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The joint modeling of longitudinal and time-to-event data is an important tool of growing popularity to gain
insights into the association between a biomarker and an event process. We develop a general framework of
flexible additive joint models that allows the specification of a variety of effects, such as smooth nonlinear,
time-varying and random effects, in the longitudinal and survival parts of the models. Our extensions are
motivated by the investigation of the relationship between fluctuating disease-specific markers, in this case
autoantibodies, and the progression to the autoimmune disease type 1 diabetes. By making use of Bayesian
P-splines we are in particular able to capture highly nonlinear subject-specific marker trajectories as well
as a time-varying association between the marker and the event process allowing new insights into disease
progression. The model is estimated within a Bayesian framework and implemented in the R-package
bamlss.
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1 Introduction
The joint modeling of longitudinal biomarkers and the time to disease onset or death offers unique insights
into disease progression in various medical domains (Taylor et al., 2013; Gras et al., 2013; Daher Abdi
et al., 2013). Depending on the disease and the respective biomarker different challenges have to be faced
in joint modeling. In the following, a general framework for the flexible joint modeling of longitudinal
data and time-to-event is presented, which was motivated by unique cohort data from studies exploring the
development of type 1 diabetes (T1D). The research on T1D underwent a paradigm shift in the past decade,
when disease-specific autoantibodies were shown to be diagnostic for the disease before the onset of clini-
cal symptoms and thus paving the way for a pre-clinical diagnosis of T1D (Ziegler et al., 2013; Bonifacio,
2015; Insel et al., 2015). Prior to the onset of clinical symptoms, i.e. the need of insulin substitution, the
disease is already progressing and insulin-producing beta-cells in the pancreas are gradually destroyed by
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the body’s own immune system. This immune process, leading to an onset of clinical symptoms within
months up to more than a decade, can be diagnosed by the emergence of T1D-specific autoantibodies.
However, it remains an open question whether the longitudinal patterns of these autoantibodies might be
associated with the rate of progression to T1D.

In recent years joint models gained larger popularity in the modeling of associations between time-
varying biomarkers and time-to-event. By estimating a submodel for a longitudinal biomarker, usually
a mixed model, jointly with the survival submodel of a time-to-event process, one can account for the
informative censoring and the within-subject errors in the longitudinal model and can incorporate the lon-
gitudinal information, observed only at person-specific discrete timepoints, as a continuous-time covariate
in the survival model. Comprehensive overviews on the topic are given in Tsiatis and Davidian (2004),
Rizopoulos (2012) and Gould et al. (2015). In our work we focus on extensions of so-called shared pa-
rameter models. These assume that a set of parameters influences both the longitudinal and the survival
model, and that there is conditional independence given those parameters.

In T1D research little is known concerning typical trajectories of autoantibodies as biomarkers. At the
same time the observed trajectories show highly nonlinear patterns over time and differ strongly between
subjects, see Figure 1a. In consequence, a flexible specification of individual trajectories in the longitudinal
model is needed in our application.

Much work on joint models has focused on simple parametric longitudinal trajectories, while only
few approaches allow for more flexible, potentially non-parametric longitudinal models. Ding and Wang
(2008) model mean trajectories by B-splines and allow for one multiplicative random effect per subject.
For our application however it remains questionable if such a model is flexible enough to capture the
highly different trajectories. Spline based approaches, that allow also the random effects to be non-linear
functions in time, are mentioned by Song and Wang (2008) and were employed by Rizopoulos and Ghosh
(2011) and Rizopoulos et al. (2014) as well as Brown et al. (2005) and Brown (2009). While allowing
for flexibility, a disadvantage of all these approaches is finding an optimal number of knots to specify
the flexible longitudinal model, e.g. by AIC or DIC. As the number of random effects increases with
the number of knots, this number is limited in practice. We aim to avoid the explicit choice of knots
and number of basis functions by using a penalized spline approach, where a larger number of knots is
specified and smoothness penalties are employed (Lang and Brezger, 2004). Tang and Tang (2015) also
make use of P-Splines in modeling longitudinal trajectories, but do so only in estimating the mean function,
whereas we model also the individual trajectories as smooth functions of time. This is similar in spirit to
the specification of individual trajectories in Jiang et al. (2015), however we do not assume an underlying
class membership for the random effects.

The estimation of joint models with complex subject-specific trajectories poses a challenge to frequentist
estimation approaches due to the necessary integration over potentially high-dimensional random effects
distributions. Due to this drawback and further advantages of the Bayesian approach in joint modeling,
such as straightforward model assessment and the potential integration of previous knowledge via pri-
ors (Gould et al., 2015), many complex joint models, like e.g. the aforementioned models, are specified
within a Bayesian framework. The most widely used sampling approach for the parameter distributions in
Bayesian joint models is Gibbs Sampling, e.g. Faucett and Thomas (1996); Guo and Carlin (2004); Brown
and Ibrahim (2003), also in conjunction with Metropolis-Hastings algorithms (Tang and Tang, 2015). In
addition, the well-established R-package JMbayes (Rizopoulos, 2016a,b) implementing Rizopoulos et al.
(2014) employs a random walk Metropolis-Hastings algorithm. Our Bayesian estimation approach is dif-
ferent as we employ a derivative-based Metropolis-Hastings algorithm, where we draw samples from ap-
proximations of the full conditionals using score vectors and Hessians of the parameters. Despite being
computationally demanding this algorithm shows a high stability in the model estimation, as we also show
in our simulations.

In addition to the need for a flexible longitudinal model, a further generalization of existing joint models
seems necessary in our application, namely a time-varying association between the biomarker and the time-
to-event. Here, the biomarker indicates an ongoing immune process eventually leading to the destruction
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of the insulin-producing beta cells. As the activity of the immune system is constantly regulated, it is
plausible that the association between a biomarker and the hazard of T1D varies over time. For example
a recent paper by Meyer et al. (2016) indicated that patients with an autoimmune disease can also present
unique disease-ameliorating autoantibodies. Such a time-varying association has rarely been studied in the
context of joint models. Using a discretized time-scale and a probit model for the discrete hazard function,
Barrett et al. (2015) allow for the association to vary over the discrete time points in their model. However,
this flexible specification is not considered in their simulations, the applied examples or the code provided
to fit the models. A time-varying coefficient to associate the marker and the event process is the focus
of the conditional score estimation approach in Song and Wang (2008). This approach can be seen as a
weighted local partial likelihood without any assumptions on the distribution of the random effects. While
this approach accounts for measurement error and short-term biological fluctuations in the longitudinal
marker when modeling the hazard, it only permits inference on the survival parameters and not on the
longitudinal model.

In order to allow for these two extensions, the flexible longitudinal trajectories and a potentially non-
linear time-varying association, both modeled by penalized splines, we develop and implement a highly
flexible framework for joint models available within the R-package bamlss. As we represent all parts of
this flexible joint model as structured additive predictors, which can include linear, parametric but also non-
parametric penalized terms, we are able to allow potentially nonlinear, smooth, random, and time-varying
effects in both submodels. In consequence the possibilities of this implementation go way beyond the two
extensions that originally triggered the development. By applying this flexible model to the combined data
set from two German high-risk T1D birth cohorts we aim to shed further light on the complex relationship
between T1D-associated autoantibodies and the onset of clinical disease.

