

damage response.6,7 Therefore, incorporating data on environ-

mental carcinogens and measures of toxicity into the study of

circadian rhythm and cancer may be important. Fourth,

although genetic variation does not suffer from confounding

bias by other life style factors, it may have a smaller impact on

circadian rhythm disruption than light exposure at night

and night shift work. Therefore, future studies of both

environmental or life style inducers of circadian disruption

coupled with mechanistic or genetic marker studies in circa-

dian rhythm pathways are needed.

In this study, like other candidate pathway-based analyses,61

we assigned SNPs to each of the circadian genes based on geno-

mic location. Approaches that assign SNPs to a gene based on

functionality such as a genetic influence on gene expression or

expression quantitative risk loci (eQTL) might reveal more sig-

nals, but this type of approach relies heavily on the known

eQTL function of the SNPs in the tissue of interest and, in fact,

the eQTL effects on gene expression are typically tissue-spe-

cific.62 We attempted to evaluate the involvement of the top

prostate cancer risk SNPs of AANAT and NPAS2 as functional

Table 4. Association between the SNPs in AANAT and NPAS2 and prostate cancer, with meta-analyses for prostate cancer association p values
<0.01

Allele GAME-ON (ELLIPSE) PLCO
Fixed-effect meta-

analyses

SNP Loc Ref Effect RAF1 b p b p b p

Gene: AANAT

rs150316415 74475409 G A 0.94 0.34 4.33 3 1023 0.25 2.15 3 1023 0.28 3.41 3 1025

rs3744045 74475024 G A 0.08 20.27 5.04 3 1023
20.21 2.85 3 1023

20.23 4.80 3 1025

rs61742551 74472998 G A 0.98 N/A N/A 0.41 8.12 3 1024 0.41 8.12 3 1024

rs9894765 74456426 G C 0.24 20.07 0.16 20.10 2.11 3 1022
20.09 7.14 3 1023

rs12945905 74456758 C T 0.80 0.13 1.67 3 1022 0.07 0.14 0.09 8.08 3 1023

Gene: NPAS2

rs1542178 101595475 G A 0.67 20.08 6.50 3 1024
20.09 9.88 3 1023

20.08 2.03 3 1025

rs2305160 101591304 G A 0.67 20.08 7.70 3 1024
20.09 1.52 3 1022

20.08 3.47 3 1025

rs2305159 101591443 C A 0.32 20.08 4.84 3 1024
20.04 0.24 20.07 3.37 3 1024

rs1542179 101595235 G A 0.32 20.08 5.50 3 1024
20.04 0.28 20.07 4.55 3 1024

rs4851392 101581976 G A 0.74 20.07 2.26 3 1023
20.06 8.68 3 1022

20.07 4.71 3 1024

rs13019460 101461099 G C 0.21 20.06 0.18 20.13 1.70 3 1023
20.10 1.24 3 1023

rs6747874 101578489 G A 0.74 0.08 2.77 3 1023 0.05 0.19 0.07 1.27 3 1023

rs6747755 101578458 G A 0.74 0.08 3.18 3 1023 0.05 0.19 0.07 1.46 3 1023

rs12622050 101579454 G A 0.76 0.08 2.47 3 1023 0.05 0.27 0.07 1.65 3 1023

rs12619710 101579487 C T 0.26 20.07 3.56 3 1023
20.05 0.21 20.07 1.73 3 1023

rs2278728 101598312 C T 0.32 20.07 2.02 3 1023
20.04 0.33 20.06 1.80 3 1023

rs876060 101576964 T A 0.24 20.08 2.47 3 1023
20.04 0.31 20.07 1.92 3 1023

rs13012930 101460947 G A 0.82 0.04 0.18 0.15 9.93 3 1024 0.08 2.56 3 1023

rs4851391 101579811 G C 0.24 20.07 6.25 3 1023
20.05 0.26 20.06 3.60 3 1023

rs4851377 101522266 C T 0.46 20.05 5.54 3 1022
20.07 3.33 3 1022

20.06 4.98 3 1023

rs13017728 101481348 G T 0.09 20.10 0.1.8 20.15 1.24 3 1022
20.13 5.42 3 1023

rs965519 101470349 G A 0.18 20.04 0.22 20.13 2.53 3 1023
20.07 6.15 3 1023

rs2309993 101499264 C T 0.67 0.07 0.10 0.08 3.24 3 1022 0.07 7.25 3 1023

rs4851386 101566938 C T 0.52 20.05 3.58 3 1022
20.06 9.42 3 1022

20.05 7.48 3 1023

rs3739006 101566184 G A 0.52 20.04 4.22 3 1022
20.06 8.14 3 1022

20.05 7.91 3 1023

rs4851385 101566323 G C 0.48 0.04 4.22 3 1022 0.06 8.14 3 1022 0.05 7.91 3 1023

rs3739005 101566070 C T 0.48 0.05 3.46 3 1022 0.05 0.13 0.05 9.19 3 1023

1Reference allele frequency. The frequencies are calculated from 503 European subjects in the 1,000 Genomes data.
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eQTLs using RNA-seq and SNP data from ten normal brain tis-

sues (GTEx). We observed modest eQTL effects on AANAT

and NPAS2 mRNA levels by the top risk SNPs, but no risk

eQTL survived correction for multiple comparisons (data not

shown). Importantly, published data suggest that the target tis-

sue for melatonin synthesis is the pineal gland, while for circa-

dian rhythm it is the superchiasmatic nucleus (SCN).1 RNA-seq

data for these normal brain tissues are not available in GTEx or

to our knowledge from any other publically available database.

Thus, whether the observed prostate cancer risk SNPs of

AANAT and NPAS2 circadian genes are functional eQTLs, and

whether the changes in mRNA levels in the pineal gland and

SCN are associated with prostate cancer susceptibility remains

to be determined.

Our study has many strengths. Using genetic markers to

examine circadian hypotheses minimizes the bias due to

potential confounders, and therefore is a valuable comple-

ment to traditional epidemiologic studies (e.g., in night shift

workers). We used an analytical tool that combines signals

across SNPs within genes and pathways, and therefore found

significant results that would not have been detectable by sin-

gle SNP analysis. To our knowledge, the sample sizes in our

study are the largest to date for colorectal, lung, and prostate

cancer. The data quality of the included GWAS studies is

well established. To control potential false positive findings,

we adjusted for multiple comparisons, and replicated our

findings in independent data.

In summary, our study suggests that common genetic varia-

tion in and around circadian rhythm and melatonin pathways

may be involved in human prostate carcinogenesis, in support

of circadian disruption as a potential human carcinogen.
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