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Reconstructing cell cycle and disease progression
using deep learning
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We show that deep convolutional neural networks combined with nonlinear dimension

reduction enable reconstructing biological processes based on raw image data. We

demonstrate this by reconstructing the cell cycle of Jurkat cells and disease progression in

diabetic retinopathy. In further analysis of Jurkat cells, we detect and separate a sub-

population of dead cells in an unsupervised manner and, in classifying discrete cell cycle

stages, we reach a sixfold reduction in error rate compared to a recent approach based on

boosting on image features. In contrast to previous methods, deep learning based predictions

are fast enough for on-the-fly analysis in an imaging flow cytometer.
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A major challenge and opportunity in biology is inter-
preting the increasing amount of information-rich and
high-throughput single-cell data. Here, we focus on

imaging data from fluorescence microscopy1, in particular from
imaging flow cytometry (IFC), which combines the fluorescence
sensitivity and high-throughput capabilities of flow cytometry
with single-cell imaging2. Imaging flow cytometry is unusually
well-suited to deep learning as it provides very high sample
numbers and image data from several channels, that is, high
dimensional, spatially correlated data. Deep learning is therefore
capable of processing the dramatic increase in information
content—compared to spatially integrated fluorescence intensity
measurements as in conventional flow cytometry3—in IFC data.
Also, IFC provides one image for each single cell, and hence does
not require whole-image segmentation.

Deep learning enables improved data analysis for high-
throughput microscopy as compared to traditional machine
learning methods4–7. This is mainly due to three general advan-
tages of deep learning over traditional machine learning: there is
no need for cumbersome preprocessing and manual feature
definition, prediction accuracy is improved, and learned features
can be visualized to uncover their biological meaning. In parti-
cular, we demonstrate that this enables reconstructing continuous
biological processes, which has stimulated much research effort in
the past years8–11. Only one of the other recent works on deep
learning in high-throughput microscopy discusses the visualiza-
tion of network features12, but none deal with continuous bio-
logical processes12–16.

When aiming at an understanding of a specific biological
process, one often only has coarse-grained labels for a few
qualitative stages, for instance, cell cycle or disease stages.
While a continuous label could be efficiently used in a regression
based approach, qualitative labels are better used in a
classification-based approach. In particular, if the ordering of the
categorical labels at hand is not known, a regression based
approach will fail. Also, the detailed quantitative information
necessary for a continuous label is usually only available if a
phenomenon is already understood on a molecular level and
markers that quantitatively characterize the phenomenon are
available. While this is possible for cell cycle when carrying out
elaborate experiments where such markers are measured5, 8,
in many other cases, this is too tedious, has severe side effects
with unwanted influences on the phenomenon itself or is simply
not possible as markers for a specific phenomenon are not
known. Therefore, we propose a general workflow that uses a
deep convolutional neural network combined with classification
and visualization based on nonlinear dimension reduction
(Fig. 1).

Results
Reconstructing cell cycle progression. To show how learned
features of the neural network can be used to visualize, organize,
and biologically interpret single-cell data, we study the activations
in the last layer of the neural network17. The approach is moti-
vated by the fact that the neural network strives to organize data
in the last layer in a linearly separable way, given that it is directly
followed by a softmax classifier. Distances from the separating
hyperplanes in this space can be interpreted as similarities
between cells in terms of the features extracted by the network.
Cells with similar feature representations are close to each other
and cells with different class assignments are far away from each
other. This gives a much more fine-grained notion of biological
similarity than provided by the class labels used for labeling the
training set. Evidently, it automatically generalizes to the unseen,
new data in the validation data set. The activation space of our
network’s last layer is much too high dimensional to be accessible
for human interpretation. We use nonlinear dimension reduction
to visualize the data in a lower dimensional space, in particular,
t-distributed stochastic neighbor embedding (tSNE)18.