The remainder of this paper is structured as follows: The general model structure and potential exten-
sions are outlined in Section 2. In Section 3, details on the Bayesian estimation procedure are given. A
thorough testing of the model estimation through simulations is presented in Section 4 and the application
to our T1D research question in Section 5. Concluding remarks are given in Section 6 and technical details
can be found in the Appendix. The presented model is implemented in the R-package bamlss (Umlauf
et al., 2016, 2017). Source code to reproduce the simulation results is available as Supporting Information
on the journal’s web page (http://onlinelibrary.wiley.com/doi/xx/suppinfo).

2 Methods

In the following, the general setup for additive joint models is presented with a special focus on two
extensions of existing approaches: the flexible specification of longitudinal trajectories as well as the time-
varying association between the longitudinal marker and the event. An overview of potential further model
specifications illustrates the flexibility of the presented model family.

2.1 General Setup

For every subject i = 1, . . . , n we observe a potentially right-censored follow-up time Ti and the event
indicator �i (1 if subject i experiences the event, 0 if it is censored). We model the hazard of an event at
time t as

hi(t) = exp {⌘i(t)} = exp {⌘�i(t) + ⌘�i + ⌘↵i(t) · ⌘µi(t)} (1)

including in the full predictor ⌘ a predictor ⌘� for all survival covariates that are time-varying or have
a time-varying coefficient including the log baseline hazard, a predictor for baseline survival covariates
⌘� as well as a predictor ⌘↵ representing the potentially time-varying association between the longitudinal
marker ⌘µ and the hazard.
We also observe a longitudinal response yi = [yi1, · · · , yini ]

> at the potentially subject-specific ordered
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time points ti = [ti1, · · · , tini ]
> with ti1  · · ·  tini  Ti. t = [t

>
1 , · · · , t>n ]> denotes the vector of the

N =

Pn
i=1 ni longitudinal measurement time points of all subjects. The longitudinal response at tij with

j = 1, . . . , ni is modeled as

yij = ⌘µi(tij) + "ij (2)

with independent errors "ij ⇠ N(0, exp[⌘�i(tij)]
2
) allowing to also model the error variance. Thus

⌘µi(tij) represents the longitudinally observed marker value without error at timepoint tij . This “true”
marker value serves as a continuous-time covariate in the hazard in (1) and links the two model equations.

Each predictor ⌘ki with k 2 {�, �,↵, µ,�} is a structured additive predictor, i.e. a sum of Mk functions
of covariates xi,

⌘ki =

MkX

m=1

fkm(xki).

Different subsets xki of xi can serve as covariates for the different predictors, with each fkm typically
depending on one or two covariates. For time-varying predictors the functions can also depend on time
⌘ki(t) =

PMk

m=1 fkm(xki(t), t) with a potentially time-varying covariate vector xki(t). We express the
vector of predictors for all subjects as ⌘k = [⌘k1, · · · , ⌘kn]>. In the survival part of the model (1) the
vectors are of length n and potentially time-varying where ⌘k(t) denotes the evaluation at time t. In the
longitudinal part of the model (2) the vector ⌘k(t) is of length N , containing entries ⌘ki(tij) for all i and
j, i.e. evaluations at all observed time points t for the corresponding subjects. A general overview and
details on the setup of the predictor vectors in the submodels can be found in table 1.

The functions fkm(xki) can model a variety of effects, such as smooth, spatial, time-varying or random
effects terms which can be expressed in a straightforward notation for every term m of predictor k by using
suitable basis function expansions and corresponding penalties Pkm. In a generic setup we let

fkm = Xkm�km and Pkm =

1

⌧

2
km

�>
kmKkm�km, (3)

with the vector of function evaluations fkm stacked over subjects, the design matrix Xkm, the coefficient
vector �km, the penalty matrix Kkm and the variance parameter ⌧2km that controls the amount of penaliza-
tion of the respective term. In the Bayesian setting a penalization is imposed by specifying an appropriate
prior distribution for the parameters, �km ⇠ N(0, [

1
⌧2
km

Kkm]

�
) with A� denoting the generalized inverse

of A, as presented in more detail in section 3.3. Note that these basic penalties can be extended further
as shown in more detail in the next subsection. In analogy to the differences in form in the generic vector
of predictors, i.e. ⌘k, ⌘k(t) and ⌘k(t), the form of the generic vectors of function evaluations fkm and
the generic design matrices Xkm also differs between predictors and submodels. We refer to table 1 for
further details.

We illustrate this setup by two important examples and the exemplary specification of a standard shared
parameter joint model. First, smooth functions in time can be modeled using P-splines with a B-spline
basis, fkm(t) =

PD
d=1 �dBd(t) =: x>

km(t)�km, and corresponding penalty matrix Kkm = D

>
r Dr with

the r-th difference matrix Dr of appropriate dimension (Eilers and Marx, 1996). For Bayesian P-Splines,
smoothing is induced by appropriate prior specification, where the difference penalties are replaced by
their stochastic analogues, i.e. random walks (Lang and Brezger, 2004). Second, random intercepts in the
longitudinal part are incorporated by specifying Xkm as an N ⇥ n indicator matrix, where the ith column
indicates which longitudinal measurements belong to subject i, �km = [�km1, · · · ,�kmn] denotes the
coefficient vector and an n⇥ n identity matrix as penalty Kkm = In ensures �kmi ⇠ N(0, ⌧

2
km) indepen-

dently. Further, although the model allows for highly flexible joint models, a simple shared parameter joint
model is contained as a special case with
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• P-spline log-baseline hazard ⌘�(t) = f�(t) = X�(t)�� with K� = D

>
r Dr:

X�(t) contains n stacked replications of x�(t), the vector of D B-spline basis functions Bd(t) at t

• parametric effects of baseline survival covariates ⌘� = f� = X��� with K� = 0:
X� contains the stacked subject-specific covariate vectors x�i

• time-constant association between longitudinal and survival model ⌘↵ = f↵ = 1n�↵ with K↵ = 0

• longitudinal model with a random intercept ⌘µ(t) = fµ1(t) + fµ2(t) = Xµ1(t)�µ1 + Xµ2(t)�µ2

with Kµ1 = 0, Kµ1 = In:
Xµ1(t) is the fixed effects design matrix potentially including a parametric effect of time and Xµ2(t)
the indicator matrix for a random intercept

• constant error variance ⌘�(t) = f�(t) = 1N�� with K� = 0

where 1n and 1N are vectors of ones of length n and N , respectively, and 0 is a zero matrix. Note that we
drop the index m for predictors which consist of only one term.

