1 Alterations in grapevine leaf metabolism occur prior to esca apoplexy appearance.

2

Maryline Magnin-Robert¹, Marielle Adrian², Sophie Trouvelot², Alessandro Spagnolo¹,
Lucile Jacquens², Patricia Letousey¹, Fanja Rabenoelina¹, Mourad Harir³, Chloé RoullierGall⁴, Christophe Clément¹, Philippe Schmitt-Kopplin^{3,4}, Armelle Vallat⁵, Eliane AbouMansour⁶, and Florence Fontaine^{1*}

7

8 ¹SFR Condorcet, Université de Reims Champagne-Ardenne, URVVC EA 4707,

9 Laboratoire Stress, Défenses et Reproduction des Plantes, BP 1039, 51687 Reims Cedex 2,

10 France.

11 ²UMR Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17

12 rue Sully, BP 86510 - 21065 Dijon cedex, France.

13 ³ Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for

14 Environmental Health, Neuherberg, Germany

15 ⁴Chair of Analytical Food Chemistry, Technische Universität München, Freising-

- 16 Weihenstephan, Germany
- 17 ⁵Université de Neuchâtel, Institut de chimie, NPAC, Avenue de Bellevaux 51, 2000
- 18 Neuchâtel, Switzerland
- ⁶Plant Biology Department, University of Fribourg, Chemin du Musée 10, 1700 Fribourg,
- 20 Switzerland.

21

- 22
- 23 *To whom the correspondence should be addressed. Florence FONTAINE, E-mail:
- 24 florence.fontaine@univ-reims.fr, Phone: 3 33 26 91 33 18, Fax : 3 33 26 91 33 39

25 26

Magnin-Robert, MPMI

27 ABSTRACT

28 Esca disease is one of the major grapevine trunk diseases in Europe and the aetioloy is 29 complex since several inhabiting fungi are identified to be associated with this disease. 30 Among the foliar symptom expression, apoplectic form may be distinguished and 31 characterized by sudden dieback of shoots, leaf drop and shriveling of grape clusters in few 32 days that can ultimately induce the plant death. To further understand this drastic event, we 33 conducted transcriptomic and metabolomic analyses to characterize responses of leaves 34 during the period preceding symptom appearance (twenty and seven days before foliar 35 symptoms expression) and at the day of apoplexy expression. Transcriptomic and 36 metabolomic provide signatures for the apoplectic leaves and most of changes concern the 37 metabolism of carbohydrates, amino acids, and phenylpropanoids. Deciphering on 38 glutathione-S-transferase, its preferential location in phloem, correlated with the 39 upregulation of GST genes and a decrease of the glutathione level, offer further support to 40 the putative role of glutathione during apoplexy expression.

- 41
- 42

43 KEY-WORDS

44 Apoplexy, metabolomic, transcriptomic, targeted genes, in situ hybridization, glutathione,

45 Vitis vinifera, esca.

46 47

49 INTRODUCTION

The 21st century is the burst of re-emerging diseases, among with the grapevine trunk 50 diseases (GTDs) due to a complex of fungi. Over the past decade, their symptom incidence 51 52 has drastically increased in Europe, *i.e.* the cumulated symptomatic grapevines (foliar 53 symptoms) in French vineyards is close to 13 % (Bruez et al. 2013) and may reach up to 54 10% in Spain and 50% in Italian ones (Romanazzi et al. 2009). A recent estimation of the 55 economic cost of GTDs due to decrease of both quality and quantity of wine and the 56 replacement of died vines, evaluates the lost for more than 1.1 billion euros (Hofstetter et 57 al. 2013). In Europe, GTDs are now stated as the major preoccupation for winegrowers 58 since no efficient control is available. Outside Europe, GTDs are also generally of great 59 concern and induces for example economic losses of up to US\$ 260 million per year in 60 California and \$8.3 billion in Australia (De la Fuente et al. 2016).

61 Esca disease is one of the major GTDs in Europe and esca aetiology is complex since 62 several fungi are known to be associated to this disease, especially *Phaeomoniella* 63 chlamvdospora, Phaeoacremonium minimum and Fomitiporia mediterranea (Bertsch et al. 2013). They are xylem-inhabiting fungi and they induce various wood symptoms such as 64 65 brown necrosis and black streaking (Larignon and Dubos 2001). For the foliar symptom 66 expression, either a chronic or apoplectic form may be distinguished. The chronic form is 67 typically characterized by spots appearing between the leaf veins or along the edges, which 68 expand and become confluent, finally resulting in chlorotic and necrotic strips with only a 69 narrow green stripe along the midrib (Mugnai et al. 1999; Bertsch et al. 2013). In most 70 cases, the affected leaf finally assumes a "tiger stripe" appearance. The apoplexy form is 71 characterized by the dieback of one or more shoots and is accompanied by leaf drop and 72 the shrivelling and drying of fruit clusters (Mugnai et al. 1999). Usually, this violent event 73 occurs in midsummer, particularly when dry, hot weather follows rainfall (Mugnai et al.

74 1999; Surico et al. 2006). After such an event, the affected vines can resume growth in the75 following season or even in the current one, but they can also ultimately die.

76 To further understand the apoplexy expression, studies have been conducted on related 77 grapevine responses in different organs (Fontaine et al. 2015). In the trunk, healthy wood 78 was mainly characterized by down-expression of proteins involved in cell growth and 79 defense response (Magnin-Robert et al. 2014). Conversely, in black streaked wood, 80 characterized by an extensive presence of GTD agents, the proteome analysis revealed 81 over-expression of proteins involved in defense. For green shoots, various quantitative 82 expressions are triggered upon the onset of apoplexy, although no pathogens associated 83 with GTDs have been isolated from these organs (Spagnolo et al. 2012). In leaves, the 84 period preceding symptom appearance was especially investigated by following physiological and targeted genes associated to photosynthesis and stress responses 85 86 (Letousey et al. 2010). Within the week preceding symptoms, drastic alterations of 87 photosynthesis were registered in pre-apoplectic vines, as revealed by a decrease in gas 88 exchanges, changes in chlorophyll fluorescence, and repression of photosynthesis-related 89 genes. In the meantime, expression of a set of defense-related genes was induced and 90 amplified during symptom expression (Letousey et al. 2010). Such a characterization of the 91 events preceding apoplexy needs to get new insights of gene regulation and metabolic 92 changes associated to apoplexy expression.

93 In the present study, transcriptomic and metabolomic analyses were performed in 94 grapevine cv. Chardonnay leaves, before and at the time of apoplexy appearance, in 95 comparison with asymptomatic leaves as controls. This was completed by the qRT-PCR 96 analysis of the expression of 18 targeted genes, selected from the previous transcriptomic 97 study, on healthy and diseased samples collected fifty, thirty, twenty and seven days before 98 apoplexy expression. Focus was given to glutathione metabolism and localization of the

Magnin-Robert, MPMI

103

104 RESULTS

Differentially-expressed genes detected by Illumina mRNA at T0-20, T0-7 and T0 apoplexy
event

Analysis of gene expression was conducted on leaves from diseased plants at various times before apoplectic symptom appearance and on control plants (C) at the same development stage. A total number of 1,216,959 raw reads were generated by 454 GS FLX of a cDNA mix of different leaf samples. After filtering, 1,210,565 clean reads were obtained with an average length of 150 pb. The total length of clean reads was about 314 millions bases (314,141,226).

113 A selection of genes based on a differential expression between diseased and control leaves 114 (ratio ≥ 2 for up-regulation and ≤ 0.5 for down-regulation) was done through all the time 115 points. The number of up- and / or down-regulated genes was 2,122. Overall, 51.8% of 116 these genes showed a constant induction of their expression, 35.7% a constant repression 117 and 12.5% had an induction or a repression of their expression at least at two points of the 118 kinetic. The evolution of the expression of the regulated genes (induced and / or repressed) 119 depending on the kinetic was summarized in Fig. 1. Results indicated that 262 genes 120 exhibit a modified expression 20 days before apoplexy event (T0-20). The number of 121 genes with regulated expression increased with the imminent onset of the symptoms, 629 122 genes for healthy apparent (vh) leaves 7 days before apoplexy (T0-7vh), 1508 genes for 123 turgorless (tg) leaves 7 days apoplexy (T0-7tg) and 1690 genes at the onset of the apoplexy

Magnin-Robert, MPMI

124 (T0). Interestingly, the majority of the genes with modified expression at T0-20 were 125 down-regulated (60%) (Fig. 1). This repartition was completely reversed on vh leaves of 126 diseased plants at T0-7 with 25% of down-regulated genes. At the onset of symptoms, the 127 number of down- or up-regulated genes is equivalent. Genes regulated in diseased leaves 128 were grouped into 9 functional categories (Fig. 2), with about 69% (181), 70% (440), 56% 129 (844) and 55% (929) of genes remaining unfortunately not yet known for T0-20, T0-7vh, 130 T0-7tg and T0, respectively. Globally, from T0-20 to T0, there was an increasing number 131 of regulated genes involved in both stress and defense reactions, lipid metabolism and in 132 protein metabolism and a decreasing number of genes involved in amino acid and 133 secondary metabolism. Few modifications were observed for the other pathways. In regard 134 to the 9 functional categories reported namely 1- carbohydrate metabolism; 2- amino acid 135 metabolism; 3- lipid metabolism; 4- growth, replication and DNA damage repair; 5-136 signalisation, hormonal regulation, transduction, transcriptor factor; 6- protein metabolim; 137 7- cellular process; 8- secondary metabolism and 9- stress and defense reaction (Table 2, 138 Supplementary Table 2), we focused on 5 ones representing key functions in grapevine 139 physiology and / or already known to be affected by wood trunk diseases in previous 140 studies: carbohydrate metabolism, amino acid metabolism, lipid metabolism, secondary 141 metabolism and stress and defense reactions (Table 2, Koussa et al. 1998; Rifai et al. 2005; 142 Petit et al. 2006; Letousey et al. 2010; Lima et al. 2010, Magnin-Robert et al. 2011). For 143 carbohydrate metabolism, genes involved in energy synthesis, starch degradation, glucose 144 metabolism, and photosynthesis system were globally up-regulated at the beginning of the 145 kinetic (T0-20), in diseased leaves, before symptoms emergence. Among them were the 146 genes encoding succinate dehydrogenase (XM 002269371), lysosomal-beta-glucosidase 147 (XM 002278327), zeta-carotene desaturase (XM 002277312), UTP-glucose 1-phosphate 148 uridyltransferase (XM 002282240); alpha-glucan phosphorylase (XM 002280696),

Magnin-Robert, MPMI

149 ribulose biphosphate carboxylase small chain (XM 002276931), glucan endo-1,3-beta-150 glucosidase (XM 002279561). In opposite, the sucrose synthase 2 (XM 002271494) 151 encoding a protein involved in sucrose synthesis and two galactose oxidase genes 152 (XM 01065799 and XM 002274727) encoding two proteins involved in galactose 153 metabolism were clearly repressed in T-20/T0-7tg/T0 and T0-7tg/T0 samples, respectively. 154 At T0, the up-regulated genes were mainly involved in cell wall formation / modification 155 (beta-xylosidase/alpha-L-arabinofuranosidase - XM 002264147; UDP-arabidopyranose 156 *mutase* - XM 002263454) whereas several genes involved in glycolysis, photosynthesis 157 and starch degradation were downregulated (violaxanthin de-epoxidase XM 010650663; 158 alpha-amylase XM 002285177 and XM 0106655795).

159 Genes involved in amino acid metabolism appeared to be also modulated during the 160 kinetic, especially those involved in methionine and polyamine metabolism. As example, 161 cysthathionine beta-lyase (XM 002281384), aspartate aminotransferase, mitochondrial 162 (XM 002281728), thermospermine synthase (XM 002281075), tropinone reductase 163 homolog (XM 002277799), S-adenosyl-L-methionine decarboxylase (XM 002277280), 164 deoxyhypusine synthase (XM 002282885) were down-regulated, while S-adenosyl-L-165 methionine decarboxvlase (XM 002278114) and asparte aminotransferase 166 (XM 002284100) were up-regulated (Table 2).

