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Abstract

Little structural information is available so far on amyloid fibrils consisting of immunoglobulin

light chains. It is not understood which features of the primary sequence of the protein result

in fibril formation. We report here MAS solid-state NMR studies to identify the structured

core of κ-type variable domain light chain fibrils. The core contains residues of the CDR2

and the β-strands D, E, F and G of the native immunoglobulin fold. The assigned core region

of the fibril is distinct in comparison to the core identified in a previous solid-state NMR study

on AL-09 by Piehl at. al, suggesting that VL fibrils can adopt different topologies. In addition,

we investigated a soluble oligomeric intermediate state, previously termed the alternatively

folded state (AFS), using NMR and FTIR spectroscopy. The NMR oligomer spectra display

a high degree of similarity when compared to the fibril spectra, indicating a high structural

similarity of the two aggregation states. Based on comparison to the native state NMR

chemical shifts, we suggest that fibril formation via domain-swapping seems unlikely. More-

over, we used our results to test the quality of different amyloid prediction algorithms.

Introduction

Antibody light chain amyloidosis (AL amyloidosis) is a rare disease caused by amyloid forma-

tion of immunoglobulin light chains (LCs) [1,2]. An underlying B-cell dyscrasia causes over-

production and secretion of LCs. In the case of an aggregation-prone LC sequence, this can

result in formation of oligomeric intermediates and further of fibrils, which deposit in the

inner organs, causing systemic amyloidosis. Heart failure is the dominant cause of death [3,4].

The 4-year overall-survival rate is on the order of 33% [5].

Non-fibrillar oligomers have aroused interest of the research community due to their cyto-

toxicity as well as their role as folding intermediates [6]. Oligomers have been reported for sev-

eral amyloid-forming proteins and peptides [7]. In many cases, these oligomers appear to be

the most cytotoxic species [8,9]. The mechanism of cytotoxicity is likely due to membrane
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pore formation [10,11]. Nonetheless, fibrils also exhibit toxicity [12]. In AL amyloidosis, both

oligomers and fibrils have been found to be cytotoxic, affecting the cardiomyocyte metabolism

[13,14].

Despite the relevance of LC oligomers and fibrils for disease, little is known about their

structures. AL fibrils are composed of proteins containing mostly variable domain (VL) resi-

dues [1]. However, aggregates can also contain LC protein including constant domain (CL)

residues [1]. The N-terminal part of the VL domain seems to be structured in the fibrils

[15,16]. Cryo-EM has been used to determine the steric zipper structure of an AL-protein

derived 12-residue peptide fibril [17]. Recently, magic-angle-spinning solid-state NMR (MAS

ssNMR) chemical shift assignments and a secondary structure analysis were reported for the

κI sequence AL-09 [18,19].

We report here a MAS ssNMR spectroscopic analysis of amyloid fibrils and oligomers

formed by the VL domain of MAK33. The murine κ-type VL domain of MAK33 has been stud-

ied extensively regarding its native structure [20], biophysical properties and folding pathways

[21,22]. Several point mutations facilitate fibril formation [23–26]. We employed the amyloi-

dogenic mutant MAK33 VL S20N [25] to study amyloid fibrils with MAS ssNMR. We were

able to identify the structured hydrophobic core region, which comprises mainly residues 60–

87. Oligomeric intermediates tend to be short-lived and thus difficult to investigate. In con-

trast, the MAK33 VL domain forms stable high-molecular weight oligomers at pH 2, which

were previously referred to as alternatively folded state (AFS) [21]. These non-fibrillar oligo-

mers were studied with MAS ssNMR, Fourier-transform infrared spectroscopy (FTIR) and

transmission electron microscopy (TEM). MAS ssNMR revealed an astonishing similarity of

the oligomer and the fibril chemical shifts, indicating a high degree of structural similarity. In

contrast, secondary chemical shifts of the fibrils show no correlation with those of the native

state, suggesting that fibril formation does not proceed via a domain swapping mechanism.