2.2 Important extensions of current models
A special focus in our joint model approach lies on the flexibility of the longitudinal predictor ⌘µ. We
model the trajectory for every subject as the sum of fixed covariate effects, a smooth function of time, a
random intercept as well as smooth subject-specific deviations from this function over time,

⌘µi(t) = fµ1 (t) + fµ2 (i) + fµ3 (t, i) +

MµX

m=4

fµm (xµm) . (4)

In this parameterization fµ1(t) is a smooth effect of time and fµ2(i) is a random intercept. The term
fµ3(t, i) denotes the smooth subject-specific deviations from the global time effect using functional random
intercepts (Scheipl et al., 2015). Additionally linear or parametric effects, including a global intercept, as
well as further smooth effects of covariates can be represented by an extra term in

PMµ

m=4 fµm(xµm). The
basis for the functional random intercepts can be specified within the basis function approach as row tensor
products of the marginal basis of a random intercept, marked by the subscript s, and the marginal basis for
a smooth effect of time, marked by the subscript t. We denote the vector of function evaluations at every
observed longitudinal time point in t for the corresponding subjects in i = [1, · · · , n]> as

fµ3 (t, i) = (Xµ3s �Xµ3t)�µ3 = Xµ3�µ3, (5)

where Xµ3s is an N ⇥ n indicator matrix as the basis for a random intercept as specified for Xµ2 in the
previous sub-section, Xµ3t is an N⇥D matrix of evaluations of a marginal spline basis at t and Xµ3 is the
N ⇥ nD basis matrix resulting from the row tensor product. The row tensor product � of a p ⇥ a matrix
A and a p⇥ b matrix B is defined as the p⇥ ab matrix A�B = (A⌦ 1

>
b ) · (1>

a ⌦B) with · denoting
element-wise multiplication and ⌦ denoting the Kronecker product.

The corresponding penalty term is constructed from the marginal penalty matrices:

Pµ3 = �>
µ3

 
1

⌧

2
µ3s

Kµ3s ⌦ It +
1

⌧

2
µ3t

Is ⌦Kµ3t

!
�µ3 = �>

µ3

 
1

⌧

2
µ3s

˜Kµ3s +
1

⌧

2
µ3t

˜Kµ3t

!
�µ3, (6)

where Kµ3s = In is the penalty matrix for the random effect and Kµ3t is an appropriate penalty matrix for
the smooth effect of time such as a difference penalty for B-splines. The enlarged penalty matrices ˜Kµ3s

and ˜Kµ3t yield a penalization for every subject, resulting in a random effects structure and a smoothness
penalization across time for each subject. Note that by specifying two variance parameters, ⌧2µ3s and ⌧

2
µ3t,
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the amount of penalization can differ in the direction of time and across subjects, resulting in an anisotropic
penalty. This specification allows for a highly flexible modeling of individual trajectories over time.

Given the specification of a separate global intercept and subject-specific random intercepts, the con-
straints

R
fµ1(t)dt = 0 and

R
fµ3(t, i)dt = 0 for every i are set in order to ensure identifiability. The

necessary linear constraint
R
fµ1(t)dt = 0 is implemented for B-splines by transforming the marginal

basis Xµ3t into an N ⇥ (D � 1) matrix ˙Xµ3t for which it holds that ˙Xµ3t1D�1 = 0 as shown in Wood
(2006, chapter 1.8), and adjusting the penalty accordingly. Constructing the row tensor product Xµ3 using
the transformed marginal basis matrix ˙Xµ3t with correspondingly adjusted marginal penalty ensures that
the identification constraint

R
fµ3(t, i)dt = 0 for every i is also fulfilled.

As a second extension to existing shared-parameter models we also specify the association between the
longitudinal and the survival model as a structured additive predictor ⌘↵. In consequence, this predictor
can be modeled as a function of time and/or other covariates. Motivated by our applied research questions
we model ⌘↵(t) = f↵(t) as a smooth function of time by using penalized splines, as specified for the
baseline hazard. This allows us to find patterns beyond the standard joint model specification to explain
the relationship between the longitudinal marker and the survival process. These patterns could for example
be critical time windows in which a non-zero effect of ⌘↵ is present or a potential change in the direction
of the association ⌘↵ over time.

2.3 Further potential specifications
The presented general framework of structured additive joint models allows for a variety of different effect
specifications by making use of the flexibility of Bayesian structured additive regression models as well as
adding functional extensions. Besides the presented smooth, time-varying, random effects and functional
random intercept terms, a variety of further effects can be incorporated. Table 2 gives an overview of
possible terms. All these terms can be specified by formulating the desired effect in a basis function
representation with an appropriate penalty term. For details on the specification of such effects please refer
to Fahrmeir et al. (2004); Scheipl et al. (2015); Wood (2006). Further details on the practical aspects within
our implementation are given in section 3.4.

3 Estimation
We estimate the model in a Bayesian framework using Newton-Raphson and Markov chain Monte Carlo
(MCMC) algorithms.

3.1 Likelihood
Under the assumption of conditional independence of the survival outcomes [Ti, �i] and the longitudinal
outcome yi, given the random effects, the likelihood of the specified joint model is the product of the two
submodel likelihoods Lsurv and L

long for the survival and the longitudinal model.
The log-likelihood of the survival part is

`

surv
[⌘�(T),⌘� ,⌘↵ (T) ,⌘µ (T) |T, �] = �>⌘(T)� 1

>
n⇤ (T) , (7)

where T = [T1, · · · , Tn]
> and � = [�1, · · · , �n]>. Here ⇤(T) = [⇤1(T1), . . . ,⇤n(Tn)]

> is the vector
of the cumulative hazard rates ⇤i(Ti) = exp(⌘�i)

R Ti

0 exp[⌘�i(u) + ⌘↵i(u) · ⌘µi(u)]du and ⌘(T) =

[⌘1(T1), · · · , ⌘n(Tn)] denotes the vector of the full predictors evaluated at the subject-specific survival
times. The additive predictors implicitely also depend on covariates and model parameters. The log-
likelihood of the longitudinal part of the model is

`

long
[⌘µ (t) ,⌘� (t) |y] = �N

2

log(2⇡)� 1

>
N⌘� (t)�

1

2

(y � ⌘µ (t))
>R�1

(y � ⌘µ (t)). (8)
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⌘µ(t) and ⌘�(t) are the predictor vectors of length N corresponding to the longitudinal response y =

[y>
1 , · · · ,y>

n ]
> and R = blockdiag(R1, · · · ,Rn), where Ri can reflect the error structure of interest.

In our case, we assume Ri = diag(exp[⌘�i(ti1)]
2
, · · · , exp[⌘�i(tini)]

2
) so that R reduces to a diagonal

matrix.

3.2 Priors and Posterior
In this general framework above, a variety of terms (cf. Table 2) can be specified using corresponding pri-
ors. For linear or parametric terms we use vague normal priors on the vectors of the regression coefficients,
e.g. �km ⇠ N(0, 1000

2
), approximately corresponding to the precision matrices Kkm = 0 as presented

above. Smooth and random effect terms are regularized by placing suitable multivariate normal priors on
the coefficients

p(�km|⌧2km) /
✓

1

⌧

2
km

◆ rank(Kkm)
2

exp

✓
� 1

2⌧

2
km

�>
kmKkm�km

◆

with precision matrix Kkm as specified in the penalty (3). We use independent inverse Gamma hyperpriors
⌧

2
km ⇠ IG(0.001, 0.001) to obtain an inverse Gamma full conditional for the variance parameters. In

addition to the inverse gamma distribution, different priors are possible for the variance parameters in our
implementation, such as Half-Cauchy and Half-normal distributions. The variance parameters ⌧2km control
the trade-off between flexibility and smoothness in the nonlinear modeling of effects. As such they can be
interpreted analogous to inverse smoothing parameters in a frequentist approach.