We apply the approach to raw IFC images of 32,266
asynchronously growing immortalized human T-lymphocyte
cells (Jurkat cells)5, 19, which can be classified into seven different
stages of cell cycle (Fig. 2), including phases of interphase (G1, S,
and G2) and phases of mitosis (Prophase, Anaphase, Metaphase,
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Fig. 1 Overview of analysis workflow. Images from all channels of a high-throughput microscope are uniformly resized and directly fed into the neural
network, which is trained using categorical labels. The learned features are used for both classification and visualization
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Fig. 2 Representative images for the cell cycle stages as measured in
brightfield, darkfield, and fluorescence channels. Seven cell cycle stages define
seven classes. We only show one representative image for the interphase
classes G1, S, and G2, which can hardly be distinguished by eye
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and Telophase). We observe that the Jurkat cell data is organized
in a long stretched cylinder along which cell cycle phases are
ordered in the chronologically correct order (Fig. 3a and
Supplementary Movie 1). This is remarkable as the network has
been provided with neither structure within the class labels nor
the relation among classes. The learned features evidently allow
reconstructing the continuous temporal progression from the raw
IFC data, and by that define a continuous distance between the
phenotypes of different cell cycle phases.

We separately visualized just those cells annotated as being in
the interphase classes (G1, S, G2) (Fig. 3b) and colored them with
the DNA content obtained from one of the fluorescent channels
of the IFC. The DNA content reflects the continuous progression
of cells in G1, S, and G2 on a more fine-grained level. Its
correspondence with the longitudinal direction of the cylinder
found by tSNE demonstrates that the temporal order learned by
the neural network is accurate even beyond the categorical class
labels.

Detecting abnormal cells in an unsupervised manner. Both
tSNE visualizations (Fig. 3a, b) produce a small, separate cluster
highlighted with an arrow in Fig. 3b. This cluster is learned in an
unsupervised way as cell cycle phase labels provide no

information about it: it contains cells from all three interphase
classes. While cells in the bulk have high circularity and well
defined borders (Fig. 3c), cells in the small cluster are char-
acterized by morphological abnormalities such as broken cell
walls and outgrowths, signifying dead cells (Fig. 3d).

Deep learning automatically performs segmentation. We
interpret the data representation encoded in one of the trained
intermediate layers of the neural network by inspecting its acti-
vation patterns using exemplary input data from several classes
(Fig. 4). These activation patterns are the essential information
transmitted through the network. They show the response of
various kernels on their input. By inspecting the activation
patterns, we obtain an insight into what the network is “focusing
on” in order to organize data. We observe a strong response to
features that arise from the cell border thickness (Fig. 4, map 1),
to area-based features (Fig. 4, map 2), as well as cross-channel
features. For example, map 4 in Fig. 4 shows high response to the
difference of information from the brightfield channel, as seen in
map 2, and scatter intensities, as seen in map 3. A strong response
of the neural network to area-based features as in map 2 could
indicate that the network learned to perform a segmentation task.

Deep learning outperforms boosting for cell classification. We
study the classification performance of deep learning on the
validation data set shown in Fig. 3. We first focus on the case in
which G1, S, and G2 phases are considered as a single class. Using
fivefold cross-validation on the 32,266 cells, we obtain an
accuracy of 98.73%± 0.16%. This means a sixfold improvement
in error rate over the 92.35% accuracy for the same task on the
same data in prior work using boosting on features extracted via
image analysis5. The confusion matrix obtained using boosting
show high true positive rates for the mitotic phases (Fig. 5a).
For example, no cells in Anaphase and Telophase are wrongly
classified, as indicated by the zeros in the off-diagonal entries of
the two lower rows of the matrix (Fig. 5a). This means high
sensitivity, most cells from mitotic phases are correctly classified
as such. Still this comes at the price of low precision: many cells
from the interphase class are classified as mitotic phases, as
indicated by the high numbers in the off-diagonal entries of the
first row of the matrix (Fig. 5a). Deep learning, by contrast,
achieves high sensitivity and precision, leading to an almost
diagonal confusion matrix (Fig. 5b). Further deep learning
allows to classify all seven cell cycle stages with an accuracy
of 79.40%± 0.77% (Supplementary Notes and Supplementary
Fig. 2).

Reconstructing disease progression. To substantiate the gen-
erality of our results, consider now a data set that is related to
diabetic retinopathy, which is the leading cause of blindness in
the working-age population of the developed world. We study
30,000 color fundus photographies of the human retina,
which were classified into four disease states “healthy”, “mild”,
“medium”, and “severe”. We observe a reconstructed disease
progression (Fig. 6) for 8000 samples in the validation data set,
that is, the four disease states are ordered along disease severity,
even though the network has not been provided with the ordering
information. Similar to the cell cycle example, the ordering
ensures that only neighboring classes overlap, as visible from the
tSNE plot (Fig. 6a).