Results

In order to investigate AL fibril structure, we employed seeded fibrils of the MAK33 VL S20N

protein. Two independent fibril preparations yielded highly reproducible MAS ssNMR spectra

(Fig 1). Fig 1A shows a 2D-N(CA)CX correlation spectrum obtained from uniformly 13C,15N

labeled protein and Fig 1B a 2D-NCA spectrum for a 13C-spin dilute sample. Due to sparse 13C

labeling of the 2-13C-glycerole labeled sample, fewer cross peaks were obtained [27]. Except for

this observation, however, the two preparations produced identical NMR spectra. In Fig 1B,

assignments were transferred directly from the spectrum of the uniformly 13C labeled sample

without moving the position of the crosses. Considering the common problem of fibril poly-

morphism [28], such reproducibility is an important prerequisite for further structural

analysis.

The assignment of the structured parts of the MAK33 VL S20N fibrils was accomplished

using a variety of MAS ssNMR experiments: PDSD [29], NCACX, NCOCX [30], NCACB, N

(CO)CACB, NCOCA and CANCO [31]. A detailed list of all experimental settings is given in

the Supporting Information (S1 Table). In total, 36 residues were assigned sequentially, com-

prising residues 49–52 (located in the complementarity determining region 2 (CDR2) of the

native state), residues 60–87 (β-strands D, E and F) and residues 98–101 (β-strand G). For all

these residues, only a single set of resonances was observed, indicating that the preparations

contained only one fibril polymorph. Chemical shift assignments were deposited in the Bio-

MagResBank (BMRB ID 27065). The 13C and 15N linewidths were both on the order of 1 ppm

at a 750 MHz spectrometer. In particular, the 15N transverse relaxation time of 9 ms indicated
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a high quality of the sample, i.e. a high degree of homogeneity. Representative strip plots of the

assignment are shown in S1 Fig.

The secondary chemical shift analysis indicates that MAK33 VL S20N populates mostly β-

strands in the fibril state, as expected for amyloid fibers. Using TALOS+ [32], we identified

four β-strands, with regions of random coil conformation in between them (Fig 2, for Cα, Cβ
and CO secondary chemical shifts, see S2 Fig). Twenty additional spin systems could be

observed, but not assigned, due to low signal intensities. As signal intensity correlates with

rigidity in dipolar-based MAS ssNMR experiments, we assumed that these twenty residues

were less structured and located in the flanking region of the core structure.

Dynamic residues cannot be observed with the dipolar-based MAS ssNMR experiments

employed here. For complementarity, we conducted an INEPT experiment based on scalar

couplings, which is suited to detect highly flexible residues. The resulting spectrum did not

yield observable cross peaks (S3 Fig). Therefore, we assume that the remaining residues exhibit

dynamics on an intermediate time scale, which can be observed neither with INEPT nor with

dipolar-coupling based experiments. Alternatively, the respective residues might be structur-

ally heterogeneous.

Having identified the core of the fibrils, we aimed at a comparison with the oligomeric

intermediates that are formed during aggregation. While oligomers are typically short-lived

and thus difficult to study, MAK33 VL forms stable oligomers at acidic pH (Fig 3A) [21]. An

electron microscopic analysis of the oligomers revealed an irregular morphology, but a rather

homogeneous size distribution (Fig 3B). The mean diameter of the particles was 9.9 ± 1.5 nm,

suggesting in average 30 monomers per oligomer (S4 Fig). This is in excellent agreement with

previous studies using analytical ultracentrifugation, which yielded 17 to 42 monomers per

oligomer [22]. Upon shaking at 37˚C, the oligomers transform to well-structured fibrils within

24 hours (Fig 3C). Using FTIR (Fig 3D), both samples displayed similar peaks, with maxima at

Fig 1. 13C,15N correlations of MAK33 VL S20N fibrils. A) N(CA)CX spectrum of a u-13C,15N labeled sample. B) NCA spectrum of a 2-13C-glycerole

isotope labeled sample. Peak positions are identical in A) and B), indicating good reproducibility. The resolution in B) is increased due to sparse isotope

labeling.

https://doi.org/10.1371/journal.pone.0181799.g001
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1619 cm-1 (oligomers) and 1621 cm-1 (fibrils). Amyloid fibrils yield characteristic FTIR max-

ima between 1611 cm-1 and 1630 cm-1, whereas peaks of native β-sheet proteins are typically

found in the range from 1630 cm-1 to 1643 cm-1 [33,34]. Hence, the oligomers differ from the

native state and resemble the fibrils at the level of secondary structure. The oligomer FTIR

spectrum also displayed a less pronounced peak at 1697 cm-1. This peak is characteristic for

oligomers [35].