For anisotropic smooths, when multiple variance parameters ⌧ 2
km = (⌧

2
kms, ⌧

2
kmt) are involved as in (6),

we use the prior

p(�km|⌧ 2
km) /

����
1

⌧

2
kms

˜Kkms +
1

⌧

2
kmt

˜Kkmt

����

1
2

exp

✓
�1

2

�>
km


1

⌧

2
kms

˜Kkms +
1

⌧

2
kmt

˜Kkmt

�
�km

◆
.

(9)

The resulting posterior of the model is

p(✓|T, �,y) / L

surv
[⌘�(T),⌘� ,⌘↵(T),⌘µ(T)|T, �] · Llong

[⌘µ(t),⌘�(t)|y]

·
Y

k2{�,�,↵,µ,�}

MkY

m=1

⇥
p(�km|⌧ 2

km)p(⌧ 2
km)

⇤
,

where ✓ is the vector of all parameters in the model and p(�km|⌧ 2
km) and p(⌧ 2

km) are the priors for the
regression coefficients and variance parameters for each term m and predictor k, respectively.

3.3 Bayesian Estimation
Point estimates of ✓ can be obtained by posterior mode and posterior mean estimation. We estimate the
posterior mode by maximizing the log-posterior of the model using a Newton-Raphson procedure, the
posterior mean is obtained via derivative-based Metropolis-Hastings sampling and thus computationally
demanding. We therefore recommend to use posterior mode estimates for a first quick assessment of the
model and in order to obtain starting values for the posterior mean sampling.

In the maximization of the log-posterior to obtain the posterior mode, we update blockwise each term
m of predictor k in each iteration l as

�
[l+1]
km = �

[l]
km � ⌫

[l]
kmH

⇣
�
[l]
km

⌘�1
s
⇣
�
[l]
km

⌘
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with potentially varying steplength ⌫

[l]
km and with the score vector s(�km) and the Hessian H(�km), which

can be found in the Appendix. We optimize the variance parameters in each updating step to minimize the
corrected AIC (AICc, Hurvich et al., 1998), which showed good performance in smoothing parameter
estimation in Belitz and Lang (2008). Additionally we optimize the steplength ⌫

[l]
km over (0, 1] in each

step to maximize the log-posterior. We assume the coefficients to have an approximately normal posterior
distribution and derive credibility intervals from N(

ˆ�km, [�H(

ˆ�km)]

�1
) for quick approximate inference.

For the posterior mean sampling we construct approximate full conditionals ⇡(�km|·) based on a second
order Taylor expansion of the log-posterior centered at the last state �[l]

km, similar to Fahrmeir et al. (2004),
Klein et al. (2015a) and Klein et al. (2015b) and as shown in more detail in Umlauf et al. (2017). The
proposal density from this approximate full conditional is proportional to a multivariate normal distribution
with the precision matrix (⌃

[l]
km)

�1
= �H(�

[l]
km) and the mean µ

[l]
km = �

[l]
km � H(�

[l]
km)

�1s(�
[l]
km).

In each iteration l of the Metropolis-Hastings sampler and for updating block km a candidate �⇤
km is

drawn from the proposal density q(�⇤
km|�[l]

km) = N(µ
[l]
km,⌃

[l]
km). By drawing candidates from a close

approximation of the full conditional, we approximate a Gibbs sampler and achieve high acceptance rates
and good mixing.

For the sampling of the variance parameters ⌧2km Gibbs sampling is employed, as the full conditionals
⇡(⌧

2
km|·) follow an inverse Gamma distribution, if inverse Gamma hyperpriors are used. Slice sampling is

employed when no simple closed-form full conditional can be obtained as for example in the sampling of
variance parameters for anisotropic smooths (9) or for other hyperpriors.

Model selection can be conducted via DIC which is readily available within our implementation.

3.4 Implementation details

The model estimation is implemented within R (R Core Team, 2016) in the package bamlss (Umlauf
et al., 2016, 2017) that allows the Bayesian estimation of a variety of models within the framework of
Bayesian Additive Models for Location, Scale and Shape. The specification of appropriate design matrices
and penalties for the desired effects is conducted internally via the R-package mgcv (Wood, 2011). In
consequence the full range of implemented smoothing approaches, such as P-splines, thin-splate regression
splines, random effects, and Markov Random Fields, can be used within our implementation. We refer to
Wood (2006) and Wood et al. (2016) for further information on model terms, bases and penalities. In
our model specification in the simulations and the application we make use of Bayesian P-splines (Lang
and Brezger, 2004) to model smooth effects. As the integrals in the survival likelihood as well as in
the respective scores and Hessians have no analytical solution, they are approximated numerically using
the trapezoidal rule and a fixed number of 25 integration points. Starting values for the posterior mean
sampling are obtained by estimating the posterior mode of the joint model. For estimating the highly
flexible functional random intercepts, the implementation makes use of the blockdiagonal structure of
the design matrices to increase computation speed. The posterior mean sampling is implememented to
potentially run in parallel on a number of specified cores on Linux systems. More details can be found in
the documentation of the bamlss R-package.

4 Simulation

We assess the estimation of our model by means of a simulation study with focus on two aspects: First,
comparing our results with the established joint model implementation in JMbayes (Rizopoulos, 2016a)
for models with time-constant ⌘↵. Second, we want to assess the ability to model highly complex longi-
tudinal trajectories as well as a time-varying effect of ⌘↵(t), the two important new extensions within our
framework. With this simulation we also aim to gain insights into the estimation quality of the model when
applied to real data sets of T1D cohorts that motivated our methods development. Therefore we simulate
two differing data situations, mimicking real cohort data. The first simulated data setting, corresponding
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to the German cohort data presented in the Application Section, has less subjects, at more variably spaced
time points but with a longer follow up, than the other. Finally we aim to assess how well the posterior
mode estimation can approximate the effects in comparison with the posterior mean estimates.

4.1 Simulation design
For every setting we generate longitudinal measurements for n subjects at a fixed grid of time points
P based on a true longitudinal model ⌘µ(t) as specified in (4) with the time effect fµ1 (t) = 0.1(t +

2) exp(�0.075t), the random intercepts fµ2 (i) = ri where ri ⇠ N(0, 0.25), the functional random inter-
cepts fµ3 (t, i) = Xµ3�µ3, and the global intercept and covariate effect fµ4(xµi) = 0.5 and fµ5(xµi) =

0.6 sin(x2i) with x2i ⇠ unif(�3, 3). We simulate the functional random intercepts flexibly by P-Splines
where we draw the true vector of spline-coefficients for all subjects from �µ3 ⇠ N(0, [(1/⌧

2
s )

˜Ks +

(1/⌧

2
t )

˜Kt]
�1

) as in (6) with Kt = D

>
2 D2, ⌧2s = 1 and ⌧

2
t = 0.2. The hazard hi(t) for every subject

is calculated according to (1) using the true survival predictor functions ⌘�(t) = 1.4 log((t + 10)/1000),
⌘�i = 0.5 sin(x1i), with x1i ⇠ unif(�3, 3) and ⌘↵(t) varying for the two simulation settings. Based on
hi(t), survival times are generated for every subject as described in Bender et al. (2005) and Crowther and
Lambert (2013). Every subject is censored after max(P) and we additionally apply uniform censoring
U(0, 1.5 · max(P)) to the survival times. In order to mimic missing measurements in the real data, p%
of the remaining longitudinal data are randomly set to missing. Longitudinal obervations are obtained
from ⌘µi(t) by adding independent errors ✏ij ⇠ N(0, 0.3

2
) for each tij in t. The influence of differ-

ent data structures on the estimation is assessed by simulating two different data settings in each of the
two simulations settings. In the smaller data setting, a, observations for na = 150 subjects are gener-
ated at the measurements points Pa = [0, 1, . . . , 120] where pa = 75% of the longitudinal measurements
are missing and on average 108 (72 %) events occur, compared to nb = 300 subjects at the time points
Pb = [0, 3, . . . , 72] with pb = 10% missings and 165 (55 %) events in the larger data setting, b.