In lipid metabolism, changes were observed at both T0-7 and T0, especially at T0-7tg.
There was an up-regulation of genes associated with alkaloids and terpenoids synthesis,
such as *beta-amyrin synthase* (XM_002270898), *secologanin synthase* (XM_003634726),
VvCSbOciM (HM8807387), *abietadienol/abietadienal oxidase* (XM_010663730), *hydroxymethylglutaryl-CoA synthase* (XM_002282398) and *3-epi-6-deoxocasthasterone 23 monooxygenase* (XM_010650788). Conversely, the expression of *1-deoxy-D-xylulose- 5-phosphate synthase* (XM_002277883) and *jmjC domain-containing protein 7*

Magnin-Robert, MPMI

176 177 Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-02-17-0036-R • posted 08/25/2017 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ. 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

174 (XM_010646063) was down-regulated at the last three points of the kinetic, when the 175 expression of *alpha-terpineol synthase* (XM_002266772) and *alpha-terpineol synthase-*176 *like* (XM_ 010660749) was both down-regulated at T0-7tg and T0 (Table 2). Some of the 177 genes involved in the octadecanoid pathway were differently regulated as *12-*178 *oxophytodienoate reductase 2-like* (XM_002281312) (upregulation at T0 and T0) and 179 *allene oxide synthase* (XM_002283744), *lipoxygenase 1* (KF033130), *jasmonate-O-*180 *methyltransferase* (XM_002281543) (down-regulation especially at T0) (Table 2).

Three genes related to phenylpropanoid metabolism were up-regulated at all time points. Among them were the salicylate-O-methyltransferase (XM 002262640), flavonoid-3'monooxygenase-like (XM 0022842115) and bifunctional 3-dehvdroquinate dehydratase/shikimate dehydrogenase (XM 002277359). Additionally, a downregulation of the expression of flavonoid-related R2R3MYB4 repressor transcription factor (XM 002278186) was observed at T0-7. Several genes encoding proteins involved in anthocyanidin, flavonoid and lignin biosynthesis were also up-regulated at T0-7tg and T0: (XM 002279103), malonate CoA anthocvanidin 3-O-glucosvl transferase UDP-glucose/flavonoid (XM 002264962), 3-O-glucosyltransferase (AB047093), chalcone svnthase (XM 001280950), second bifunctional 3-dehvdroquinate dehvdratase/shikimate dehvdrogenase (XM 010651497), cinnamvl alcohol dehvdrogenase (XM 002285370), naringenin 2-oxoglutarate 3-dioxygenase (XM 002284856), and 193 caffeoyl shikimate esterase (XM 003634810).

For the "stress and defense reactions" category, the *epoxide hydrolase* gene (XM_003632333) encoding a protein involved in detoxification process was up-regulated from T0-20 to T0. Except for the down-regulation of the gene encoding a putative disease resistance RPP13, 12 genes encoding proteins involved in stress and defense reactions, and detoxification process were up-regulated in leaves at T0-7vh, T0-7tg and T0. Among them

Magnin-Robert, MPMI

199 were genes encoding glutathione-S-transferase (XM 003634217 and XM 002262806) or 200 haloacid dehalogenase (XM 002267523) and pathogenesis-related proteins (PR) like 201 thaumatin (XM 002274101), PR10 (XM 002273754) or class I β -1,3-glucanase 202 (XM 002277133) (Table 2). At T0-7tg and T0, the expression of genes related to 203 multidrug transports was altered, such as pleiotropic drug resistance (XM 010655751, 204 XM 010656419) multidrug efflux transporter (MATE) (XM 002274772, and 205 XM 002280176) encoding genes. At T0-7, the expression of genes involved in 206 detoxification process was also regulated, as indicated by the induction of two epoxide 207 hydrolase (GSVIVT00025835001, XM 010650793), the repression of two other 208 glutathione–S-transferase (XM 002269082, XM 002275302) and one superoxide 209 dismutase (XM 010661684). Moreover, a down-regulation of chaperone protein dnaJ 20 210 (XM 002264118), hsp70-hsp90 protein 3 (XM 0036355638), chaperone protein ClpB4 211 (XM 002282844) and an up-regulation for heat shock 70kDa (XM 0022834967), 20kDa 212 chaperonin (XM 002277825) were reported. The expression of 24 genes encoding disease 213 resistance proteins and 10 genes encoding PR proteins was also modulated at T0-7tg and 214 T0 (Table 2).

215

216 Validation of candidate genes by RT-PCR

Eighteen genes selected on their expression pattern at the three times of apoplexy event (Supplementary Table 1) were followed in leaves of diseased plants to validate these genes as precocious molecular markers of apoplexy expression. The samples used were the same ones as for the transcriptomic analyses, to which we added others obtained from diseased plants (n=3) cultivated in the same vineyard during the same year. These genes were selected in regard to the regulation of their expression during apoplectic kinetic (transcriptomic data at T0-20 and T0-7tg/vh) and their involvement in various pathways

224	(carbohydrate metabolism, amino acid metabolism, lipid metabolism, hormonal regulation,
225	cellular processes, phenylpropanoid pathway and detoxification processes) (Table 2 and
226	Supplementary Table 2). Results correspond to means \pm standard deviation of 3 plants
227	sampled. These genes code for UTP-glucose-1-phosphate uridyltransferase (gluPuriT-
228	XM_002282240), sucrose synthase (SucS2-XM_002271494), succinate deshydrogenase
229	flavoprotein (SucDHFla-XM_002269371), thermospermine synthase (SperS-
230	XM_002281075), 1-deoxy-D-xylulose-5-phosphate (<i>xylPS</i> -XM_002277883), jmjC
231	domain-containing protein 7 (jmjc7-XM_010646063), auxin-induced protein 10A5
232	(Aux10A5-XM_002271727), myosin-H heavy chain (Myochain-XM_0022815579), F-
233	box/WD40 repeat-containing protein (FboxWD40-XM_002271652), casein kinase (CasK-
234	XM_002284008), V-type proton ATPase subunit B (HatpZ-XM_002280255), flavonoid-
235	related R2R3 MYB4a repressor transcription factor (MYB4A-XM_002278186), shikimate
236	deshydrogenase (ShiDH- XM_002277359), epoxide hydrolase (epoxHF-XM_003632333)
237	and haloacid dehalogenase hydrolase (Hahl-XM_002267523). Three of the four genes
238	encoding a glutathione-S-transferase identified by the transcriptomic study were also
239	selected: (GSTA - XM_003634217, GSTB - XM8002262806 and GSTC -
240	XM8002269082). No significant regulation of the selected genes involved in protein
241	phosphorylation (cellular processes), amino acid metabolism, lipid metabolism and
242	transports was observed in our samples, suggesting they might be not retained as markers
243	of pre-apoplectic event. Among the three selected genes involved in carbohydrate
244	metabolism, only SucS2 was down-regulated on leaves at T0-20. Similarly to the
245	transcriptomic results, Aux10A5 was down-regulated at 2 time points, T0-7 and T0 (Table
246	3). Moreover, the repression of <i>MYB4A</i> expression at T0-7 and T0 was confirmed whereas
247	no modifications were monitored at T0-20, 30 and 50. For the detoxification process,
248	EpoxHF was up-regulated at T0 and Hahl was down-regulated at T0-30 and then up-

regulated at T0-7 and T0. Concerning the GST encoding genes, , the *GSTC* expression was not modified during the kinetic whereas *GSTA* and *GSTB* were down-regulated, at T0 for *GSTA* and at T0 and T0-7 for *GSTB* (Table 3). Moreover, these two genes appeared to be up-regulated in our conditions 50 days before apoplexy event (Table 3).

253

254 *Changes in the metabolome during apoplexy event expression*

255 FT-ICR-MS was used in the negative-ion ESI mode for the non-targeted analysis of the 256 low molecular weight metabolites present in the sample sets. A total of 40,149 raw mass 257 values was first obtained and reduced for masses occurring in minimum of 10% of all 258 samples and by the calculation of elemental formulas with NetCalc software (Tziotis *et al.*, 259 2010). The dataset containing 7,309 masses assigned to an elementary composition was 260 thus obtained, among with only 1.255 m/z could be annotated to putative metabolites after 261 KEGG, HMDB and LipidMaps database query. OPLS-DA analysis allowed the 262 discrimination of three sample groups with a good statistical significance: control, T0-20 263 and T0-7, and T0 diseased samples (Fig. 3A). Among the 7,309 elementary compositions 264 obtained, 4,220 were common to the three groups whereas 1,206 were specific to control, 265 87 to diseased T0-20 and T0-7 samples and 32 to diseased T0 samples (Fig. 3B). The 266 chemical composition and VK diagrams obtained from all these m/z highlighted a wide 267 chemical diversity, with a significant contribution of CHO and, to a lesser extent, of 268 CHONS elemental formulas (Fig. 3C). Masses with the highest regression coefficient 269 values in each sample group (specific and common masses with a variable importance in 270 projection (VIP) value > 1; thereafter called "top m/z") were next used for comparison, 271 allowing the visualization of clear differences between the three sample groups (Figs. 3D-272 E-F). CHO elemental formulas remained the most abundant in all groups, followed by 273 CHONS and CHON ones (Figs. 3D-E-F, chemical composition diagrams on the right part).

Magnin-Robert, MPMI

CHO and CHON ones were more abundant in diseased T0 samples whereas CHO and CHONS ones were more abundant in control ones. VK diagrams highlighted noteworthy differences in the nature and the number of formulas assigned to masses between the three sample groups, leading to specific fingerprints (Figs. 3D-E-F, VK diagrams on the left part). Z79 KEGG query (*Vitis vinifera* organism) with the MassTRIX interface allowed the assignment of top m/z to metabolic pathways. A rather limited number of pathways were associated to diseased samples, especially for T0-20 and T0-7 ones (6 pathways, Fig. 4).

associated to diseased samples, especially for T0-20 and T0-7 ones (6 pathways, Fig. 4). 282 For this sample group, they were related to amino acid metabolism (tyrosine, 283 phenylalanine, cysteine and methionine), biosynthesis of secondary metabolites, flavone 284 and flavonol biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis. In 285 diseased T0 samples, a higher number of pathways were identified (more than 10). The 286 main ones were biosynthesis of secondary metabolites, starch and sucrose metabolism, 287 galactose metabolism, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, 288 flavonoid biosynthesis, monoterpenoid biosynthesis, phenylalanine metabolism and 289 oxocarboxylic acid metabolism (Fig. 4). The number of pathways associated to the control 290 samples was higher (more than 18) and the main ones were biosynthesis of secondary 291 metabolites, starch and sucrose metabolism, and flavonoid biosynthesis, galactose 292 metabolism and amino sugar and nucleotide sugar metabolism (Fig. 4).

A mass difference network analysis based on series of biochemical transformations (Adrian et al. 2017, Moritz et al. 2017) was performed to obtain an additional overview of the global metabolism in the different grapevine leaf groups (data not shown). A total of 469 transformations were found to connect masses. Those having the highest z-score were represented in histogram in Fig. 5. Four types of differences allowed the discrimination between samples: opposite z-scores for diseased samples at T0, opposite z-scores for

Magnin-Robert, MPMI

diseased samples at T0-7 and T0-20, higher z-scores of control samples, higher z-scores of diseased samples either at T0-7 and T0-20 or T0 time. Transformations in T0 samples were highly different to those of the two other sample groups, with the absence of biochemical reactions involving the conjugation of pteridine, phenylpyruvic and coumaric acids, and an increased number of reactions involving phosphorylation, phosphoric acid addition and ring opening, decarboxylation, tri-prenylation/farnesylation, and also linoleic acid metabolism and condensation (Fig. 5).

306

307 Dynamics of glutathione during apoplexy event expression

308 Attention was paid to the dynamics of glutathione in the samples. The query in the KEGG database (Vitis vinifera organism) with the MassTRIX interface first confirmed the 309 310 importance of the glutathione pathway in diseased leaves (Fig. 6A); the m/z=306.07655311 correspond to the formula $[C_{10}H_{17}N_3O_6S]$ confirmed with the isotopologues. The signal 312 intensity of putative glutathione in the different sample series was next assessed using the 313 peak intensities of the spectra. Independently of the kinetic, the amount of this metabolite 314 was about three times lower in apoplectic than in control samples (Fig. 6B). No mass 315 corresponding to the reduced form of glutathione could be found. A metabolic network 316 was built from S-containing compounds (41.07% of all masses) and allowed the 317 visualization of the central role of $[C_{10}H_{17}N_3O_6S]^-$ and metabolic connectivity (Fig. 6C). 318 Masses containing 1, 2, 3 and 4 S represented 20.32, 16.74, 3.60 and 0.41% of the total 319 masses, respectively. Masses associated to glutathione could be extracted from this 320 network (Fig. 6D). Most of them were common to the three sample groups and were 321 mainly condensations and additions (Fig. 6E).