We employed MAS solid-state NMR to investigate the VL oligomer structure. Using FROS-

TY-NMR [36], a PDSD 13C,13C-correlation of the MAK33 VL WT oligomers was acquired.

The similarity between the oligomer and the fibril spectrum is striking (Fig 3E). The chemical

Fig 2. Secondary structure analysis of MAK33 VL in the fibril state. A) β-sheet propensity calculated with TALOS+ [32]. B)

Sequence and secondary structure elements of the native VL fold. Green and red bars indicate β-strands and CDRs of the native

structure, respectively. Red arrows below the sequence indicate β-strands in the fibril state. The expansion shows the assigned

atoms in the aggregated state.

https://doi.org/10.1371/journal.pone.0181799.g002
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shift patterns for many spin systems were very similar. The oligomer resonances were broader

in general, which is in good agreement with a less well-defined structure. Some fibril reso-

nances are missing in the oligomer spectrum, which is presumably due to dynamics, resulting

in reduced sensitivity. Spectral differences are expected, since oligomers and fibrils show

clearly distinct morphologies. The resonances of residues I75, S77, V78, E79 and T80 are miss-

ing in the oligomer spectrum and the presence of N76 is unclear due to spectral overlap. In the

fibrils, this region corresponds to a loop connecting two β-strands (Fig 2). In the oligomers,

this loop might adopt a different conformation or experiences a different chemical

environment.

Nevertheless, the similarity of both spectra indicates that the secondary and tertiary struc-

tures of the oligomeric and the fibril state are highly similar. We could identify only one spin

system, which clearly has a higher signal intensity in the oligomer state than in the fibril state.

This spin system corresponded to a proline residue. The proline is presumably in a trans con-

formation, as the Cβ and Cγ shifts were approximately 30.3 ppm and 25.5 ppm, respectively

[37]. MAK33 VL contains five prolines, at positions 8, 15, 44, 59 and 95. However, due to lack

of sequential connectivities, we could not assign this proline spin system to one of the five

Fig 3. Comparison of MAK33 VL oligomers and fibrils. A) Procedure to form oligomers and fibrils. B), C) Electron micrographs of MAK33 VL

S20N oligomers (B) and fibrils (C). The scale bar denotes 200 nm. D) FTIR spectra of MAK33 VL S20N oligomers and fibrils. The peak maxima

were 1619 cm-1 (oligomers) and 1621 cm-1 (fibrils), respectively. The oligomer spectrum displayed an additional peak at 1697 cm-1. E) PDSD
13C,13C-intraresidue correlations of MAK33 VL S20N fibrils and MAK33 VL WT oligomers. The proline spin system, which is more intense in the

oligomers, is highlighted in blue.

https://doi.org/10.1371/journal.pone.0181799.g003
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prolines in the primary structure of MAK33 VL. Considering which regions of the sequence

were assigned, it is likely to be either P44, P59 or P95. The change in NMR signal intensity of

this residue suggests that the dynamics of this proline residue increase when the oligomer

structure is converted into the fibril state. Proline isomerisation is critical during the initial

folding of MAK33 VL [38,39]. Prolines have been reported previously as important switches

for amyloid formation in the case of β2-microglobulin [40]. In the case of the amyloidogenic

VL domain AL-103, the presence of two consecutive prolines at positions 95 and 95a affects

both the kinetic stability and fibril formation [41]. Further analysis of the proline isomerisation

states are needed to yield a better understanding of their role in AL amyloid formation.

Discussion

Here we reported on the structured core residues of an immunoglobulin VL-κ sequence in the

amyloid fibril and oligomeric state. Considering the tremendous variability of antibody

sequences, it is interesting whether these results are transferable to other light chain sequences.