In each data and simulation setting we draw Q = 200 samples. To ensure convergence, we run the
model estimation with 23000 samples, a burn-in of 3000 and a thinning of 20, yielding 1000 samples, as
assessed in preliminary simulations. For each estimated model q within a simulation setting we assess
bias, mean-squared error (MSE) and frequentist coverage of the 95% credibility intervals, defined by the
2.5th and the 97.5th percentiles of the MCMC samples for the posterior mean and the approximate normal
intervals for the posterior mode. We evaluate bias, MSE and coverage both averaged over all time points
and averaged per time point. For the predictors in the longitudinal model, i.e. k 2 {µ,�}, the average
bias in each sample q is B

q
k =

1
N

Pn
i=1

Pni

j=1[⌘̂
q
ki(tij) � ⌘

q
ki(tij)] where ⌘̂ki denotes the estimate. To

assess the model fit over time we also evaluate the bias per timepoint Bq
k(t) =

1
n

Pn
i=1[⌘̂

q
ki(t) � ⌘

q
ki(t)]

for all t in P . The computations for MSE and coverage are analoguous. For the survival predictors, i.e.
k 2 {�,�,↵}, the average bias is B

q
k =

1
n

Pn
i=1[⌘̂

q
ki(Ti) � ⌘

q
ki(Ti)] using evaluations at the subject’s

event times. The bias of the time-varying survival predictor ⌘�, and for setting 2 also ⌘↵, is additionally
evaluated at the fixed grid of time points t in P as above with MSE and coverage computed accordingly.
These error measures are then averaged over all Q samples per setting.

For the comparison with the joint model implementation in JMbayes in settings 1a and 1b, data is
generated with ⌘↵(t) = 1 as time-constant. In our implementation we model the longitudinal submodel
by P-splines with cubic B-splines, a second order difference penalty and 12 knots (4 internal knots), for
both the overall mean as well as the individual trajectories. After application of the constraints this yields
7 · n basis functions. For the time-varying effect of the baseline hazard, ⌘�, as well as the nonlinear
effect in ⌘� we use 10 knots (2 internal knots) resulting in 5 basis functions per effect after application
of the constraints. In order to achieve a comparable model in the package JMbayes we model nonlinear
effects in the longitudinal submodel and survival covariate effects by B-splines and determine the number
of knots to minimize the DIC in preliminary simulations. Details on the inclusion of nonlinear effects in
both submodels can be found in the source code of the Supporting Information. As a result we model
the longitudinal part by cubic B-splines for both the fixed and random effects with 1 internal knot for the
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larger data setting and without internal knots for the smaller data setting, resulting in 4 and 3 basis functions
for both the fixed and random effects of time, respectively. As prior simulations had shown convergence
issues using an unrestricted covariance matrix of the random effects, we restrict it to be diagonal, resulting
in independent random effects. Also based on DIC from preliminary simulations we specify the effect in
⌘� in the survival part with cubic B-splines with 3 internal knots using 5 basis functions. We model the
baseline hazard with P-splines using the default settings from JMbayes, i.e. a cubic B-spline basis with
17 basis functions and a second order difference penalty. For the MCMC procedure we also use the default
settings of 20000 iterations, including a burn-in of 3000 and a thinning such that 2000 samples are kept.

In our second simulation, i.e. settings 2a and 2b, we specify the longitudinal trajectories as before
but generate data using a time-varying association predictor ⌘↵(t) = cos((t � 33)/33) for data in a and
⌘↵(t) = cos((t� 20)/20) for b in order to achieve a similar shape despite a differing time scale. We fit the
model using the same specification as in setting 1. Additionally ⌘↵ is modeled as a P-spline with 10 knots
(2 internal knots) resulting in 5 basis functions after application of the constraints.

4.2 Simulation results

The focus of the first simulation is the comparison with the package JMbayes regarding the accuracy of
the modeling of the longitudinal trajectories and the time-constant association parameter ⌘↵ in settings 1a
and 1b. Table 3 shows the MSE, bias and coverage for the estimation of ⌘↵.

For both methods ⌘↵ is estimated more precisely and with a higher coverage in the larger data setting
b compared to a. In both data settings bamlss achieves lower MSE, less bias and a higher coverage in
the estimation of the association compared to JMbayes. For JMbayes the coverage for ⌘↵ is not satis-
factory in both settings (0.840 and 0.890). As the further survival predictors, ⌘� and ⌘�, are parameterized
differently in the two estimation methods with regard to the intercept term and sum-to-zero constraints, we
assess only the prediction quality of ⌘�+⌘� . We observe that JMbayes shows a higher bias in the estima-
tion of the sum of these two predictors. Regarding the longitudinal submodel for ⌘µ both methods are fairly
equal regarding the average MSE over the larger data setting (bamlss: 0.028 vs. JMbayes: 0.029), but
our approach seems to be more precise in the smaller data setting (bamlss: 0.022 vs. JMbayes: 0.031).
To further understand the cause of this difference we look at the bias in the estimation of ⌘µ over the whole
observed time course for the smaller data setting. As shown in Figure 2, JMbayes seems to underestimate
some nonlinearity of the true predictor. Both methods show higher uncertainty for later time points when,
due to censoring and the occurrence of events, less information is available. For the longitudinal predictors
we were not able to calculate credibility intervals in JMbayes. Finally, the estimation of the error variance
is more precise in bamlss.

There are large runtime differences where JMbayes models took on average 9 minutes and 13 minutes
for data setting a and b, respectively, and the implementation bamlss, due to the more flexible functional
random effects specification, took on average 2.5 hours and 5.1 hours to run on a single core of a 2.60 GHz
Intel Xeon Processor E5-2650.

The aim of the second simulation setting is to shed light on the precision of the estimation of all pre-
dictors in the model with a special focus on the estimation of ⌘↵, which is nonlinear in time. Additionally,
we also compare the precision of the posterior mode to the posterior mean estimation. Table 4 gives an
overview of the estimation precision of all predictors.