322 In situ hybridization visualization of GST1 expression in leaves

Magnin-Robert, MPMI

323 Since apparent modification of glutathione metabolism was observed with transcriptomic 324 and metabolomic analysis, glutathione-S-transferase 1 (GST1) was further analysed and 325 located in plant tissues. GST1 has been reported to be induced in pre-symptomatic and 326 symptomatic leaves, green shoots, cordon and trunk of diseased grapevine affected by 327 GLSD or apoplexy external symptoms appearance (Letousey et al. 2010; Magnin-Robert et 328 al. 2011, 2016). Moreover, the expression pattern of GST1 was monitored by RT-PCR at 329 T0, T0-7, 20, 30 and 50 days before apoplexy event and this analysis reported that GST1 330 was up-regulated during this apoplexy kinetic (Table 4) in grapevine leaves, excepted at 331 T0-30. To analyze in depth the cell type-specific expression of GST1, in situ hybridization 332 experiments were performed in leaves of control or pre-apoplectic grapevines (Figs. 7 and 333 8). The results revealed a signal preferentially located in veins (Fig. 7G), especially in pre-334 apoplectic vines. None or only a slight signal was detected in leaf tissues of control vines 335 (Fig. 7E). Visualization of the GST1 transcripts matched with the cells of phloem 336 complexes in the secondary bundles (Fig. 7G, red arrow heads), and was exclusively 337 revealed with the antisense probe (Figs. 7F-G). Magnification of the principal vein 338 (primary bundles) hybridization allowed the localization of GST1 expression in the phloem 339 complexes of pre-apoplectic leaves (Fig. 8G). Again, no (or only a slight) signal was 340 detected in primary veins of asymptomatic leaves (Fig. 8E). In comparison to the *Rib* 341 antisense probe (Figs. 7C and 8C), no signal was detected in the epidermis, parenchyma, 342 and xylem cells for the GST1 gene, thus confirming the preferential phloem-specific 343 expression of the GST1-gene.

344

345 DISCUSSION

Esca disease is complex, not only since several fungi are causal agents, but also because pathogens are localized in xylem vessels and fibers of mature wood whereas visible

Magnin-Robert, MPMI

348 symptoms appear at foliar level from July to August (Larignon et al. 2001; Bertsch et al. 349 2013). Apoplectic form has serious impact on the vineyard safeguard since it leads quickly 350 to the death of the plant and its incidence is increasing, partly due to the climate 351 fluctuation. To further understand the drivers leading to this status, the apoplectic form and 352 the leaf responses before symptoms emergence and at the onset of symptoms were 353 particularly followed. More precisely, to follow the chronology of the onset of apoplexy 354 appearance, leaves were sampled at 50, 30, 20 and 7 days preceding apoplexy event with a 355 focus from T0-20 to the day of expression (T0).

356 Our study clearly demonstrates changes in plant metabolism from 20 days before 357 symptoms appearance on leaves. Transcriptomic analyses revealed an increase of the 358 number of genes whose expression was altered as the apoplexy event was close: less than 359 300 ones at T0-20D to about 1,700 ones at T0. Modifications were mainly reported in 360 metabolisms of carbohydrates, amino acids, lipids, phenylpropanoids, and stress and 361 defense responses. The expression of carbohydrate genes involved in energy synthesis, 362 starch degradation and photosynthesis was induced at T0-20D and then repressed at T0 363 while those involved in plant defense response were up-regulated from T0-7 to T0. This is in agreement with previous results obtained on leaves developing various grapevine trunk 364 365 diseases (Letousev et al. 2010; Lima et al. 2010; Camps et al. 2010). Regarding amino acid 366 metabolism, especially methionine and polyamine, an alteration was observed during the 367 kinetic, as described in leaves affected by Eutypa dieback (Rifai et al. 2005). This 368 metabolic pathway could be crucial for grapevine immune responses towards the 369 pathogens, as observed for grapevine response to *B. cinerea* (Hatmi et al. 2015). In 370 addition, the grapevine response is strengthened by an induction of defenses, especially 371 related to the phenylpropanoid pathway, during the apoplexy emergence, which are 372 generally up-regulated following a pathogen attack including those involved in trunk

Magnin-Robert, MPMI

diseases (Valtaud et al. 2009; Lima et al. 2010, Magnin-Robert et al. 2011; Lambert et al.
2013; Calzarano et al. 2014) and other diseases (Romero-Perez et al. 2001; Gruau et al.
2015).

376 In the meantime, a metabolic signature of apoplectic leaves was observed. FT-ICR-MS 377 was used to analyze and compare the metabolome of the different leaf samples (the same 378 as those used for transcriptomic). OPLS discriminant analysis allowed the distinction of 379 three sample groups: samples from asymptomatic leaves (control), samples of pre-380 apoplectic diseased leaves (T0-20 and T0-7) and samples of leaves at the time of apoplexy 381 expression (T0). The leaf metabolome was therefore affected by esca disease, and in a 382 different manner before and at the time of apoplexy expression. The Venn diagram 383 revealed the occurrence of specific m/z in diseased leaves (87 for T0-20 and T0-7 and 32 384 for T0 samples), suggesting that either new compounds accumulated before and at the time 385 of apoplexy expression in diseased samples, and / or that compounds initially present were 386 metabolized during symptom appearance. The lower number of these specific m/z at T0 387 than at T0-20 / T0-7, may be due to apoplexy expression (stop of the metabolism and sap 388 movement). Moreover, both apoplectic sample groups have a lower number of specific m/z389 than C one, indicating a reduced diversity of the metabolic composition.

390 VK diagrams obtained from discriminant masses provided a metabolic fingerprint for each 391 of the three distinct groups. KEGG query (Vitis vinifera organism) with the MassTRIX 392 interface allowed to associate amino acid metabolism (tyrosine and phenylalanine), 393 biosynthesis of secondary metabolites, ubiquinone and other terpenoid-quinone 394 biosynthesis pathways to the T0-20 / T0-7 sample group. The amino acid phenylalanine 395 plays a crucial role, among others, as the precursor of the phenylpropanoid pathway 396 leading to the biosynthesis of lignin, stilbenes and flavonoids. All these compounds are 397 known to play a role against biotic stresses (Mouradov and Spangenberg 2014).

398 Terpenoids are also involved in plant / pathogen interactions (Jansen et al. 2011). In 399 grapevine, they may be involved in defense against downy mildew (Chalal et al. 2015; 400 Algarra Alarcon et al. 2015). At T0, discriminant masses were mainly related to 401 biosynthesis of secondary metabolites, starch and sucrose metabolism, galactose 402 metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis metabolisms. The 403 defensive secondary metabolism still remain activated, despite the terpene one did no more 404 contribute to diseased sample specificity. It therefore seems that primary metabolism, 405 mainly related to amino acids, is highly mobilized at T0-20/T0-7 whereas secondary 406 metabolism is rather activated at T0. All these results suggest a mobilization of the stress 407 responsive secondary metabolism and are in accordance with the previously reported 408 activation of the expression of defense genes before apoplexy and their implication during 409 disease progression in leaves (Letousey et al. 2010) and in wood (Magnin-Robert et al. 410 2014).

411 As pathogen propagules and by-products are able to diffuse from the infected woody tissue 412 of the trunk and branches to the crown of the affected vines, some of their metabolites 413 were shown to occur in the xylem sap of naturally infected grapevines (Bruno et al. 2007). As we are not able to distinguish plant metabolites from microbe ones, we can therefore 414 415 not exclude that microbe metabolites contribute directly to the metabolic signature of the 416 discriminated sample groups. Moreover, esca associated fungi may also contribute to the 417 evolution of some compounds. As example, previous studies conducted with trees have 418 indeed reported the adaptation capability of fungi to metabolize terpenoids and stilbenes 419 and use them as carbon sources for wood colonization (Diguistini et al. 2011; 420 Hammerbacher et al. 2013). This could be also a hypothesis in esca-affected grapevine since phytoalexins were not significantly increased in apoplectic leaves as described 421 422 below.

Magnin-Robert, MPMI

423 VK and chemical composition diagrams indicated that sulfur containing compounds 424 contributed to the metabolite fingerprint of the sample groups. Sulfur containing compounds 425 are known to play an important role in plant response to stress (Capaldi et al. 2015). More 426 specifically, glutathione is probably involved in esca symptom expression (Letousey et al. 427 2010; Valtaud et al. 2009). In our study, assessment of the evolution of putative glutathione 428 showed a lower accumulation in diseased samples than in control ones, correlated with a 429 higher expression of GST encoding genes. Valtaud et al. (2009) also reported a lower 430 glutathione content in leaves expressing the chronic form of the disease. However, 431 conversely to what they reported, no mass corresponding to the reduced form of glutathione 432 could be found in our conditions. This might be explained by the difference in the disease 433 expression (apoplectic / chronic). A network analysis allowed the identification of 434 transformations involving glutathione as substrate or products. As glutathione is known to 435 play a role in detoxification process, the occurrence of putative glutathione conjugates to 436 toxins previously identified in esca disease was investigated using their m/z values and 437 predicted raw formulas. However, no calculated mass corresponding to putative glutathione-438 conjugated toxins commonly associated to trunk diseases could be found.

439 In situ hybridization was performed to localize GST1 gene. A preferential phloem-specific 440 expression of this gene was observed. In this sense, Fukuda et al. (2004) have reported the 441 activity of a phloem-specific glutathione-S-transferase in rice leaves. To our knowledge, an 442 immune FITC-labelling targeted two various GST protein, GSTF and GSTU, have already 443 localized these proteins in veins and particularly in phloem (Valtaud et al. 2009). Moreover, 444 the tau GSTU protein, encoded by the GSTI gene, was mainly found in the plastids (Valtaud 445 et al., 2009), which suggest an important role in detoxification processes to avoid oxidative 446 damage in chloroplasts (Kuzniak and Sklodowska 2001). GST proteins were proposed to 447 detoxify reactive molecules, such as membrane lipid peroxides, by conjugation to GSH

Magnin-Robert, MPMI

448 (Marrs 1996) and some GSTs also function as glutathione peroxidases to detoxify reactive 449 oxygen species directly (Bartling et al. 1993). Sieve elements, which have lost most of their 450 organelles, could therefore defend themselves against oxidative stresses by inducing GST 451 activity. Indeed, the expression of GST in the phloem sap of pre-apoplectic vines could 452 permit the protection of sieve tubes from oxidative damage, especially as this type of stress is 453 frequently described in response to esca (Bertsch et al. 2013). Moreover GSTs modify toxic 454 compounds into less toxic and more water soluble conjugates (Marrs 1996). Therefore, as 455 discussed by Fukuda et al. (2004) in the case of rice, the presence of GST activity in 456 grapevine phloem sap of pre-apoplectic individuals suggests the possibility of GSH-457 conjugation of endogenous compounds in sieve tubes. One of the possible functions of GST 458 in the vascular cells could be in changing hydrophobic compounds into hydrophilic ones 459 conjugated with GSH, making these modified compounds more mobile in the sieve tubes and 460 easily distributed along the plant tissues. Otherwise, some plant GSTs showed flavonoid-, 461 auxin-, and cytokinin- binding activities, suggesting that these proteins could act as ligands 462 and support the intracellular transport of flavonoids and plant hormones (Bilang and Sturm 463 1995; Gonneau et al. 1998; Mueller et al. 2000). In this context, and since phloem represents 464 a way for signaling and defense (van Bel et al. 2013), one could imagine that this contribute 465 to deliver throughout the plant (since the phloem circulates up and down manner) a long-466 distance alert message of a physiological disorder. Valtaud et al. (2009) observed an 467 enhanced expression of both GST genes (phi GSTF and tau GSTU1) in plants attacked by 468 esca. The expression of these genes was greatest in leaves that were visually healthy, 469 suggesting that the GSTs are the first enzymes induced in the response to esca.

470

In this study, we show that transcriptomic and non-targeted metabolomic analyses provedto be very effective in discriminating the profiles of apoplectic and healthy leaves of

Magnin-Robert, MPMI

473 diseased plants, thus demonstrating the great potential of these tools in the understanding 474 of the complex grapevine trunk diseases. Among the changes reported, most of them 475 concern the metabolism of carbohydrates, amino acids, phenylpropanoids, and plant 476 defense responses. Gene expression such as SucS2, Aux10A5, MYB4A, EpoxHF, Hahl 477 could be identified as markers of the pre-apoplectic event in cv. Chardonnay. Our results 478 support also the hypothesis that glutathione could be an early actor during apoplexy 479 appearance because its amount is lower in apoplectic leaf compared to the control and that 480 GST1 gene expression is preferentially noted in phloem, suggesting a long-distance 481 transport of glutathione which reinforces the toxin hypothesis of symptom development. In 482 turn, such markers need to be validated in other cultivars, more or less susceptible to trunk 483 diseases, and also in other climatic conditions since abiotic stresses could affect the plant 484 response.