Discussion
The visualization of the data as encoded in the last layer of the
network using tSNE demonstrates how deep learning overcomes
a well known issue of traditional machine learning. When trained
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Fig. 3 Cell-cycle reconstruction and detection of abnormal cells. a tSNE
visualization of the validation data set in activation space representation. All
interphase classes (G1, S, G2) and the two mitotic phases with the highest
number of representatives are shown (Prophase: red, Metaphase: blue).
Telophase and Anaphase are not visible due to their low number
representatives. b tSNE visualization of data from the interphase classes
(G1, S, G2) in activation space. The color map now shows the DNA content
of cells. A cluster of damaged cells is indicated with an arrow. c Randomly
picked representatives from the bulk of undamaged cells. d Randomly
picked representatives from the cluster of damaged cells
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on a continuous biological process using discrete class labels,
traditional machine learning often fails to resolve the con-
tinuum4. Reconstructing continuous biological processes though
is possible in the context of so-called pseudotime algorithms9–11.
For the cell cycle it has been demonstrated8, but in a very dif-
ferent setting. These authors measured five stains that uniquely
define the cell cycle and then applied a pseudotime algorithm9

within this five-dimensional space. This procedure is only pos-
sible if stains that correlate with a given process of interest are
known, if they do not interact with the process and if the ela-
borate experiments for measuring the intensity of these stains can
be carried out. We, by contrast, use raw images directly and the
learned features of the neural network automatically constitute a
feature space in which data is continuously organized. In
the Supplementary Notes, we demonstrate that pseudotime
algorithms fail at solving this much harder problem.

Deep learning is able to reconstruct continuous processes based
on categorical labels as adjacent classes are morphologically more

similar than classes that are temporally further separated. If this
assumption does not hold, also pseudotime algorithms fail to
reconstruct a process. This can be better understood when
inspecting Fig. 6a, where we show the tSNE visualization of the
validation set for the diabetic retinopathy (DR) data. Samples are
organized in the correct order of progression through disease
states, from healthy to severe DR. However, between the healthy
cluster (green) and the mild DR cluster (orange), one observes an
area of slightly reduced sampling density (dashed line). This
should not be attributed to “less data points having been sampled
in this region” but should be seen as a consequence of the fact
that the overlap between the “healthy” stage and the “mild” stage
is smaller than the overlap of the diseased stages among each
other. If there was no overlap between “healthy” and “mild”
stages, the tSNE would show a complete separation of the healthy
cluster from the rest of the data. Such a behavior is typically
observed if the underlying data is not sampled from a continuous
process.
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Fig. 4 Exemplary activation patterns of intermediate layers. Plotted are activations after the second convolutional module for examples of single cells from
four different phases: a G1, b G2, c Anaphase, and d Telophase. The response maps mark regions of high activation. Map 1 responds to the cell boundaries.
Map 2 responds to the internal area of the cells. Map 3 extracts the localized scatter intensities. Map 4 constitutes a cross-channel feature, which
correlates with the difference of map 2 and 3
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The unsupervised detection of a discrete cluster of abnormal
cells for the Jurkat cell data indicates that the neural network
learns the cluster of abnormal cells independently of the cell-
cycle-label based training. The model is therefore not only cap-
able of resolving a biological process, but generates features that
are general enough to separate incorrectly labeled cells that do not
belong to the process. None of the mentioned pseudotime algo-
rithms is capable of this. This shows the ability of deep learning to
find unknown phenotypes and processes without knowledge
about features or labels. Also, there is a high practical use of the
detection of damaged cells. The Jurkat cell data set has been
preprocessed using the IDEAS analysis software to remove images
of abnormal cells. In particular, out of focus cells were removed
by gating for images with gradient RMS and debris was removed
by gating for circular objects with a large area. The discovery of a
cluster of abnormal cells shows the limitations of this approach
and provides a solution to it.

An advantage of using a neural network for cell classification in
IFC is its speed. Traditional techniques rely on image segmen-
tation and measurement, time-consuming processes limited to
roughly 10 cells per second. Neural network predictions, by
contrast, are extremely fast, as the main computation consists in
parallelizable matrix multiplications (“forward propagations”),
which can be performed using optimized numeric libraries. This
yields a roughly 100-fold improvement in speed to about 1000
cells per second with a single GPU. Aside from much faster
analysis of large cell populations, this opens the door to “sorting
on-the-fly”: imaging flow cytometers currently do not allow
physically sorting individual cells into separate receptacles based
on measured parameters, due to these speed limitations.