Similarly to setting 1 we observe an effect of sample size: All survival predictors (⌘�, ⌘� , ⌘↵) show a
smaller MSE for data setting b compared to a probably due to the higher number of events. In contrast,
the MSE is smaller for the estimation of ⌘µ in data setting a compared to b potentially due to the longer
follow-up and a slightly higher number of longitudinal observations per subject. Whereas the precision
of the point estimates is overall similar or only slightly worse for the posterior mode compared to the
posterior mean estimation, the coverage is not acceptable for the posterior mode but close to 95% for the
posterior mean. The only exception is the estimation of ⌘� , where the coverage is somewhat lower for
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the posterior mean. As ⌘� is very precisely estimated and formal inference is usually not of interest for
this predictor, we do not rate this under-coverage as too problematic. In order to illustrate the precision in
the time-varying effect estimates and to assess the cause of differences in MSE, Figure 3 displays the true
and estimated predictors ⌘�(t), ⌘↵(t) and their joint effect ⌘�(t) + ⌘↵(t) · 1

n

Pn
i=1 ⌘µi(t) evaluated at the

mean of the estimated effect of ⌘µ(t) for all time-points. Overall the estimated predictors match the true
functions quite well. For the smaller data sets there is more uncertainty in the estimation, especially at later
time points, when less subjects are still observed.For example in setting a at a late time point (t = 110)
on average only 6 subjects remain in the risk set as compared to 37 subjects at a late timepoint (t = 65) in
setting b. Therefore the estimates for later timepoints are highly dependent on the remaining subjects. This
uncertainty is not only visible in the single predictors but also in their combined effect, see the right panel
of Figure 3 (later time points in column a).

With on average only 10 and 18 minutes to run for data setting a and b respectively, the posterior mode
estimation has clear advantages in computation time over the more precise posterior mean estimation with
2.6 and 5.2 hours on average in this setting.

In conclusion, our simulations show that the estimation of models with constant associations between
marker and event performs well, even outperforming the implementation in JMbayes in some aspects.
The estimation of more flexible models that are newly covered by our approach in contrast to existing im-
plementations, i.e. with a time-varying association parameter and the specification of flexible trajectories,
is equally satisfactory. While the more precise posterior mean estimation is time-consuming, the poste-
rior mode offers a computationally efficient way to quickly assess the point estimates in a given model
specification, even though credibility bands are only approximate.

5 Application

In order to gain insights into our motivating research question we apply the model to a combined data
set of two ongoing German T1D risk cohorts to investigate whether longitudinal trajectories of insulin
autoantibodies (IAA) are associated with the rate of progression to T1D. Whereas different autoantibodies
are diagnostic for a preclinical stage of the disease, our focus lies on the analysis of the levels of IAA as
a marker from the time when it first exceeded a specific threshold, called seroconversion, to the onset of
T1D or loss to follow-up. The marker IAA is most often the first autoantibody to appear (Ziegler et al.,
1993, 1999; Hummel et al., 2004a). Both its initial value at seroconversion and its mean over time have
been shown to be positively associated with the emergence of T1D and negatively related to the age at T1D
diagnosis (Steck et al., 2011, 2015). As seroconversion defines the beginning of a pre-clinical, symptom-
free stage of T1D (Insel et al., 2015) we chose this timepoint as the starting point for our analysis instead
of modeling the trajectories from birth and accounting for zeros up to the timepoint of seroconversion (Liu,
2009; Hatfield et al., 2012; Rizopoulos et al., 2008).

The BABYDIAB and BABYDIET studies, both prospective birth cohorts with a joint study protocol,
aim to investigate the natural history of T1D development, i.e. explore environmental and genetic factors
associated with the progression to T1D. In the BABYDIAB study 1650 offspring of patients with T1D
were followed from birth to the development of T1D or loss to follow-up for up to 21 years (median:
15.7 years) (Ziegler et al., 1993, 1999; Hummel et al., 2004b). Using the BABYDIAB study protocoll,
the BABYDIET study subsequently recruited 791 additional offspring or siblings of patients with T1D
(Hummel et al., 2011). In both studies, autoantibody measurements were taken at age 9 months and 2, 5,
8, 11, 14 and 17 years and additionally every 6 months after positive islet autoantibodies had emerged. The
exact age at the emergence of clinical T1D was assessed also between study visits.
In our joint model we use data of n = 127 children who developed IAA during follow-up, censored at 15
years after seroconversion due to the extremely low sample size at later time points, of which 69 (54%)
subjects progressed to T1D (see also WebFigure 1 in the Supporting Information). The median progression
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time after seroconversion for IAA was 4.7 years (range: 0, 14.5 years; 25th and 75th percentile: 1.9, 6.7)
with a median event-free follow-up of 5.9 years (range: 0, 15 years; 25th and 75th percentile: 3.4, 8.6).
Subjects seroconverted for IAA at a median age of 2.1 years (range: 0.6, 18.1 years) with 86% of the
subjects having IAA as the first autoantibody to appear. In total N = 894 longitudinal measurements of
IAA after seroconversion (median number of measurements per subject: 6, range: 1, 24) were used and
log-transformed as log(IAA + 1) for the analysis. We model subject’s transformed autoantibody levels
using functional random intercepts and two further covariates which were chosen a priori based on medical
knowledge to fully capture the pattern of autoantibody levels. First, the age at seroconversion is included
as a linear effect and second a binary variable indicates whether the autoantibody was among the first
autoantibodies to appear. We model the association between marker and event, ⌘↵(t), to be a non-linear
function of time. Further we allow the covariates in the longitudinal model to also influence the survival
process directly and expect a positive association between the age at seroconversion and the time to T1D
(Steck et al., 2011; Ziegler et al., 2013). In our Bayesian model estimation we sample for 33000 iterations
with a burnin of 3000 and thinning of 15 to obtain 2000 samples, with starting values for the posterior
mean estimation obtained from the posterior mode estimates. Convergence is assessed by the inspection of
traceplots, of which a subset is presented in the Supporting Information. In order to assess the sensitivity
of the results to the number of knots we specify three models with differing numbers of knots. We specify
two models using either 12 (i.e. 4 internal) knots or 20 (i.e. 8 internal) knots for the overall mean as well as
the individual trajectories in the functional random intercepts and 10 (i.e. 2 internal) knots in the survival
submodel. Additionally we specify a model with 20 (i.e. 8 internal) knots for nonlinear terms in both, the
longitudinal and the survival submodels.

The results from the three specified models in our sensitivity analysis are highly similar for all predictors
with regard to mean estimates and the credibility intervals. However, we observe lower DIC for the models
with more knots in the functional random intercepts along with a closer fit of the individual trajectories
and more narrow credibility intervals for the estimated association ⌘↵(t) (cf. WebFigure 2). Using more
knots in the survival submodel results in a better mixing in the traceplots and a slightly lower DIC. Hence
we assume the results to be robust regarding the exact number of knots and present results of the model
with the lowest DIC in the following.

As shown in Figure 1b for 5 randomly selected subjects, we are able to closely approximate the indi-
vidual non-linear trajectories of IAA. The association between the marker and the onset of clinical T1D is
estimated as stable over time with an average slope of -0.01 [95% credibility interval: -0.09, 0.07]. The
average slope was defined as the mean over the first derivative of the association ⌘↵(t) evaluated at all
observed event and follow-up times T, and its posterior distribution can be easily obtained by numerically
deriving ⌘

0
↵(t) in every sample. The credibility interval for the estimated association is above 0 for the

first 2 years after seroconversion and there is more uncertainty at later timepoints, i.e. when less event and
follow-up times are observed and when less subjects remain in the risk set, as indicated by the credibility
intervals (Figure 4). In the longitudinal submodel we observe that trajectories have a lower level, if sub-
jects seroconverted at an older age (in years, �µ4 = �0.07; 95% credibility interval: [-0.14, -0.004]) and
a higher level if IAA was amongst the first markers to appear (�µ5 = 0.89; [0.23, 1.53]). In the survival
submodel the log-hazard is decreased if IAA was amongst the first markers to appear (��2 = �0.94; [-
1.73, -0.12]). In sum if IAA is amongst the first markers to appear the log-hazard is reduced by 0.7. This
net effect can be derived as the sum of the direct effect in ⌘� and the indirect effect in ⌘↵ · ⌘µ with an
average association of 1

n

P
i ⌘↵(Ti) = 0.28 Additionally we do not observe a direct effect of the age at

seroconversion (��3 = �0.09; [-0.19, 0.01]).