485

486 MATERIALS AND METHODS

487 Plant material

488 Experiments were performed on Chardonnay grapevines (Vitis vinifera L.) planted in 489 1986, grafted on 41B rootstock, and trained according to the Chablis method. The 490 experimental site was located in the Moët and Chandon vinevard in Avize (Champagne 491 region, France). The site is characterized by an average annual temperature of 10.8°C, 492 reaching an average of 19°C during apoplexy expression, and 480.7 mm annual 493 precipitation. From 2005 to 2007, two groups of vines were defined in the plot: (1) vines 494 which did not show any esca symptoms; visually healthy and considered as unaffected 495 controls; (2) vines which developed acute chronic or apoplexy symptoms; considered as 496 diseased. In the wood of all plants, the major causal agents of esca disease were previously 497 isolated (Magnin-Robert et al. 2014).

Magnin-Robert, MPMI

Page 21 of 64

498 To investigate vines before and during acute esca expression, plants with a high 499 potential to develop the apoplectic form were selected, i.e. plants of group 2 (see above) 500 which have expressed symptoms during the previous summer. Since the first apoplectic 501 form symptoms appear in July in the Champagne region, all measurements and sample 502 harvests were performed twice a week from mid-June to the end of July in both 2008 and 503 2009. Numerous plants were therefore followed in June but only those expressing 504 apoplexy in July were used for the study. At the appearance of foliar symptoms, a 505 retrospective chronology of the disease could be established, as described in Letousev et al. 506 (2010). The analyzed leaf samples were thus harvested (i) twenty days before apoplexy 507 appearance (T0-20), leaves were visually healthy, as control ones; (ii) seven days before 508 (T0-7), leaves were either without symptoms (vh for visually healthy) or turgorless (tg), 509 and (iii) at the day of apoplexy symptom expression starting (T0), leaves were visually healthy, neither turgorless nor drying. Turgorless leaves at T0-7 were dried at T0 and not 510 511 sampled. In the meantime, leaves were collected from asymptomatic (control) plants, *i.e.* 512 vines from group 1 (see above).

513 Harvested leaves were immediately frozen in liquid nitrogen in vineyard, then stored at -514 80°C until extraction. Samples were ground in liquid nitrogen to a fine powder and 515 prepared differently according to the analysis performed.

516

517 Next Generation sequencing: 454- and Illumina sequencings

In this study 454- and Illumina sequencing techniques were combined, (i) 454-sequencing was used to constitute a Unigene set from the pool of extracted RNA from various conditions and (ii) illumina sequencing is used to create a RNA sequences data for each treatments, the Illumina sequences were secondly mapping onto the Unigene set previously generating and on genome databases. In the case of 454 sequencing, RNA extraction and

523 524 525 526 Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-02-17-0036-R • posted 08/25/2017 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ. 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

cDNA synthesis and size fractionation were realized by Express Genomics Inc (Frederick, Maryland, USA). Total RNA was extracted using the ConcertTM Plant RNA Reagent (Thermo Fischer Scientific -previously Invitrogen, Carlsbad, California, USA) according to the manufacturer's protocol. To generate the cDNA, nucleic molecules were digested with Not I and in vitro RNA transcripts were produced using the SP6 RNA polymerase promoter according to Express Genomics Inc adapted protocol. First strand cDNA was made from these transcripts using a modified primer adapter that reduces the size of the polyA sequence (to about 20 As). After the second strand synthesized, the double strand cDNA is blunt ended and size fractionated. The 454 library was made by Beckman Coulters Genomics (Danvers, Maryland, USA) and created by ligating the Roche titanium adaptators on the Beckman Coulter SPRI-TE instrument. Sequencing was performed on the Genome Sequencer FLX with GS FLX Titanium series reagents using 35,000,000 beads. In the case of Illumina sequencing, also realized by Beckman Coulters Genomics, cDNA was generated from polyA⁺-purified total RNA (Illumina mRNA Sequencing Sample Preparation Guide, part #1004898 rev. D.; Illumina, Inc., San Diego, California, USA), followed by adaptator ligation on the Beckman Coulter SPRI-TE Instrument. Sequencing was performed on the Illumina HiSeq2000 instrument at 1X50bp read length using v3 chemistry.

542 *Read mapping, assembly, and differential-expression analysis.* The mapping assembly was 543 performed with Mira version 3 (<u>http://chevreux.org/projects_mira_.html</u>) with the 454 544 sequences and the consensus sequences compiled by the university of Harvard (VvGi, 545 from 350,000 available EST, <u>http://compbio.dfci.harvard.edu/cgi-</u> 546 <u>bin/tgi/gimain.pl?gudb=grape</u>). In addition, the Illumina mapping was done with Eland 547 program (CASAVA v1.7.0). For amelioration of transcripts annotation BLASTx on the

Magnin-Robert, MPMI

548 KOG of NCBI base (http://www.ncbi.nlm.nih.gov/COG/) was used. The mapping of 549 Illumina sequences on the genome was done with the software TopHat 550 (http://tophat.cbcb.umd.emd/). Analyses of mapping were performed with software 551 Cufflinks, Cuffcompare and Cuffdiff (http://cufflinks.cbcb.umd.edu/) with reference the 552 data gtf and fasta form EnsemblePlants. The Cuffdiff analyses were made chronologically 553 and separately between the control and the diseased plant for detecting genes whose 554 expression varies during the follow kinetics. Gene expression was considered as 555 significantly up- or down-regulated to the control, when changes in relative expression 556 were $>2\times$ or $<0.5\times$ and were colored in grey color.

557

558 Quantitative RT-PCR analysis

559 The analysis was performed on leaves of diseased and control plants collected at T0-20, 560 T0-7 and T0, as for other analyses. Comparing to the Illumina study, some of samples used 561 were the same and others obtained from diseased plants (n=3) cultivated in the same 562 vineyard during the same year were used. Moreover, leaves were also collected at T0-50 563 and T0-30 in order to extend the kinetic study. Total RNA was isolated using a Plant RNA Purification Reagent (InvitrogenTM, Cergy Pontoise, France) according to Magnin-Robert 564 565 et al. (2011). In total 150 ng of total RNA was reverse-transcribed using Verso cDNA 566 Synthesis Kit (Thermo Fischer Scientific, Surrey, UK) according to the manufacturer's 567 protocol. PCR conditions were those described by Bézier et al. (2002). The expression of 568 18 genes selected from transcriptomic analysis was tracked by quantitative RT-PCR using the primers newly designed (Supplementary Table 1). The data were analyzed using CFX 569 570 Manager software, and the relative levels of gene expression were determined following 571 the method of Hellemans et al. (2007) with EF1- α and 60SRP as internal reference genes. 572 Results represent the relative expression of genes in leaves of pre-apoplectic plants at T0-

Magnin-Robert, MPMI

576

577 FT-ICR-MS analysis

578 Fifteen milligrams of each leaf sample were suspended in 1 mL methanol (LC-MS grade, 579 Fluka Analytical, Sigma-Aldrich, St. Louis, USA) and sonicated for 30 min. After 580 centrifugation (25 000g, 10 min, room temperature), the supernatant was collected and 581 diluted in methanol (1/50 v/v) prior to analysis. Ultra high-resolution mass spectra were 582 acquired using an Ion Cyclotron Resonance Fourier Transform Mass Spectrometer (FT-583 ICR-MS) (solariX, BrukerDaltonics GmbH, Bremen, Germany) equipped with a 12 Tesla 584 superconducting magnet (Magnex Scientific Inc., Yarnton, GB) and an APOLO II ESI 585 source (Bruker Daltonics GmbH, Bremen, Germany) operated in the negative ionization 586 mode. Samples were introduced into the micro electrospray source at a flow rate of 120 μ L.h⁻¹. Spectra were acquired with a time domain of 4 mega words over a mass range of 587 588 m/z 100 to 1000 and 300 scans were accumulated per sample. Spectra were externally calibrated on clusters of arginine (10 mg.L⁻¹ in methanol). Further internal calibration was 589 590 performed for each sample by using a list of ubiquitous fatty acids and recurrent wine 591 compounds, allowing mass accuracies of 0.1 ppm (Gougeon et al. 2009). The m/z peaks 592 with a signal-to-noise ratio (S/N) of 4 and higher were exported to peak lists. Exact masses 593 were then subjected to Netcalc algorithm and in-house software tool to obtain chemical 594 formulas (Tziotis *et al.*, 2011). Elemental formulas attributed to m/z values were next 595 represented using two-dimensional van Krevelen (VK) diagrams, which sort them onto two 596 axes according H/C and O/C atomic ratios (Tziotis et al. 2011). Their distribution 597 according to their elemental compositions (CHO, CHOS, CHON, CHONS, CHOP,

Magnin-Robert, MPMI

598 CHONP CHONSP) was represented using histograms. All the processes were done with 599 SIMCA-P+12 (Umetrics, Umea, Sweden). The metabolic pathways associated to selected 600 masses were obtained by KEGG query with Vitis vinifera (vvi) as organism using the web 601 server MassTRIX. Network analysis performed from the complete data set and the sulfur 602 containing compounds, was performed as previously described (Adrian et al. 2017). Nodes 603 represent m/z values (metabolite candidates) and edges represent chemical reactions. The 604 statistical occurrence of each reaction (mass differences) was tracked through the network 605 and the frequencies of these reactions associated to each group are indicated in terms of z-606 scores. Z-scores > 1.9 correspond to p-values < 0.05 and z-scores > 2.6 correspond to p-607 values < 0.01.

608 OPLS-DA (Orthogonal Projections to Latent Structures-Discriminant Analysis) was 609 applied to the dataset in order to discriminate sample groups. The overfitting was checked 610 by the p-value calculated with the CV-ANOVA (Cross Validation ANOVA). From the 611 classification models, the m/z values with the highest regression coefficient were 612 extrapolated in different lists as representative masses for the different clusters (called "top 613 m/z"). These analyses were performed with SIMCA-P+13.0.3 (Umetrics, Umea, Sweden).

614 In situ *hybridization* analysis

In situ hybridization was carried out on leaf samples collected on control plants and on preapoplectic (tg and vh) ones at T0-7. Samples were fixed into a fresh mixture of 4% paraformaldehyde in potassium phosphate buffer (PBS 10mM, pH 7.4) and then embedded in paraffin (Colas et al., 2010). Wax sections at 10 μ m thickness were obtained using a microtome and deposited on silanized slides. Primers were designed for PCR amplification of specific regions of *GST1* cDNAs (Table 1) and 26 S ribosomic RNA sequence (Rib) was used as controls. Sense and antisense probes were labeled according to Colas et al.

Magnin-Robert, MPMI

622 (2010). To increase signals of the GST probe, the Dig oligonucleotide Tailing kit (Roche)

623 was used to add poly-Dig UTP tail at the 3' end of the amplified RNA sequence (Garcia et

al. 2013). Hybridization was performed as previously described by Colas *et al.* (2010).

625

626 AKNOWLEDGEMENTS

This work was funded by the interprofessional comity of vine in France (CNIV), and especially supported by those of Champagne (CIVC) and Burgundy areas (BIVB). The company Moët & Chandon is thanked for making available the vineyard used as the experimental plot in this study.

631

632 LITERATURE CITED

- 633 Adrian, M., Lucio, M., Roullier-Gall, C., Héloir, M.C., Trouvelot, S., Daire, X., Kanawati,
- B., Lemaître-Guillier, C., Poinssot, B., Gougeon, R., and Schmitt-Kopplin P. 2017.

635 Metabolic fingerprint of PS3-induced resistance of grapevine leaves against *Plasmopara*

636 *viticola* revealed differences with elicitor-triggered defenses. *Front Plant Sci* 8: 101.

637 Algarra Alarcon, A., Lazazzara, V., Cappellin, L., Bianchedi, P.L., Schuhmacher, R.,

Wohlfahrt, G., Pertot, I., Biasioli, F., and Perazzolli, M. 2015. Emission of volatile
sesquiterpenes and monoterpenes in grapevine genotypes following *Plasmopara viticola*inoculation in vitro. *J Mass Spectrom* 50: 1013-1022.

Andolfi, A., Mugnai, L., Luque, J., Surico, G., Cimmino, A., and Evidente, A. 2011.

Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 3:1569–1605.

Bartling, D., Radzio, R., Steiner, U., and Weiler, E.W. 1993. A glutathione S-transferase
with glutathione peroxidase activity from *Arabidopsis thaliana*: molecular cloning and
functional characterization. *Eur J Biochem* 216: 579–586.