Given the compelling performance on reconstructing the cell
cycle and diabetic retinophany, we expect deep learning to be
helpful for understanding a wide variety of biological processes
involving continuous morphology changes. Examples include
developmental stages of organisms, dose response and the pro-
gression of healthy states to disease states, situations that have
often been non-ideally reduced to binary classification problems.
Ignoring intrinsic heterogeneity has likely hindered a deeper
insight into the mechanisms at work. Analysis as demonstrated
here could reveal morphological signatures at much earlier stages
than previously recognized.

Our results indicate that reconstructing biological processes is
possible for a wide variety of image data, if enough samples are
available. Although generally lower-throughput in terms of the
number of cells processed, conventional microscopy is never-
theless still high-throughput and can usually provide higher
resolution images than IFC. Furthermore, given that multi-
spectral methods are advancing rapidly, imaging mass spectro-
metry is allowing dozens of labeled channels to be acquired20, 21.
Due to its basic structure and high flexibility, a deep learning
framework like the one presented here can accommodate a large
increase in the number of available channels.

We acknowledge discussions with the authors of related work,
which became available as a preprint just before publication of the
present paper22.

Methods
In the data set of 32,266 Jurkat cells, labeling is based on two fluorescent stains:
propidium iodine (PI) to quantify each cell’s DNA content and the mitotic protein
monoclonal #2 (MPM2) antibody to identify cells in mitotic phases. These
stains allow each cell to be labeled through a combination of algorithmic seg-
mentation, morphology analysis of the fluorescence channels, and user inspection5.
Note that 97.78% of samples in the data set belong to one of the interphase classes
G1, S, and G2. The strong class imbalance in the data set is related to the fact that
interphase lasts—when considering the actual length of the biological process—a
much longer period of time than mitosis.

Recent advances in deep learning have shown that deep neural networks are
able to learn powerful feature representations23–26. Based on the widely used
“Inception” architecture25, we developed the “DeepFlow” architecture, which is
optimized for the relatively small input dimensions of IFC data. DeepFlow consists
in 13 three-layer “dual-path” modules (Supplementary Fig. 3), which process and
aggregate visual information at an increasing scale. These 39 layers are followed by
a standard convolution layer, a fully connected layer and the softmax classifier.
Training this 42-layer deep network does not present any computational difficulty,
as the first three layers consist in reduction dual-path modules (Supplementary
Fig. 3b), which strongly reduce the original input dimensions prior to convolutions
in the following normal dual-path modules. The number of kernels used in each
layer increases towards the end, until 336 feature maps with size 8 × 8 are obtained.
A final average pooling operation melts the local resolution of these maps
and generates the last 336-dimensional layer, which serves as an input for both
classification and visualization.

This neural network operates directly on uniformly resized images. It is trained
with labeled images using stochastic gradient descent with standard parameters
(Supplementary Notes). For the IFC data, we focus on the case in which only
brightfield and darkfield channels are used as input for the network, during
training, visualization and prediction. As stated before, this case is of high
interest as a fluorescent markers might affect the biological process under
study or adequate markers are not known. We note, however, that technical
imperfections in the IFC data capture might always lead to a minor amount of
fluorescence signal, activated by a fluorescence channel, in the darkfield and
brightfield channels, a phenomenon known as “bleed through” (Supplementary
Notes).

Code availability. Code for the DeepFlow architecture and the Jurkat cell data set
is available at https://github.com/theislab/deepflow.

Data availability. The retinopathy data set is available at https://www.kaggle.com/
c/diabetic-retinopathy-detection/data and can be processed with standard packages
and architectures.

Received: 26 October 2016 Accepted: 14 July 2017

References
1. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for

systems biology. Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).
2. Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V. & Morrissey, P.

Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27,
653–670 (2007).

3. Brown, M. & Wittwer, C. Flow cytometry: principles and clinical applications in
hematology. Clin. Chem. 46, 1221–1229 (2000).