As the estimated association ⌘↵(t) showed no clear time trend we further compared this main model
with a simpler model assuming a time-constant association using both our joint model implementation in
bamlss and the implementation in JMbayes. In bamlss the same model was specified as in our main
analysis with the exception that only an intercept was allowed in the predictor ⌘↵. In JMbayes individual
trajectories were modeled by cubic B-splines (see section 4). The models resulted in highly similar effect
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estimates for the covariate effects and the intercept of the association effect (cf. Figure 4b). The effects
on the log-hazard of the association and the covariate indicating that IAA was the first marker to appear
were estimated slightly smaller in the JMbayes model. Despite more flexibility in the modeling, our main
model achieved a slightly lower DIC than the time-constant bamlss fit (DIC: 2645.6 vs. 2648.9). As the
DIC values are random and show small variations depending on the posterior sample this small difference
in DIC should not be overinterpreted. The DIC of the JMbayes estimation was not directly comparable
due to a different likelihood formulation. We further conducted a sensitivity analysis regarding the prior
specification of the variance parameters as well as the parametric terms. Basing on our main model we
estimated 3 additional models (a) using ⌧

2
km ⇠ IG(0.001, 1), i.e. a distribution closer to a uniform for the

variance parameters, (b) a Half-Cauchy distribution for the variance parameters, and (c) using a slightly
more informative prior �km ⇠ N(0, 50

2
) for all linear terms. Again all estimated effects were highly

similar (cf. WebFigure 6).

In line with previous findings (Steck et al., 2011, 2015) these results indicate that the quantitative levels
of the marker IAA are informative for the rate of progression to T1D in the first years after seroconver-
sion with higher levels increasing the hazard of T1D. The direct relationship between the hazard and age
at seroconversion is not supported by the model, suggesting that the previously established influence of
this baseline covariate on T1D progression may be mediated by the marker levels, i.e. the effect in the
respective log-hazard is reduced if the marker levels over time are taken into account as in our flexible pa-
rameterization. The association between IAA and the hazard of T1D over time was not found to be strongly
time-varying in this relatively small study despite a slightly smaller DIC for the time-varying model. There
is much uncertainty around the nonlinear time-varying estimate of the association ⌘↵(t). This uncertainty
is potentially a result of the flexibility in the estimation in combination with the amount of data in the sur-
vival part. Furthermore the precision in the assessment of the exact age at seroconversion and therefore the
timepoint 0 per subject is limited by the timing of the follow-up visits, potentially inducing further noise
in the assessment of the time-varying association between the biomarker and the time to clinical T1D.
All estimated effects were robust regarding different model specifications, i.e. varying number of knots,
differently specified associations, as well as different prior distributions.

6 Discussion and Outlook

We presented a flexible joint model that allows to fit a broad range of joint model specifications using struc-
tured additive predictors for all model components. The approach is fully implemented in the R-package
bamlss. While the framework is very flexible, as illustrated by Table 2, the focus in this work lies on
the flexible modeling of individual trajectories and the specification of a time-varying association between
marker and event. The proposed model shows satisfactory performance in various simulation settings and
has the potential to offer new insights into complex relationships between biomarkers and time-to-event
processes.
Our methods development was motivated by a specific research question from T1D studies and data from
two cohorts, the presented combined German BABYDIAB/BABYDIET cohort as well as a multinational
cohort. We aimed at assessing the potentially nonlinear time-varying association between a highly variable
disease-specific marker and the time to T1D onset. We saw that even by using the combined BABY-
DIAB/BABYDIET cohort, the sample size of the data set considered in the application in Section 5 is at
the lower limit for the complexity of our model, as indicated by our simulation study and by the width
of the credibility intervals in the applied results. Nevertheless we found a positive association between
a disease-related biomarker and the occurrence of clinical T1D. Although our model allows for a time-
varying association between the biomarker and the event process, at least in this small data set it was
estimated to be roughly constant with a DIC comparable to that of a simpler constant model and a slighty
larger effect early after seroconversion. In consequence our flexible model can also be used to check the

c� 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



14 Meike Köhler et al.: Flexible additive joint models

modeling assumptions of simpler models that are commonly used. We aim to further explore the rela-
tionship between T1D-specific autoantibodies and the progression to T1D in the larger data set from the
multinational T1D cohort (with sample size exceeding data setting b in our simulations) as in Steck et al.
(2015). We note that these results, as the majority of findings on pre-clinical T1D, can only be generalized
to subjects with increased risk of T1D and not to the general population.

Due to the complexity of the model and its estimation, the computation speed is still a drawback in our
implementation. Hence we are constantly working on speeding up the computations further. As shown in
simulation 2, the posterior mode estimation offers a computationally efficient way to obtain point estimates
from a flexible joint model before starting the full MCMC sampling. These posterior mode estimates show
a precision similar to that of the posterior mean estimates. However, the credibility intervals obtained from
posterior modes are not wide enough, potentially due to the fact that the uncertainty around the variance
parameters ⌧2km is not included in the credibility intervals. In consequence, only the credibility intervals of
the posterior mean estimates should be used for inference.

As is well-known in the survival context, the number of potential parameters in the model is limited by
the number of observed events (Harrell et al., 1996). This also holds in our approach for the predictors
in the survival part of the model, ⌘�, ⌘� , and ⌘↵. We achieve to alleviate this issue to some extent by
the penalized approach, which decreases the effective number of degrees of freedom and thus allows for a
richer model than would be possible without a penalty. Still, we recommend to model only those effects as
non-linear functions, where a strong indication for non-linearity is given.

Within the framework of the presented additive joint model several further extensions are possible. So
far model selection is conducted via DIC. We note that more advanced model selection techniques such
as Bayesian Lasso selection (Tang et al., 2017) or boosting (Waldmann et al., 2017) have been developed.
Including these techniques into the presented framework are topics for future work. Regarding potential
effects to be specified we aim to extend the model by including the derivative of the longitudinal trajec-
tories to model the event process similar to Ye et al. (2008), Brown (2009) and Rizopoulos et al. (2014),
allowing to model the potentially time-varying association between changes in the marker and the hazard.
Further, functional historical effects of the trajectories, including information on the history of the marker
(Malfait and Ramsay, 2003; Gellar et al., 2014), could potentially offer additional insights into complex
relationships between markers and event processes.
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Appendix

We derive score vectors and Hessians for the regression coefficients of every predictor. We introduce
some further notation to formulate these derivatives. For the time-varying predictors of the survival part
k 2 {�,↵, µ} the design matrix Xk(T) denotes the n⇥ pk matrix of evaluations at the vector of survival
times T. For the time-varying predictors of the longitudinal part k 2 {µ,�} the N ⇥ pk design matrix
Xk(t) contains the evaluations at all observed subject-specific timepoints t. The column vector xki is the
i-th row of the respective design matrix Xk for k 2 {�,�,↵, µ,�} and �k = [�k1, · · · ,�kMk ]