Magnin-Robert, MPMI

	647
	648
	649
Jr.	650
ıay diffe	651
5/2017 ersion n	652
ted 08/2: lished v	653
-R • post final pub	654
17-0036 ad. The 1	655
MI-02-	656
094/MF dited or	657
org/10.1 in copye	658
//dx.doi. t yet bee	659
r • http: t has no	660
ok" pape ation bu	661
First Loo or public	662
ctions "] cepted fo	663
be Intera and acc	664
t-Microt eviewed	665
ılar Plan ən peer r	666
Molecu r has bee	667
his pape	668
Ē	

- 47 Bertsch, C., Ramirez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-
- Mansour, E., Spagnolo, A., Clément, C., and Fontaine, F. 2013. Grapevine trunk diseases:
- 649 complex and still poorly understood. *Plant Pathol* 62: 243–265.
- 650 Bézier, A., Lambert, B., and Baillieul, F. 2002. Study of defence-related gene expression in
- 651 grapevine leaves and berries infected with *Botrytis cinerea*. *Eur J Plant Pathol* 108: 111-120.
- 652 Bilang, J. and Sturm, A. 1995. Cloning and characterization of a glutathione S-transferase
- that can be photolabeled with 5-azido-indole-3-acetic acid. *Plant Physiol* 109: 253–260.
- 654 Bruez, E., Lecomte, P., Grosman, J., Doublet, B., Bertsch, C., Fontaine, F., Ugaglia, A.,
- Teissedre, P. L., Da Costa, J. P., Guerin-Dubrana, L., and Rey, P. 2013. Overview of
 grapevine trunk diseases in France in the 2000s. *Phytopat Med* 52: 262–275.
- 657 Bruno, G., Sparapano, L., and Graniti, A. 2007. Effects of three esca-associated fungi on
- *Vitis vinifera* L.: IV. Diffusion through the xylem of metabolites produced by two
 traceiphilous fungi in the woody tissue of grapevine leads to esca-like symptoms on
 leaves and berries. *Physiol Mol Plant Pathol* 71: 106-124.
- 661 Calzarano, F., Di Marco, S., D'Agostino, V., Schiff, S., and Mugnai, L. 2014. Grapevine
- leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed
 mixture. *Phytopat Med* 53: 543–558.
- Camps, C., Kappel, C., Lecomte, P., Léon, C., Gomès, E., Coutos-Thévenot, P., and
 Delrot, S. 2010. A transcriptomic study of grapevine (*Vitis vinifera* cv. CabernetSauvignon) interaction with the vascular ascomycete fungus *Eutypa lata*. *J Exp Bot* 61:
 1719–1737.
- Capaldi, F.R., Lupino Gratão, P., Reis, A., Lima, L. W., and Azevedo, R. A. 2015. Sulfur
 metabolism and stress defense responses in plants. *Trop Plant Biol* 8: 60-73.
- 670 Chalal, M., Barbro Winkler, J., Gourrat, K., Trouvelot, S., Adrian, M., Schnitzler, J. P.,
- Jamois, F., and Daire, X. 2015. Sesquiterpene volatile organic compounds (VOCs) are

Magnin-Robert, MPMI

672 markers of elicitation by sulfated laminarine in grapevine. *Front Plant Science* 6: 1-9.

- 673 Colas, S., Jacquens, L., Manteau, S., Devy, J., Conéjéro, G., Clément, C., Baillieul, F.,
- 674 Mazerat-Gourbeyre, F., and Monti-Dedieu, L. 2010. Expression analysis in grapevine by *in*
- 675 situ hybridization and immunochemistry. In: Delrot S, Medrano H, Or E, Bavaresco, L.,
- 676 Grando, S., editors. Methodologies and Results in Grapevine Research. 361-374.
- 677 De la Fuente, M., Fontaine, F., Gramaje, D., Armengol, J., Smart, R., Nagy, Z. A., Borgo,
- 678 M., Rego, C., and Corio-Costet, M. F. 2016. Grapevine trunk diseases, a review. OIV
- 679 publications, 1rst Edition, Paris, France. ISBN: 979-10-91799-60-7.
- 680 DiGuistini, S., Wang, Y., Liao, N. Y., Taylor, G., Tanguay, P., Feau, N., Henrissat, B., Chan,
- 681 S. K., Hesse-Orce, U., Alamouti, S. M., Tsui, C. K., Docking, R; T., Levasseur, A.,
- Haridas, S., Robertson, G., Birol, I., Holt, R. A., Marra, M. A., Hamelin, R. C., Hirst, M.,
- Jones, S. J., Bohlmann, J., and Breuil, C. 2011. Genome and transcriptome analyses of the
- 684 mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.

685 *Proc Natl Acad Sci USA*:10.1073/pnas.1011289108.

- Fontaine, F., Pinto, C., Vallet, J., Clément, C., Gomes, A., and Spagnolo, A. 2015. The
 effects of Grapevine Trunk Diseases (GTDs) on vine physiology. *Eur J Plant Pathol* 104:
 707-721.
- Fukuda, A., Okada, Y., Suzui, N., Fujiwara, T., Yoneyama, T., and Hayashi, H. 2004.
 Cloning and characterization of the gene for a phloem-specific glutathione *S*-transferase
 from rice leaves. *Physiol Plantarum* 120: 595–602.
- 692 Garcia, K., Haider, M. Z., Delteil, A., Corratgé-Faillie, C., Conéjero, G., Tatry, M. V.,
- Becquer, A., Amenc, L., Sentenac, H., Plassard, C., and Zimmermann, S. 2013. Promoter-
- dependent expression of fungal transporter *HcPT1.1* under Pi shortage and its spatial
- localization in ectomycorrhiza. *Fungal Genet Biol* 58-59: 53-61.

Magnin-Robert, MPMI

Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-02-17-0036-R • posted 08/25/2017 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ.		

- 696 Gonneau, M., Mornet, R., and Laloue, M. 1998. A *Nicotiana plumbaginifolia* protein labeled
- with an azido cytokinin agonist is a glutathione S-transferase. *Physiol Plantarum* 103: 114–
 124.
- 699 Gougeon, R. D., Lucio, M., Frommberger, M., Peyron, D., Chassagne, D., Alexandre, H.,

Feuillat, F., Voilley, A., Cayot, P., Gebefügi, I., Hertkorn, N., and Schmitt-Kopplin, P.
2015. The chemodiversity of wines can reveal a metabologeography expression of
cooperage oak wood. Proceedings of the National Academy of Sciences of the United

- 703 States of America 106: 9174-9179.
- 704 Gruau, C., Trotel-Aziz, P., Villaume, S., Rabenoelina, F., Clément, C., Baillieul, F., and
- 705 Aziz, A. 2015. Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune
- response against *Botrytis cinerea* in grapevine. *Mol Plant-Microbe In* 10: 1117-1129.
- 707 Hammerbacher, A., Schmidt, A., Wadke, N., Wright, L. P., Schneider, B., Bohlmann, J.,
- 708 Brand, W. A., Fenning, T. M., Gershenzon, J., and Paetz, C. 2013. A common fungal
- associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce.
- 710 *Plant Physiol* doi:10.1104/pp.113.218610.
- 711 Hofstetter, V., Buyck, B., Croll, D., Viret, O., Couloux, A., and Gindro, K. 2012. What if
- esca disease of grapevine were not a fungal disease? *Fungal Diversity* 54: 51–67.
- 713 Jansen, R. M. C., Wildt, J., Kappers, I.F., Bouwmeester, H.J., Hofstee, J. W., and van
- Henten, E. J. 2011. Detection of diseased plants by analysis of volatile organic compound
 emission. *Annu Rev Phytopathol* 49: 157-17.
- 716 Koussa, T., Cherrad, M., Zaoui, D., and Broquedis M. 1998. Composition et tenru en
- 717 acides gras des feuilles de *Vitis vinifera* L. var Cabernet Sauvignon atteintes d'eutypiose.
- 718 *J Int Sci Vigne Vin* 32 (1) 11-16.
- 719 Kuzniak, E., and Sklodowska, M., 2001. Ascorbate, glutathione and related enzymes in
- chloroplasts of tomato leaves infected by *Botrytis cinerea*. *Plant Sci* 160 (4): 723-731.

Magnin-Robert, MPMI

- 721 Lambert, C., Kim Khiook, I. L., Lucas, S., Télef-Micoleau, N., Mérillon, J. M., and Cluzet,
- S. 2013. A faster and stronger defense response: one of the key elements in grapevine
 explaining its lower susceptibility to esca? *Phytopathol* 103: 1028–1034.
- Larignon, P., Fulchic, R., Cere, L., and Dubos, B. 2001. Observation on black dead arm in
 French vineyards. *Phytopathol Med* 408: 336–342.
- 726 Letousey, P., Baillieul, F., Perrot, G., Rabenoelina, C., Boulay, M., Vaillant-Gaveau, N.,
- Clément, C., and Fontaine, F. 2010. Early events prior to visual symptoms in apopletic
 form of esca disease. *Phytopathol* 100: 424–431.
- Lima, M. R. M., Felgueiras, M., Graca, G., Rodrigues, J. E. A., Barros, A. S., Gil, A. M.,
- and Dias, ACP. 2010. NMR metabolomics of esca-disease-affected *Vitis vinifera* cv.
- 731 Alvarinho leaves. *J Exp Bot* 61: 4033-4042.
- 732 Magnin-Robert M, Letousey P, Spagnolo A, Rabenoelina F, Jacquens L, Mercier L,
- 733 Clément C, Fontaine F. 2011. Leaf strip of esca induces alteration of photosynthesis and
- defence reactions in presymptomatic leaves. *Funct Plant Biol* 38, 856–866.
- 735 Magnin-Robert, M., Spagnolo, A., Alayi, T. D., Cilindre, C., Mercier, L., Schaeffer-Reiss,
- 736 C., Van Dorsselaer, A., Clément, C., and Fontaine, F. 2014. Proteomic insights into
- changes in wood of *Vitis vinifera* L. in response to esca proper and apoplexy. *Phytopathol Med* 53 (1): 168-187.
- 739 Magnin-Robert, M., Spagnolo, A., Boulanger, A., Joyeux, C., Clément, C., Abou-Mansour,
- E., and Fontaine, F. 2016. Changes in plant metabolism and accumulation of fungal
- metabolites in response to esca proper and apoplexy expression in the whole grapevine.
- 742 *Phytopathol* 106: 541-553.
- 743 Marrs, K.A. 1996. The functions and regulation of glutathione S-transferases in plants. *Annu*744 *Rev Plant Physiol Plant Mol Biol* 47: 127–158.

Magnin-Robert, MPMI

746	poplar metabotypes via mass difference enrichment analysis. Plant, Cell Env, Online first
747	Mouradov, A., and Spangenberg, G. 2014. Flavonoids: a metabolic network mediating plants
748	adaptation to their real estate. Front Plant Sci 5: 620 doi: 10.3389/fpls.2014.00620
749	Mueller, L. A., Goodman, C. D., Silady, R. A., and Walbot, V. 2000. AN9, a petunia
750	glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding
751	protein. Plant Physiol 23: 1561–1570.
752	Mugnai, L., Graniti, A., and Surico, G. 1999. Esca (Black measles) and brown wood-
753	streaking: Two old and elusive diseases of grapevines. Plant Dis 83: 404-418.
754	Petit, AN., Vaillant, N., Boulay, M., Clément, C., and Fontaine, F. 2006. Alteration of
755	photosynthesis in grapevines affected by esca. Phytopathology 96 (10) : 1060-1066.
756	Rifai, L. A., Koussa, T., Geny, L., Fassouane, A., Broquedis, M., and Dubos, B. 2005.
757	Evolution des teneurs en polyamines libres et conjuguées dans les feuilles de vigne (Vitis
758	vinifera 'Cabernet Sauvignon') saine et atteinte d'eutypiose. Can J Bot 83: 194-201.
759	Romanazzi, G., Murolo, S., Pizzichini, L., and Nardi S. 2009. Esca in young and mature
760	vineyards, and molecular diagnosis of the associated fungi. Eur J Plant Pathol 25: 277-
761	209.
762	Romero-Perez, A. I., Lamuela-Raventos, R. M., Andres-Lacueva, C., and De la Torre-
763	Boronat, C. 2001. Method for quantitative extraction of resveratrol and piceid isomers in
764	grape berry skins. Effect of powdery mildew on the stilbene content. J Agri Food Chem
765	49: 210-215.
766	Spagnolo, A., Magnin-Robert, M., Alayi, T. D., Cilindre, C., Mercier, L., Schaeffer-Reiss,
767	C., Van Dorsselaer, A., Clément, C., and Fontaine, F. 2012. Physiological changes in green

Moritz, F., Kaling, M., Schnitzler, J.P., and Schmitt-Kopplin, P. 2017. Characterization of

stems of *Vitis vinifera* L. cv. Chardonnay in response to Esca proper and apoplexy revealed

by proteomic and transcriptomic analyses. *J Proteome Res* 11: 461–475.