In the AL-09 fibril sample studied by Piehl et al. [18,19], the structured regions comprised

mostly the first 30 N-terminal residues as well as residues 94–107 at the C-terminus. In

between, only a few residues could be assigned. It is surprising that the assigned regions differ

considerably compared to our sequence (Fig 4A). In both studies, several residues could not be

assigned sequentially, so there might be more overlap in the hydrophobic core regions. We

emphasise however, that intense resonances, which are easier to assign, correlate with rigid

structure. In this regard, the differences with respect to assigned regions are meaningful and

indicate distinct topologies for the fibril states of both VL sequences. Recently, LC amyloid

deposits with distinct morphologies were found in ex vivo tissue samples of one individual

patient [42]. In this sense, the VL fibril structure is polymorphic due to growth conditions and

tissue specific factors, in addition to the structural diversity which is presumably induced by

differences in the sequence.

Piehl et al. have previously pointed out that most of the non-conservative mutations in AL-

09 are located outside of the assigned and thus structured regions [18]. Similarly, the amyloid-

enhancing mutation S20N employed here for MAK33 is not part of the hydrophobic core

identified in our study. These findings emphasise that point mutations, which are relevant for

fibril formation, are not necessarily structured in the fibril state. On the other hand, the critical

residue D70, which is part of a conserved salt bridge is located within the assigned regions

[25]. Similarly, the highly amyloidogenic VL-λ6 subtype differs from less amyloidogenic vari-

ants by an insertion at positions 68 and 69 [43,44], which, according to our findings, is located

in the fibril core. Understanding of amyloidogenicity of antibody LC sequences cannot be

complete without considering the fibril structure and requires further ssNMR studies.

In this study, we investigated a murine VL sequence. To find out if the murine framework

is comparable to human pathological sequences, we compared the MAK VL with human VL

sequences. The sequence identity between MAK33 VL and other patient-derived or patient-

related sequences ranges from 40% to 60%. E. g. the sequence identity is 57% with respect to

Sma [45], 44% in comparison to 6aJL2 [46], and 42% for Wil [47]. While these values might

seem low, they are actually in the same order as the identities between different pathological

human sequences: The identity between Sma and 6aJL2 is 46%, 45% for Sma and Wil, and

89% for the quite similar λ6 sequences 6aJL2 and Wil. Hence, the differences between our

murine sequence and pathological sequences are not larger than the differences between

patient-derived AL sequences of different light chain subgroups.

We prepared our fibrils deliberately at pH 2, since acidic conditions are known to stabilise

fibrils. pH 2 is necessary to form stable oligomers. Recently, ssNMR experiments have been
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performed to identify the structured core residues in the VL-κ protein AL-09 fibril. Also in

this study, fibrils were prepared at pH 2 [18,19]. Piehl et al compared those in vitro fibrils

formed at acidic conditions with ex vivo fibrils derived from human spleen tissue. It is dis-

cussed that NMR spectra from both samples are comparable. Hence, while acidic conditions

Fig 4. Comparison with AL-09, amyloid prediction algorithms and native state chemical shifts. A) Sequence alignment of MAK33 VL S20N and

AL-09 VL: Identical residues are marked in blue. Residues assigned in MAS ssNMR spectra are indicated by bars above and below the corresponding

sequence. B) Predictions of MAK33 VL S20N amyloid propensity and experimentally observed β-strands. C) Secondary chemical shift correlation of

MAK33 VL S20N in the solid-state (fibrils, pH 2) and solution-state (native, pH 6.5) for Cα, Cβ, CO and N chemical shifts. The cross-correlation

coefficients r are indicated in each plot.

https://doi.org/10.1371/journal.pone.0181799.g004
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are not physiological, they represent a necessary experimental requirement for the investiga-

tion of fibrillised VL protein by ssNMR.

The vast number of different VL sequences that can form fibrils makes a structural charac-

terisation of all antibody fibrils by ssNMR impractical. Therefore, predictions of amyloido-

genic regions can be a precious tool to study a multitude of sequences. We compared our MAS

ssNMR results with the predictions from three web tools (Fig 4B). In our benchmark, we

included Aggrescan [48], Tango [49] and Zyggregator [50]. Of the four β-strands identified by

MAS ssNMR, all algorithms identified the two longer C-terminal β-strands between residues

70 and 90. Our first N-terminal β-strand was only predicted by Aggrescan, the second one

only with low propensity by Zyggregator. All programs predicted moderate aggregation pro-

pensities in the N-terminal region (residues 1–30), where we could not assign any resonances.