>. Let
` denote the log-likelihood, i.e. the sum of the contributions of the longitudinal and survival submodels
defined in (7) and (8). In more detail, the full log-likelihood is

` [✓|T, �,y] =�> [X�(T)�� +X��� +X↵(T)�↵ ·Xµ(T)�µ]

�
nX

i=1

exp

�
x>
�i��

� Z Ti

0
exp

⇥
x>
�i (u)�� + x>

↵i (u)�↵

�
x>
µi (u)�µ

�⇤
du

� N

2

log(2⇡)� 1

>
NX� (t)�� � 1

2

(y �Xµ (t)�µ)
>R�1

(y �Xµ (t)�µ)

resulting in the log-posterior

log p(✓|T, �,y) / ` [✓|T, �,y] +
X

k2{�,�,↵,µ,�}

MkX

m=1

⇥
log p(�km|⌧ 2

km) + log p(⌧ 2
km)

⇤
.

The full score vectors s(�k) and Hessians H(�k) of the respective predictors are computed as the
sum of the score s⇤(�k) and Hessians H⇤

(�k) based on the log-likelihood function and the score and
Hessian of the respective log-prior densities. For the multivariate normal prior as specified in 3.2 these are
� 1

⌧2
km

Kkm�km and � 1
⌧2
km

Kkm, respectively.

6.1 Score Vectors

s⇤(�µ) =
@`

@�µ
=Xµ (t)

>
R�1

(y �Xµ (t)�µ) +X

>
µ (T) diag(�) [X↵ (T)�↵]

�
nX

i=1

exp

�
x>
�i��

� Z Ti

0
!i(u) x

>
↵i (u)�↵xµi (u) du

s⇤(��) =
@`

@��
=�>X� �

nX

i=1

exp

�
x>
�i��

�
x�i

Z Ti

0
!i(u) du

s⇤(�↵) =
@`

@�↵
=X

>
↵ (T) diag(�) [Xµ (T)�µ]�

nX

i=1

exp

�
x>
�i��

� Z Ti

0
!i(u) x↵i (u)

�
x>
µi (u)�µ

�
du

s⇤(��) =
@`

@��
=�>X� (T)�

nX

i=1

exp

�
x>
�i��

� Z Ti

0
!i(u) x�i (u) du

s⇤(��) =
@`

@��
=�X� (t)

>
1N + [X� (t)� (y �Xµ (t)�µ)]

>
R�1

(y �Xµ (t)�µ)
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6.2 Hessian

H⇤
(�µ) =

@

2
`

@�µ@�µ>
=�Xµ (t)

>
R�1

Xµ (t)

�
nX

i=1

exp
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.
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Figure 1 Longitudinal marker values of log(IAA+ 1) for five randomly selected subjects in the BABY-
DIAB/BABYDIET study. (a) Observed values (points) and linear interpolation (lines); (b) Observed values
(points) and estimated trajectories (lines).
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Figure 4 Estimated effects in the BABYDIAB/BABYDIET data. (a): Estimated posterior mean of ⌘↵(t)
with 95% pointwise credibility bands (shaded area), observed event times (rugs bottom), and censoring
times (rugs top). (b): linear effect estimates from the survival and longitudinal submodel from model fits
based on (i) bamlss with time-varying ⌘↵(t), (ii) bamlss with time-constant ⌘↵ and (iii) JMbayes.
association stands for effects in ⌘↵, long for the longitudinal submodel, sc indicates seroconversion.

Table 1 Overview of the predictor vectors, function evaluations and design matrices in the survival and
longitudinal submodel.

predictor vector function evaluation design matrix
survival model
k 2 {�} ⌘k = [⌘ki]

> fk = [fk(xki)]
>

Xk

n⇥ 1 n⇥ 1 n⇥ pk

k 2 {�,↵, µ} ⌘k(t) = [⌘ki(t)]
> fk(t) = [fk(xki(t), t)]

>
Xk(t)

n⇥ 1 n⇥ 1 n⇥ pk

longitudinal model
k 2 {µ,�} ⌘k(t) = [⌘ki(ti)

>
]

> fk(t) = [fk(xki(ti), ti)
>
]

>
Xk(t)

N ⇥ 1 N ⇥ 1 N ⇥ pk

For ease of notation we denote the vector a> = [a1, · · · , an] as [ai] for i = 1, · · · , n and drop the subscript m for
the different terms per predictor in this illustration.
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Table 2 Effects fkm(xki) that can be specified within a predictor ⌘k in structured additive joint models;
modified from a similar table in Scheipl et al. (2015).

covariate (subset of x) fkm(xk) constant over t fkm(xk) varying over t
no covariate scalar intercept 1 · � smooth effect of time f(t)

scalar covariate z linear effect z · � linear effect varying over time z · f(t)
smooth effect f(z) smooth effect over time f(z, t)

spatial covariate(s) s spatial effect f(s) spatial effect over time f(s, t)

grouping variable g random intercept �g functional random intercept fg(t)
scalar and grouping variable random slope z · �g functional random slope z · fg(t)
vector of scalars [z1, z2] linear interaction z1 · z2 · � linear interaction over time z1 · z2 · f(t)

varying coefficient z1 · f(z2)
smooth effect f(z1, z2)

Table 3 Posterior mean simulation results from bamlss and results from JMbayes

from setting 1 (time-constant ⌘↵) for small (a) and large (b) data sets.

MSE bias coverage
a b a b a b

⌘↵ bamlss 0.032 0.016 0.003 �0.009 0.925 0.970

JMbayes 0.049 0.021 0.100 0.048 0.840 0.890

⌘� + ⌘� bamlss 0.127 0.077 �0.007 0.011 0.935 0.946

JMbayes 0.155 0.101 �0.095 �0.048 0.743 0.742

⌘µ bamlss 0.022 0.028 0.001 0.000 0.944 0.942

JMbayes 0.031 0.029 �0.001 0.008 ⇤ ⇤
⌘� bamlss 0.001 0.001 0.009 0.014 0.940 0.875

JMbayes 0.007 0.002 0.080 0.039 ⇤ ⇤
⇤ No credibilty intervals and thus no coverage could be calculated for these predictors.

Table 4 Posterior mode and posterior mean simulation results for setting 2 (time-varying ⌘↵(t)) for small
(a) and large (b) data sets.

MSE bias coverage
a b a b a b

⌘↵ mean 0.171 0.078 0.007 0.002 0.940 0.961

mode 0.177 0.117 0.058 0.069 0.608 0.593

⌘� mean 0.097 0.062 �0.035 �0.032 0.931 0.948

mode 0.089 0.059 0.022 �0.001 0.804 0.795

⌘� mean 0.083 0.065 0.000 0.000 0.945 0.957

mode 0.101 0.082 0.000 0.000 0.592 0.549

⌘µ mean 0.022 0.028 0.000 0.000 0.943 0.942

mode 0.025 0.031 0.000 0.000 0.882 0.865

⌘� mean 0.001 0.001 0.009 0.015 0.905 0.855

mode 0.004 0.004 �0.057 �0.057 0.175 0.045
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