Magnin-Robert, MPMI

- Surico, G., Mugnai, L., and Marchi, G. 2006. Older and more recent observations on esca: a
 critical overview. *Phytopathol Med* 45: S68–S86.
- 772 Tziotis, D., Hertkorn, N., and Schmitt-Kopplin, P. 2011. Kendrick-analogous network
- visualisation of ion cyclotron resonance Fourier transform mass spectra: Improved options
- for the assignment of elemental compositions and the classification of organic molecular
- complexity. *Eur J Mass Spectrom* 17: 415–421.
- Van Bel, A. J. E., Helariutta, Y., Thompson, G. A., Ton, J., Dinant, S., Ding, B., and Patrick
- J. W. 2013. Phloem: the integrative avenue for resource distribution, signaling, and defense.
- 778 Front Plant Sci 4: 471. doi:10.3389/fpls.2013.00471
- 779 Valtaud, C., Foyer, C. H., Fleurat-Lessard, P., and Bourbouloux, A. 2009. Systemic effects
- on leaf glutathione metabolism and defence protein expression caused by esca infection in
- 781 grapevines. Funct Plant Biol 36: 260–279.

782 783

784

785 786

Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-02-17-0036-R • posted 08/25/2017 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ.

787

Table 1. Primers used to generated template DNA for synthesize of RNA probes

Gene	Accession no.	Primer sequences	<u>Product (bp)</u>
Glutathione-S	AY156048	5'- TTCGAAACTTTTGGGAAGTTCAAC-3'	243
transferase (GST1)		5'- TCAAACAACCGCAATAATATCCCT-3'	
26S rRNA	AY847628.1	5'- CCGACCTCGATCTTATGAGAAGGG-3'	150
		5'- CCAAGTCAGACGAACGATTTGCACG-3'	

Table 2. Functional classification of the genes differentially expressed between control and diseased plants and whose expression is altered precociously and during apoplectic expression (at T0-20 and/or T0-7vh or tg and/or T0) and implicated in carbohydrate, amino acids, lipids and phenylpropanoid metabolism, stress and defense pathways. Values indicating over- or down-expressed (ratio |2|) are highlighted in light or dark gray, respectively.

797	Fold Change					ID	Accession
	T0-20	T0-7vh	T0-7tg	то		genoscope	Number (NCBI)
798	Carboh	ydrate r	netaboli	sm			
7.70	5.1	13.5	0.8	4.7	PREDICTED: succinate dehydro genase [ubiquino ne] flavo protein subunit 1	GSVIVT01018976001	XM_002269371
700	2.1	11.4	2.6	4.6	PREDICTED: lysosomal beta glucosidase-like		XM 002278327
/99	4.2	0.4	0.0	0.3	PREDICTED: uncharacterized I OC 100243957		XM 002279899
000						CSV/IV/T01021843001	XM_002277312
800	0.5	4.2	122.0	40.0	PREDICTED: LTD duogoo 1 phogphoto uridulutrangforono liko	CSV/IVT00024977001	XM_002282240
	0.5	12.5	125.4	87.0		CSVIVT00034077001	XM_002275650
801	0.4	2.0	10.8	7.2	PREDICTED. proteint I HTLAKOID FORMATION , chiotopiastic-like	GSVIV100029202001	XIVI_002275650
	0.3	4.1	0.1	1.2	PREDICTED: serine/threonine-protein kinase STN7, chloroplastic-like	GSVIV100030286001	XM_0036311/9
802	0.2	1.5	0.0	0.0	PREDICTED: sucrose synthase 2-like	GSVIVT00033041001	XM_002271494
002	1.7	6.4	2.0	34.7	PREDICTED: alcohol dehydrogenase-like 6	GSVIVT01024246001	XM_002263489
803	0.7	3.6	8.6	12.9	PREDICTED: UDP-glycosyltransferase 74E2-like		XM_002275297
005	0.7	3.4	3.4	12.0	PREDICTED: starch synthase V precurso r		EU661370
004	0.5	3.3	12.1	39.8	PREDICTED: alpha-glucan phosphorylase, H isozyme-like	GSVIVT01024804001	XM_002280696
004	0.7	2.9	8.6	22.5	PREDICTED: probable ribose-5-phosphate isomerase-like		XM_002284043
~~-	0.9	0.7	27.4	63.4	PREDICTED: Vitis vinifera glucan endo-1,3-beta-glucosidase 1	GSVIVT00019655001	XM_002279561
805	0.7	17	4.8	3.9	PREDICTED: Vitis vinifera probable dolichyl pyrophosphate Glc1M an9GlcNAc2 alpha	GSVIVT00019014001	XM 002269078
	0.6	1.9	43	4 1	PREDICTED: Vitis vinifera ribulose bisphosphate carboxylase small chain, chloropla	GSVIVT00017680001	 XM_002276931
806	1.2	0.9	2.5	0.5	PREDICTED: Vitis vinifera BTB/POZ domain-containing protein	GSVIVT00029147001	XM_002270766
	1.2	1.6	2.5	6.3	PREDICTED: Vitis vinifera probable ribose 5-phosphate isomerase 3 chloroplastic	GSV/IVT0003147001	XM_002278261
807	0.9	1.0	0.4	0.2	PREDICTED: Vitis vinifera provisuraria lika	CSVIVT00031#7001	XM_002270201
007	1.3	0.8	0.4	0.3		GSVIV10001941001	XM_00004296
808	0.7	0.8	0.4	0.2	PREDICTED: Vitis vinifera probable beta-D-xylosidase 7	GSVIV I 00019689001	XM_002285769
000	1.1	0.7	0.3	0.4	PREDICTED: Vitis vinifera germin-like protein subfamily T member 2		XM_002267471
000	0.8	0.7	0.3	0.2	PREDICTED: Vitis vinifera mavicyanin	GSVIVT00019955001	XM_002281638
809	0.5	1.4	0.3	0.2	PREDICTED: Vitis vinifera putative callose synthase 8	GSVIVT00009059001	XM_010646472
	0.8	0.7	0.3	0.1	PREDICTED: Vitis vinifera glucan endo-1,3-beta-gluco sidase 2-like	GSVIVT00032980001	XM_002265360
810	1.3	0.7	0.2	0.1	PREDICTED: Vitis vinifera glutamyl-tRNA reductase 1, chloroplastic-like	GSVIVT00015045001	
	1.4	0.5	0.1	0.1	PREDICTED: Vitis vinifera protein DCL, chloroplastic-like	GSVIVT00019490001	XM_002282442
811	0.9	0.7	0.1	0.2	PREDICTED: Vitis vinifera mannose-1-phosphate guanyltransferase alpha-like	GSVIVT00020858001	XM_002281923
	1.3	0.7	0.1	0.2	PREDICTED: Vitis vinifera probable gluconokinase	GSVIVT00014074001	XM_002275978
812	1.5	0.6	0.1	0.1	PREDICTED: Vitis vinifera putative amidase C869.01	GSVIVT00036077001	 XM_003631524
012	1.0	0.0	0.1	0.1	PREDICTED: Vitis vinifera galactose oxidase	GSVIVT00016700001	XM_010657990
Q12	1.0	0.5	0.1	0.0	PREDICTED: Vitis vinifera conto chrome.1	GSVIVT00011744001	XM_002285133
015	0.9	0.6	0.1	0.0		001/0/10001// 44001	XM_0002203103
014	1.2	0.6	0.0	0.1	PREDICTED: Vitis Vinifera galactose oxidase	GSVIV100021405001	XM_002274727
814	0.7	1.1	3.1	1.8	PREDICTED: Vitis vinifera prosproenolpyruvate carboxylase kinase 1	GSVIV100002205001	XM_002265916
045	0.8	1.4	2.8	0.8	PREDICTED: Vitis vinifera plasto cyanin	GSVIVI 00015518001	XM_002285868
815	0.9	1.1	2.7	0.7	PREDICTED: Vitis vinifera uncharacterized (LOC100247488)	GSVIVT00036876001	XM_002270359
	1.7	0.8	2.6	1.2	PREDICTED: Vitis vinifera protein SENSITIVITY TO RED LIGHT REDUCED 1	GSVIVT00017343001	XM_010653294
816	0.8	1.0	2.6	0.6	PREDICTED: Vitis vinifera pyridine nucleo tide-disulfide oxidoreductase domain-cont	GSVIVT00024927001	XM_010650846
	0.7	1.2	2.3	1.3	PREDICTED: Vitis vinifera carbonic anhydrase 2-like	GSVIVT00016078001	XM_002282645
817	1.6	1.8	0.1	0.8	PREDICTED: Vitis vinifera uncharacterized (LOC 100268021)	GSVIVT00016580001	XM_002282345
	0.6	7.2	0.0	0.6	PREDICTED: Vitis vinifera zinc finger protein CONSTANS-LIKE 5	GSVIVT00031464001	XM_002277917
818	1.1	1.2	0.5	6.7	PREDICTED: Vitis vinifera GDSL esterase/lipase	GSVIVT00026974001	XM_002276489
010	0.8	1.9	1.1	6.3	PREDICTED: Vitis vinifera pentatricopeptide repeat-containing protein	GSVIVT00032631001	XM_003632946
010	1.0	1.6	1.8	3.0	PREDICTED: Vitis vinifera alkaline/neutral invertase CINV1-like	GSVIVT00034936001	XM_010660432
019	0.6	1.0	1.2	3.0	PREDICTED: Vitis vinifera dolichvldiphosphatase 1-like	GSVIVT00024892001	 XM_002263866
000	1.1	1.0	0.8	2.8	PREDICTED Vitis vinifera beta-xylosidase/alpha-L-arabinofuranosidase 2-like	GSVIVT00027149001	XM_002264147
820	0.7	1.0	0.0	2.0	PREDICTED: Vitis vinifera LIDP-arabino pyranose mutase 1	GSVIVT0000015001	XM_002263454
	0.7	1.0	0.8	2.0		GSV/IVT00035677001	XM_002263914
821	0.7	1.5	0.7	2.1	PREDICTED: Vitis vinifera activating signal existentiates, sylosofic-like	CSVIVT00035077001	XM_0022039 A
	1.6	0.9	0.9	0.4		001/10/00/02 5001	XM_000074047
822	1.3	0.8	0.8	0.4	PREDICTED: Vitis Vinifera adenosine kinase	GSVIV100013977001	XIVI_002271617
	1.0	1.0	0.7	0.4	Vitis vinifera GDP-manno se-3',5'-epimerase	GSVIV100034578001	NM_001281039
823	1.2	1.0	0.7	0.3	PREDICTED: Vitis vinifera beta-fructo furano sidase, insoluble iso enzyme CWINV1	GSVIVT00032196001	XM_002278844
010	0.8	0.8	1.3	0.3	PREDICTED: Vitis vinifera alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosan	GSVIVT00003980001	XM_010648923
	0.8	0.8 0.7 0.9		0.3	PREDICTED: Vitis vinifera plastid division protein PDV2-like	GSVIVT00036442001	XR_785443
	0.5	1.1	1.9	0.3	PREDICTED: Vitis vinifera NADPHcytochrome P450 reductase	GSVIVT00031360001	XM_002270696
	1.0	0.8	1.3	0.2	PREDICTED: Vitis vinifera pyruvate kinase	GSVIVT00033621001	XM_002266124
	0.8	1.2	0.5	0.2	PREDICTED: Vitis vinifera violaxanthin de-epoxidase, chloroplastic	GSVIVT00007662001	XM_010650663
	0.7	0.5	0.7	0.2	PREDICTED: Vitis vinifera patellin-3	GSVIVT00001819001	XM_002267392
	0.7	0.8	0,8	0.2	PREDICTED: Vitis vinifera alpha-amylase	GSVIVT00036595001	XM_002285177
	0.6	0.8	0.7	0.2	PREDICTED: Vitis vinifera UDP-glucose:alvcoprotein glucosvltransferase	GSVIVT00026475001	
	0.6	1 2	0.7	0.2	PREDICTED: Vitis vinifera probable alpha-am viase 2	GSVIVT00015532001	XM 010665795
	0.0	1.2	- 1.0	0.2	RREDICTED: Vitis vinifera probable polygalacturo pase	GSVIVT00037722001	XM_002273632
	Mägn	lin . R o	bërt.	0.1		CSVIVT0003/722001	XM 002265% T
			. ux 1				ANV JUZZ00040

Page	35	of	64	
------	----	----	----	--

Table 2 (continued)