Our assignments are incomplete and we cannot exclude the presence of further structured

regions. In fact, a structured N-terminus of VL fibrils has also been suggested for other VL

sequences [15,16]. To summarise, all three algorithms could correctly predict the two longer

β-strands. We therefore believe that prediction of amyloid propensity will be a valuable tool to

study VL sequences in the future.

In the past, domain swapping has been suggested as a mechanism to explain immunoglobu-

lin light chain deposition [51,52]. In this context, it has been shown that the amyloid core of

transthyretin consists of native-like β-sheets [53]. We analysed NMR secondary chemical

shifts, which report on secondary structure elements. If the conformation of MAK33 VL S20N

in the fibril state resembled the conformation of this point mutant in the native structure, the

secondary chemical shifts of the solid-state and solution-state preparations should be similar.

Fig 4C shows correlation plots of the Cα, Cβ, CO and N secondary chemical shifts. We can not

observe a correlation between native and fibril secondary structure for any of the nuclei

assigned in both conformations. Hence, we conclude the fibrils studied here were not formed

by domain swapping. Similar discrepancies between native and fibril states were reported

recently for AL-09 VL [19], supporting the hypothesis that AL fibrils do not form via a

domain-swapping mechanism.

Our data alternatively indicate that the native MAK33 VL at least partially unfolds and

undergoes a transformation to a distinct oligomeric state. While the morphology according to

TEM differs from mature fibrils, the local chemical environment is rather similar, as reflected

by the NMR chemical shifts. Along the same lines, NMR spectra for oligomer and protofibril

preparations have been reported for amyloid-β [54]. Our FTIR experiment with the oligomers

displayed a characteristic peak at 1697 cm-1. While there are still disputes about determination

of β-sheet arrangements with FTIR [35], according to theoretical derivations, this band might

indicate anti-parallel β-sheets [55]. The fibrils, in contrast, do not produce this FTIR peak and

thus likely contain the typical parallel β-sheets [56]. Different orientations of β-strands in olig-

omers and fibrils are in agreement with literature [35,57,58]. It will be interesting to see,

whether these observations on MAK33 VL oligomers and fibrils are also true for other light

chain amyloid sequences.

With the recent advances in MAS ssNMR structure determinations of fibrils [59,60] and

the now available assignments of VL fibrils, a structure comes within reach. We expect this will

be an important contribution to predict which VL sequences are prone to fibril formation and

how the oligomers and fibrils can be cleared.

Material and methods

If not specified otherwise, all chemicals were purchased from Sigma Aldrich (Taufkirchen,

Germany).

AL fibrils are similar to AL oligomers
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Recombinant protein production

MAK33 VL WT and S20N were purified as described previously [25]. Briefly, E.coli BL21 with

a pET28 vector containing the MAK VL gene were grown in M9Kan minimal medium supple-

mented with 2 g/l 13C-glucose and 0.5 g/l 15NH4Cl. Expression was induced with 1 mM IPTG

at OD 0.6–0.8. After over night expression at 37˚C, cells were harvested and inclusion bodies

were isolated. The inclusion bodies were dissolved in a buffer consisting of 50 mM Tris, 5 mM

EDTA, 8 M urea and 1% β-mercaptoethanol (pH 8). The dissolved protein was subjected to

anion exchange chromatography, using a 16 / 10 Q Sepharose High Performance column (GE

Healthcare, Munich, Germany) using a buffer consisting of 25 mM Tris, 5 mM EDTA and 5

M urea (pH 8). The VL protein eluted in the flowthrough. Refolding was achieved by over-

night dialysis into a buffer containing 250 mM Tris, 5 mM EDTA, 100 mM L-arginine, 1mM

oxidised glutathione und 0.5 mM reduced glutathione (pH 8, 4˚C). Finally, the protein was

purified using gel filtration chromatography with a HiLoad 16/600 Superdex 75 prep grade

column (GE Healthcare, Munich, Germany) and a buffer consisting of 20 mM sodium phos-

phate and 50 mM NaCl (pH 6.5). Total yield was 15–20 mg protein per liter of culture.