4. Eliceiri, K. W. et al. Biological imaging software tools. Nat. Methods 9, 697–710
(2012).

5. Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow
cytometry. Nat. Commun. 7, 10256 (2016).

tSNE component 1 tSNE component 3tS
N

E
 c

om
po

ne
nt

 2
Healthy

Mild
Medium

Severe

Healthy Mild Medium Severe

a

b

Fig. 6 Reconstruction of disease progression in diabetic retinopathy. a tSNE
visualization of activation space representation, colored according to the
disease states. b Randomly chosen images for each class

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00623-3 ARTICLE

NATURE COMMUNICATIONS |8:  463 |DOI: 10.1038/s41467-017-00623-3 |www.nature.com/naturecommunications 5

https://github.com/theislab/deepflow
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
www.nature.com/naturecommunications
www.nature.com/naturecommunications


6. Jones, T. R. et al. Scoring diverse cellular morphologies in image-based
screens with iterative feedback and machine learning. PNAS 106, 1826–1831
(2009).

7. Dao, D. et al. Cellprofiler analyst: interactive data exploration, analysis, and
classification of large biological image sets. Bioinformatics 32, 3210–3212
(2016).

8. Gut, G., Tadmor, M. D., Pe’er, D., Pelkmans, L. & Liberali, P. Trajectories of
cell-cycle progression from fixed cell populations. Nat. Methods 12, 951–954
(2015).

9. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and
regulatory coordination in human B cell development. Cell 157, 714–725
(2014).

10. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32,
381–386 (2014).

11. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion
pseudotime robustly reconstructs branching cellular lineages. Nat. Methods 13,
845–848 (2016).

12. Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular
localization from high-throughput microscopy images using deep learning.
G3 Genes Genom. Genet. 7, 1385–1392 (2017).

13. Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471
(2016).

14. Kraus, O. Z., Ba, L. J. & Frey, B. Classifying and segmenting microscopy images
with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016).

15. Dürr, O. & Sick, B. Single-cell phenotype classification using deep
convolutional neural networks. J. Biomol. Screen. 21, 998–1003 (2016).

16. Kandaswamy, C., Silva, L. M., Alexandre, L. A. & Santos, J. M. High-content
analysis of breast cancer using single-cell deep transfer learning. J. Biomol.
Screen. 21, 252–259 (2016).

17. Donahue, J. et al. Decaf: A deep convolutional activation feature for generic
visual recognition. Preprint at https://arXiv.org/abs/1310.1531 (2013).

18. van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn.
Res. 9, 2579–2605 (2008).

19. Hennig, H. et al. An open-source solution for advanced imaging flow cytometry
data analysis using machine learning. Methods 112, 201–210 (2016).

20. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular
states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867
(2012).

21. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat.
Med. 20, 436–442 (2014).

22. Ando, D. M., McLean, C. & Berndl, M. Improving Phenotypic Measurements
in High-Content Imaging Screens. Preprint at bioRxiv https://doi.org/10.1101/
161422 (2017).

23. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
convolutional neural networks. NIPS 25, 1097–1105 (2012).

24. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).

25. Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1–9 (2015).

26. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444
(2015).

Acknowledgements
F.A.W. acknowledges support by the Helmholtz Postdoc Programme, Initiative and
Networking Fund of the Helmholtz Association. P.R. and A.E.C. acknowledge the sup-
port of the Biotechnology and Biological Sciences Research Council/ National Science
Foundation under grant BB/N005163/1 and NSF DBI 1458626. A.F. acknowledges
support from the ISAC EL programme.

Author contributions
P.E. and N.K. developed the deep learning model and the data analysis pipeline with
equal contributions. F.J.T., T.B., and P.R. conceived the study. F.A.W. supervised the
study with F.J.T. A.F. designed and performed the cell cycle experiments. F.A.W. per-
formed the pseudotime-based reconstruction of cell cycle. F.A.W., N.K., P.E., and A.C.
wrote the paper with help from all authors. All authors contributed to the interpretation
of the results.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00623-3.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00623-3

6 NATURE COMMUNICATIONS | 8:  463 |DOI: 10.1038/s41467-017-00623-3 |www.nature.com/naturecommunications

https://arXiv.org/abs/1310.1531
https://doi.org/10.1101/161422
https://doi.org/10.1101/161422
http://dx.doi.org/10.1038/s41467-017-00623-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Reconstructing cell cycle and disease progression using deep learning
	Results
	Reconstructing cell cycle progression
	Detecting abnormal cells in an unsupervised manner
	Deep learning automatically performs segmentation
	Deep learning outperforms boosting for cell classification
	Reconstructing disease progression

	Discussion
	Methods
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