825		Fold C	hange		Functional annotation	ID	Accession
201	T0-20	T0-7vh	T0-7tg	TO		genoscope	Number (NCBI)
326	0.8	0.7	0.8	0.1	PREDICTED: Vitis vinifera UDP-glycosyltransferase 86A1	GSVIV100023233001	XM_002276822
007	Amino d	mino acia metabolism				001/11/700000000000000	V44 000000004
327	0.5	4.2	11.2	20.0	PREDICTED: protyl 4-hydroxylase subunit alpha- filke	GSVIV100020832001	XM_00228 384
220	2.1	0.4	0.8	0.2	PREDICTED: Cystathionine beta-iyase, chioroplastic-like	GSVIV101033607001	XM_002274277
828	2.1	0.7	0.1	0.2	PREDICTED: Glutarryi-tRNA (Gin) amido transferase subunit A, chloro/mito.	GSVIV101020788001	XIVI_002278114
220	0.4	5.3	22.1	79.0	PREDICTED: S-adenosyi-L-methionine decarboxylase, transcript variant 2 (SAMDC)	GSVIV100038126001	XM_002282672
829	0.6	3.3	8.5	3.9	PREDICTED: three nine dehydratase bio synthetic, chloroplastic-like		XM_002264275
200	0.7	2.4	11.3	18.3	PREDICTED: sulfite reductase [terredoxin]-like	GSVIV101025246001	XM_002285362
830	0.6	2.2	4.3	27.2	PREDICTED: LL-diaminopimelate aminotransferase, chloroplastic-like	GSVIVI 01029761001	XM_002268730
	0.7	2.3	6.7	18.4	PREDICTED: aspartate aminotransferase, chloroplastic-like	GSVIVT00032463001	XM_002284100
831	0.0	0.9	0.2	1.2	PREDICTED: thermospermine synthase ACAULIS5-like	GSVIVT00032257001	XM_002281075
	0.6	1.9	6.0	3.9	PREDICTED: Vitis vinifera glycinetRNA ligase 2, chloroplastic/mitochondrial	GSVIVT00019071001	XM_002270738
332	0.9	1.7	6.0	3.7	PREDICTED: Vitis vinifera cyto chrome b561, DM 13 and DOM ON domain-containing	GSVIVT00032699001	XM_002285257
	0.9	1.6	4.3	5.0	PREDICTED: Vitis vinifera histone-lysine N-methyltransferase ATX1	GSVIVT00011386001	XM -010652171
833	1.2	1.4	3.7	4.2	PREDICTED: Vitis vinifera N6-adenosine-methyltransferase MT-A70-like	GSVIVT00000538001	XM_002272901
	1.0	0.4	3.6	3.1	PREDICTED: Vitis vinifera ketol-acid reductoisomerase, chloroplastic-like	GSVIVT00009175001	XM_002280058
834	1.9	0.9	0.4	0.4	PREDICTED: Vitis vinifera S-adenosylmethionine decarboxylase proenzyme 4	GSVIVT00019871001	XM_002277280
	1.2	0.9	0.4	0.3	PREDICTED: Vitis vinifera aspartate amino transferase, mito chondrial	GSVIVT00018772001	XM_002281728
835	1.1	0.7	0.4	0.1	PREDICTED: Vitis vinifera cytosolic sulfotransferase 15	GSVIVT0000004001	XM_002265101
	1.0	0.7	0.4	0.1	PREDICTED: Vitis vinifera uncharacterized (LOC 100251769)	GSVIVT00022225001	XM_010653521
836	1.1	0.7	0.1	0.2	PREDICTED: Vitis vinifera probable diphthine synthase	GSVIVT00014439001	XM_002280113
	0.9	0.7	0.1	0.2	PREDICTED: Vitis vinifera mannose-1-phosphate guanyltransferase alpha-like	GSVIVT00020858001	XM_002281923
837	1.0	0.9	2.5	0.4	PREDICTED: Vitis vinifera protein fluG	GSVIVT00000594001	XM_010655695
	0.8	0.7	2.5	0.1	PREDICTED: Vitis vinifera serine hydro xymethyltransferase, mito chondrial	GSVIVT00008180001	XM_010648100
838	1.0	1.9	4.8	0.5	PREDICTED: Vitis vinifera lysine-specific histone demethylase 1homolog 3	GSVIVT00014490001	XR_788316
	0.8	1.0	2.6	0.6	PREDICTED: Vitis vinifera pyridine nucleotide-disulfide oxidoreductase domain-cont	GSVIVT00024927001	XM_010650846
839	0.2	1.8	1.9	12.3	PREDICTED: Vitis vinifera histone-lysine N-methyltransferase ATX1	GSVIVT00032732001	XM_010652169
	1.6	1.4	1.2	3.0	PREDICTED: Vitis vinifera asparaginetRNA ligase, cytoplasmic 1	GSVIVT00016615001	XM_003633067
840	0.7	1.4	1.2	2.8	PREDICTED: Vitis vinifera histone-lysine N-methyltransferase, H3 lysine-9 specific S	GSVIVT00033960001	XR_787250
	0.7	1.4	1.2	2.1	PREDICTED: Vitis vinifera branched-chain-amino-acid aminotransferase 2, chloropla	GSVIVT00015014001	XM_010666170
841	1.5	0.9	1.6	0.5	PREDICTED: Vitis vinifera tropinone reductase homolog At 1g07440	GSVIVT00024253001	XM_002277799
	0.9	1.5	0.9	0.4	PREDICTED: Vitis vinifera probable serine incorporator	GSVIVT00025214001	XM_002270574
842	0.9	1.0	1.2	0.4	PREDICTED: Vitis vinifera deoxyhypusine synthase	GSVIVT00017873001	XM_002282885
	0.5	0.7	0.9	0.3	PREDICTED: Vitis vinifera dolichyldiphosphatase 1-like	GSVIVT00001717001	XM_002263866
843	0.6	1.0	1.3	0.2	PREDICTED: Vitis vinifera threonine synthase, chloroplastic	GSVIVT00032716001	XM_002285330
	0.6	0.8	0.6	0.2	PREDICTED: Vitis vinifera tyrosine aminotransferase	GSVIVT00018628001	XM_002276515
844	0.6	0.8	0.6	0.2	PREDICTED: Vitis vinifera aspartate-semialdehyde dehydrogenase	GSVIVT00030599001	XM 003631135
	0.6	0.8	0.5	0.2	PREDICTED: Vitis vinifera aspartyl-tRNA synthetase-like	GSVIVT00038606001	 XM_002271322
845	0.8	0.9	0.6	0.2	PREDICTED: Vitis vinifera glutamate dehvdrogenase	GSVIVT00014101001	XM 002278852
	Lipid me	etabolisn	1				_
846	3.0	55.2	20.8	117.3	PREDICTED: 14 kDa proline-rich protein DC2.15	GSVIVT00035368001	XM 002271835
	2.7	6.6	46.7	29.9	PREDICTED: 12-oxophytodienoate reductase 2-like	GSVIVT00021911001	 XM_002281312
847	0.5	3.0	5.2	5.9	PREDICTED: GDSL esterase/lipase At5g03820-like		XM 002284051
	0.5	2.3	7.8	1.2	PREDICTED: fatty acid desaturase 3-like	GSVIVT00026952001	XM 002279191
848	0.8	2.0	37	20.9	PREDICTED: secologanin synthase-like		XM 003634726
-	0.6	2.5	8.2	19.4	PREDICTED: beta-amvrin synthase-like	GSVIVT00029666001	XM 002270898
849	0.5	2.5	9.1	6.6	PREDICTED: 3'-N-debenzo yl-2'-deo xvtaxol N-benzo vltransferase-like	GSVIVT00028244001	XM 002281493
	1 3	0.3	0.1	0.2	PREDICTED: pro bable 1-deo xv-D-xv/lulo se-5-pho sphate svnthase, chloro plastic	GSVIVT01017832001	XM 002277883
850	0.8	0.3	0.0	0.0	PREDICTED: imiC domain-containing protein 7-like		XM_010646063
	0.5	1.6	27.2	25.5	PREDICTED: Vitis vinifera cytochrome P450 714C2	GSVIVT00019034001	XM_002269271
851	0.5	1.0	92.5	23.5	PREDICTED: Vitis vinifera divoerophosphodiester phosphodiesterase GDPD6	GSVIVT00033015001	XM_002283909
	1.1	1.5	5.5	3.4	PREDICTED: Vitie vinifera pon specific linid transfer protein like protei	CSV/IVT00020022001	XM_010651622
852	0.9	1.2	5.5	2.7	PREDICTED: Vitis vinitera non-specific lipid-transfer protein-like protei	GSVIVT00020023001	ANI_0 003 023
	1.2	1.4	3.0	2.4	PREDICTED: Vitis vinifera aboanto lipididia viduora Laputraneforase 1	GSVIVT00016495001	XM 002275750
853	1.0	1.0	3.1	4.2		CSVIVT00008450001	XM_002275739
	0.9	1.3	2.7	2.9	PREDICTED. Vitis vinifera processitiving aneting ucosylitaristerase		AIVI_002280735
854	0.8	1.9	2.3	2.3	PREDICTED. Vitis vinitera prospnatidylinositor-3-pnospnatase myötubularin-1	GSVIVI 00035008001	AIVI_0022271313
001	0.7	1.5	7.2	0.5	PREDICTED: Vitis vinifera memorane steroid-binding protein 2-like	GSVIV I 00009206001	ANI_002262744
855	0.7	0.6	3.1	0.2	PREDICTED: Vitis vinitera beta-amyrin 28-0xidase	GSVIV100031/66001	XIVI_002280933
555	0.9	0.9	2.3	0.3	PREDICTED VIIIs Vinitera probable 2-0xoglutarate/Fe(II)-dependent dioxygenase	GSVIV100031267001	XM_002267979
	1.5	0.6	0.4	0.3	PREDICTED: Vitis vinitera non-specific lipid-transfer protein	GSVIV I 00029443001	XM_002275071
	1.4	0.7	0.4	0.3	PREDICTED Vitis vinitera abietadieno l/abietadienal oxidase	GSVIVI 00013859001	XM_010663730
	1.2	0.8	0.4	0.3	PREDICTED: Vitis vinifera short-chain type dehydrogenase/reductase	GSVIVT00025488001	XM_002282165
	0.8	1.1	0.4	0.3	PREDICTED: Vitis vinifera phosphatidylinositol-glycan biosynthesis class F protein	GSVIVT00025250001	XM_003632871
	0.8	0.8	0.4	0.3	PREDICTED: Vitis vinifera putative lipid phosphate phosphatase 3, chloroplastic	GSVIVT00038277001	XM_010662090

Table 2 (continued)