Oligomer and fibril preparation

The buffer was thoroughly exchanged to 25 mM acetic acid, 25 mM phosphoric acid and 50

mM NaCl (pH 2). Protein monomer concentration was set to 50 μM. 0.05% NaN3 was supple-

mented to protect against bacterial growth. In order to obtain non-fibrillar oligomers, the solu-

tion was incubated at room temperature under quiescent conditions. For fibril formation, the

solution was incubated at 37˚C at 350 rpm. Fibrils formed within one week. The outcome was

confirmed by TEM. To enrich a single polymorph, fibrils were seeded for several generations.

Approximately 2% of preformed fibrils were added to a new batch set up for fibril formation.

Samples used for MAS ssNMR analysis were from 7th or later generation of continuous seed-

ing, with each seeding step incubating for one week.

MAS solid-state NMR sample preparation

An OptimaL-100 XP ultracentrifuge (Beckman Coulter, Krefeld, Germany) equipped with an

SW 32 Ti swinging bucket rotor and a rotor filling device (Giotto Biotech, Florence, Italy) were

used to pack the protein aggregate into an MAS rotor. The rotation frequency of the centrifuge

was set to 28,000 rpm. Samples were packed into 3.2 mm thin wall ZrO2 rotors with vespel

caps (CortecNet, Voisins Le Bretonneux, France) employing house-made teflon spacers.

MAS solid-state NMR experiments

All MAS ssNMR experiments were recorded using a 750 MHz Bruker Avance III spectrometer

(Bruker BioSpin, Karlsruhe) equipped with a triple-resonance MAS probe for 3.2 mm rotors.

The set temperature of the probe was adjusted to 273 K. The MAS frequency was set to 10 kHz

(for PDSD, NCACX, NCOCX) or 17 kHz (NCOCA, CANCO, NCACB, NCOCAB, INEPT).

Detailed settings for the experiments are given in the Supplementary Information (S1 Table).

The building blocks for the experiments were PDSD, SPECIFIC-CP [61], BSH-CP [62],

DREAM [63] and INEPT. The pulse sequences were implemented as described by Szeverenyi

et al. [29] and Schütz et al. [31]. NCACX, NCOCX and NCACB were acquired with non-uni-

form sampling to increase sensitivity [64]. Sparsity was set to 50% with exponentially decreas-

ing sampling density, matched to the transverse relaxation time according to a spin echo

experiment [65]. Experiments were acquired using Topspin 3.2 (Bruker BioSpin, Karlsruhe,

Germany). Uniformly sampled experiments were processed with Topspin 3.2, nonuniformly

AL fibrils are similar to AL oligomers
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sampled spectra were processed either with the compressed sensing plugin of Topspin 3.2 or

with hmsIST [66] in combination with NMRPipe [67]. All spectra were zero-filled to double

the number of measured points and then the next power of two. Shifted squared cosine func-

tions were employed for apodisation. Secondary chemical shifts were calculated as

Dd ¼ d
observed

� d
random coil

with random coil chemical shifts taken from the BMRB [68].

Negative-stain transmission electron microscopy

Copper grids with 300 meshes coated with formvar/carbon film (Electron Microscopy Sci-

ences, Hatfield, USA) were glow-discharged in argon atmosphere for 30 s at 3 mA. 5 μl of a

50 μM protein sample were incubated for 60 s on the grid. After removing the protein solution,

the grid was washed with water. 5 μl uranyl acetate solution (2% w/v) were applied on the grid

for staining and removed after 30 s. Photographs of the oligomers and fibrils converted from

oligomers were measured on a Jeol JEM 1400 Plus transmission electron microscope (Jeol,

Tokyo, Japan).

Fourier-transform infrared spectroscopy

Oligomer and fibril samples, 50 μM in fibril buffer (25 mM phosphoric acid, 25 mM acetic

acid, 50 mM NaCl, 0.05% NaN3, pH 2), were recorded on a JASCO FT/IR-4100 FT-IR spec-

trometer (JASCO, Gross-Umstadt, Germany) with attenuated total reflectance (ATR) attach-

ment. The samples were measured with 128 scans at a resolution of 2 cm-1 at room

temperature. Spectra were buffer subtracted and smoothed using a Savitzky-Golan algorithm.
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