857		Fold C	hange			ID	Accession
037	T0-20	T0-7vh	T0-7tg	то	Functional annotation	genoscope	Number (NCBI)
858	0.5	1.0	0.4	0.3	PREDICTED: Vitis vinifera non-specific lipid-transfer protein-like	GSVIVT00011714001	XM_003635261
050	1.3	0.5	0.4	0.2	PREDICTED: Vitis vinifera allene oxide synthase	GSVIVT00036457001	XM_002283744
859	1.1	0.8	0.4	0.2	PREDICTED: Vitis vinifera hydro xymethylglutaryl-CoA synthase	GSVIVT00013734001	XM_002282398
007	1.1	0.7	0.4	0.2	PREDICTED: Vitis vinifera cytochrome P450 CYP72A219	GSVIVT00011015001	XM_002263573
860	1.1	0.7	0.4	0.1	PREDICTED: Vitis vinifera cytosolic sulfotransferase 15	GSVIVT0000004001	XM_002265827
	1.0	0.7	0.3	0.3	PREDICTED: Vitis vinifera (-)-alpha-terpineol synthase	GSVIVT00008933001	XM_002266772
861	0.9	0.8	0.3	0.3	PREDICTED: Vitis vinifera valencene synthase	GSVIVT00021793001	XM_002277315
	0.8	0.8	0.3	0.2	PREDICTED: Vitis vinifera phosphatidylinositol:ceramide inositolphosphotransferas	GSVIVT00033769001	XM_002276175
862	0.8	1.1	0.2	0.4	PREDICTED: Vitis vinifera strictosidine synthase 1	GSVIVT00003163001	XM_002273728
	1.1	0.7	0.2	0.3	PREDICTED: Vitis vinifera acyl-[acyl-carrier-protein] desaturase, chloroplastic	GSVIVT00012872001	XM_002274672
863	0.8	0.9	0.2	0.3	PREDICTED: Vitis vinifera probable acyl-activating enzyme 18, peroxisomal	GSVIVT00024773001	XM_010653061
	1.8	0.5	0.2	0.2	PREDICTED: Vitis vinifera probable mannitol dehydrogenase	GSVIVT00013367001	XM_003635388
864	1.0	0.7	0.2	0.1	PREDICTED: Vitis vinifera valencene synthase	GSVIVT00027447001	XM_002277315
	1.4	0.9	0.1	0.2	PREDICTED: Vitis vinifera (-)-alpha-terpineol synthase-like	GSVIVT00008934001	XM_010660749
865	1.4	0.6	0.1	0.2	PREDICTED: Vitis vinifera probable ATP synthase 24 kDa subunit, mitochondrial	GSVIVT00019377001	XM_002279353
	0.8	0.5	0.1	0.1	PREDICTED: Vitis vinifera phospholipase D Z	GSVIVT00012872001	XM_002285482
866	0.8	1.3	6.1	0.8	PREDICTED: Vitis vinifera cytochrome P450 CYP716A15	GSVIVT00008991001	NM_001281186
	0.8	0.9	3.3	1.7	PREDICTED: Vitis vinifera acetyl-CoA carboxylase 1-like	GSVIVT00015269001	XM_010666001
867	0.6	1.5	3.2	1.0	PREDICTED: Vitis vinifera 3-epi-6-deo xo cathastero ne 23-mo no o xygenase	GSVIVT00036865001	XM_010650788
	0.8	1.5	3.1	1.1	PREDICTED: Vitis vinifera uncharacterized (LOC 100248919)	GSVIVT00026419001	XM_010663378
868	1.5	0.8	2.7	0.6	PREDICTED: Vitis vinifera phosphomethylethanolamine N-methyltransferase	GSVIVT00030533001	XM_002282146
	0.9	1.7	2.6	1.1	PREDICTED: Vitis vinifera alpha-dio xygenase 1	GSVIVT00020782001	XM_002279848
869	1.1	1.2	1.1	4.8	PREDICTED: Vitis vinifera phosphatidylinosito IN-acetylglucosaminyltransferase sut	GSVIVT00032065001	XM_010662959
	0.7	1.5	0.8	3.4	PREDICTED: Vitis vinifera GATA transcription factor 8-like	GSVIVT00018182001	XM_002273466
870	0.8	1.6	1.0	2.6	PREDICTED: Vitis vinifera NADPH:quino ne o xido reductase	GSVIVT00030913001	XM_002264823
	1.0	1.2	1.3	2.4	PREDICTED: Vitis vinifera oleoyl-acyl carrier protein thioesterase 1, chloroplastic-like	GSVIVT00010636001	XM_010648264
871	0.7	1.9	1.8	2.1	PREDICTED: Vitis vinifera (3S,6E)-nerolidol synthase 1, chloroplastic-like	GSVIVT00007997001	XM_010648617
	0.7	0.8	0.5	2.1	PREDICTED: Vitis vinifera acyl-coenzyme A oxidase, peroxisomal	GSVIVT00009919001	XM_002269614
872	1.1	1.1	1.5	0.5	PREDICTED: Vitis vinifera probable acyl-activating enzyme 16, chloroplastic	GSVIVT00027058001	XM_010654898
	0.9	0.7	0.9	0.3	PREDICTED: Vitis vinifera cultivar Cabernet Sauvignon lipoxygenase 1(LOX1) mRNA	GSVIVT00022800001	KF033130
873	0.5	0.9	1.1	0.3	PREDICTED: Vitis vinifera peroxisomal fatty acid beta-oxidation multifunctional prote	GSVIVT00016719001	XM_002284247
~ - /	1.0	0.6	0.8	0.2	PREDICTED: Vitis vinifera glycerol-3-phosphate acyltransferase, chloroplastic	GSVIVT00015673001	XM_002276065
874	0.9	0.8	0.7	0.2	PREDICTED: Vitis vinifera N-acylphosphatidylethanolamine synthase-like	GSVIVT00029235001	XM_010660002
~	0.7	0.9	0.5	0.2	PREDICTED: Vitis vinifera jasmonate O-methyltransferase	GSVIVT00014572001	XM_002281543
875	0.6	0.6	1.5	0.2	PREDICTED: Vitis vinifera serine/threonine-protein kinase-like protein CCR1	GSVIVT00018209001	XM_002276007
0.7	0.7	0.7	1.2	0.1	PREDICTED: Vitis vinifera polyprenol reductase 2	GSVIVT00035975001	XM_002269282
8/6	Phenylp	ropanoid	metabol	lism			
077	2.4	2.0	15.6	59.5	PREDICTED: salicylate O-methyltransferase	GSVIVT00024874001	XM_002262640
8//	2.4	3.9	7.7	16.8	PREDICTED: flavonoid 3'-monooxygenase-like	GSVIVT00016215001	XM_002284115
070	2.3	8.7	11.6	8.5	PREDICTED: bifunctional 3-dehydro quinate dehydratase/shikimate dehydro genase		XM_002277359
0/0	0.0	8.2	64.9	79.6	PREDICTED: peroxidase 24-like		XM_003631913
070	0.7	2.6	15.9	5.4	PREDICTED: 1-Cys peroxiredoxin	GSVIVT00019700001	XM_002265561
0/9	0.7	2.4	5.8	7.9	PREDICTED: probable iron/ascorbate oxidoreductase DDB_G0283291-like	GSVIVT01022069001	XM_002283156
000	1.7	0.2	0.1	0.1	PREDICTED: flavo no id-related R2R3 M YB 4a repressor transcription factor	GSVIVT00036110001	XM_002278186
000	1.3	0.7	12.5	5.2	PREDICTED: Vitis vinitera probable carboxylesterase 11	GSVIV I 00027407001	XM_002267052
QQ1	0.7	1.6	25.6	24.0	PREDICTED: Vitis vinifera malonateCoA ligase	GSVIVT00034366001	XM_002279103
001	1.3	1.1	5.6	4.7	PREDICTED: Vitis Vinifera antho cyanidin 3-O-glucosyltransferase 2-like	GSVIV100031485001	XM_002264962
882	1.0	1.4	4.7	4.9	PREDICTED: Vitis vinifera UDP-giucose:tiavonold 3-O-giucosyttransferase UFGT2	GSVIV100031443001	AB047093
002	0.7	2.0	4.5	3.7	PREDICTED: Vitis Vinifera chaicone synthase (CHS)	GSVIV100009232001	NM_001280950
883	0.9	2.0	4.1	2.6	PREDICTED: Vitis vinifera laccase- 4	GSVIV1000101/0001	XM_002265308
005	0.9	1.8	2.6	2.2	PREDICTED: Vitis Vinitera beta-giucosidase 12-like	GSVIV100028756001	XM_002276016
884	0.8	0.8	0.3	0.2	PREDICTED: Vitis vinifera isofiavone 2'-nydro xylase-like	GSVIV100019593001	XM_010654455
001	1.0	0.6	0.2	0.2	PREDICTED: Vitis vinifera 4-coumarateCOA ligase-like 5	GSVIV100018101001	XM_002285884
885	0.8	1.0	0.2	0.1	PREDICTED: Vitis vinitera (RS)-horcoclaurine 6-O-methyltransferase-like	GSVIV1000111/1001	XM_002281074
505	1./	0.5	0.1	0.2	F NEURI ED. VIIIS VIIIIEIA IAUCASE-11	GSVIV 100024910001	ANI_003032588
886	1.8	U.6	0.1	0.1	r REDIGTED. Vitis vinifeta tryptopriany-tRNA synthetase-like	GSVIV100032095001	AWI_002272993
550	0.7	1.4 9.8 U.9 FREDICTED: Vitis vinifera peroxidase 3			GSVIVT00026053001	XM 00228005	
887	0.7	1./	5.0	1.4		GSV/VT00000226001	NM 002203995
507	1.2	1.8	4.8	0.9		GSVIV100009220001	XM 000004050
888	1.0	1.0	3.8	1.0	r rebio reb. vitis viniteta naningenin,2-0 xo giutarate 3-dio xygenase	GSVIV 1000305 0001	XM 002284856
	0.8	1.5	3./	1.0	PREDICTED: Vitis vinitera probable cirinamy accino denydrogenase i	GSVIV100080001	XM 0022003/U
889	0.0	1.4	3.0	0.0		GSVIVT00013671001	XM 003634810
	0.9	1.2	2.7	1.9	PREDICTED: Vitis vinifera bifunctional 3-dehydroquinate dehydratase/shikimato.doh	GSVIVT000800001	XM 010651/07

Magnin-Robert, MPMI

001				/			•
891	T0-20 T0-7vh T0-7tg T0		то	Functional annotation	UI enoscone	Accession	
802	1 1	1.8	0.4	17	PREIDCTED: Vitis vinifera 1-Cvs peroxiredoxin	GSVIVT00019700001	NM 001281268
092	0.8	1.0	0.4	2.0	PREDICTED: Vitis vinifera probable carboxylesterase 2	GSVIVT00019941001	XM_002284551
803	0.5	0.8	2.0	0.4	PREDICTED: Vitis vinifera uncharacterized acetvltransferase At3q50280-like	GSVIVT00014857001	XM 002284880
075	1.0	1.0	0.7	0.4	PREDICTED: Vitis vinifera GDP-mannose-3'.5'-epimerase	GSVIVT00034578001	NM 001281039
894	0.8	1.8	0.5	0.4	PREDICTED: Vitis vinifera flavonoid 3'-monooxygenase-like	GSVIVT00016437001	XM_002284115
071	0.9	1.2	1.7	0.4	PREDICTED: Vitis vinifera flavo nol synthase/flavano ne 3-hydro xylase	GSVIVT00016437001	XM_002285802
895	0.7	0.8	1.1	0.1	PREDICTED: Vitis vinifera flavo nol synthase/flavano ne 3-hydro xylase	GSVIVT00015347001	 XM_002285802
075	Stress a	nd Defen	se reacti	ons			_
896	2.3	8.6	2.9	46.7	PREDICTED: epoxide hydrolase 2-like		XM_003632333
070	0.5	2.7	8.5	8.2	PREDICTED: epoxide hydrolase 2-like		XM_003632333
897	0.7	19.9	53.4	49.1	PREDICTED: homolog haloacid dehalogenase hydrolase	GSVIVT00021335001	XM_002267523
0,7,7	1.0	14.7	87.0	56.5	PREDICTED: glutathione S-transferase U9-like		XM_003634217
898	1.0	12.4	13.0	5.5	PREDICTED: germin-like protein subfamily 1member 14	GSVIVT00022776001	XM_002284264
	1.1	10.1	8.7	42.9	PREDICTED: glutathione S-transferase	GSVIVT00027957001	XM_002262806
899	1.8	4.2	29.3	7.6	PREDICTED: class I beta-1,3-glucanase		XM_002277133
0,7,7	0.5	3.5	16.2	9.3	PREDICTED: serine/threonine-protein phosphatase 7-like	GSVIVT00005999001	XM_002263704
900	0.8	3.4	2.0	6.7	PREDICTED: TMV resistance protein N-like		XM_002276039
	0.6	3.3	25.5	10.6	PREDICTED: pathogenesis-related protein 10.7		XM_002273754
901	0.9	3.0	2.0	5.6	PREDICTED: probable disease resistance protein RDL6/RF9-like		XM_003633403
	0.9	3.0	4.5	8.4	PREDICTED: pro bable disease resistance protein At5g66900-like		XM_002268171
902	1.0	2.6	12.4	8.0	PREDICTED: thaumatin-like protein 1	GSVIVT01009928001	XM_002274101
	1.2	2.7	2.3	7.0	Uncharacterized LOC 100262931	GSVIVT00017866001	XM_002282796
903	0.8	2.2	87.1	37.9	PREDICTED: disease resistance RPP 13-like protein 4	GSVIVT00036904001	XM_002268904
	1.0	2.0	0.4	4.3	PREDICTED: probable disease resistance protein At5g63020-like		XM_002263638
904	1.9	0.4	0.2	0.3	PREDICTED: putative disease resistance RPP 13-like protein		XM_003633332
	1.9	1.8	66.1	30.1	PREDICTED: Vitis vinifera ultraviolet-B receptor UVR8	GSVIVT00038080001	NM_111097
905	0.8	1.4	16.1	5.4	PREDICTED: Vitis vinifera putative disease resistance RPP 13-like protein 1	GSVIVT00031023001	
	0.9	1.8	14.6	4.2	PREDICTED: Vitis vinifera pleiotropic drug resistance protein 2	GSVIVT00034947001	XM_010655751
906	1.7	1.3	12.1	7.0	PREDICTED: Disease resistance protein (TIR-NBS-LRR class)	GSVIVT00008753001	
	1.2	0.9	9.4	4.8	PREDICTED: Vitis vinifera leucine-rich repeat receptor-like serine/threonine-protein l	GSVIVT00036586001	XM_002282105
907	1.0	1.9	7.8	3.8	PREDICTED: Vitis vinifera TMV resistance protein N	GSVIVT00028940001	XM_010654467
	0.6	1.0	5.9	2.5	PREDICTED: Vitis vinifera RRP 15-like protein	GSVIVT00029062001	XM_010659195
	0.7	1.3	5.5	3.0	PREDICTED: Vitis vinifera receptor-like protein 12	GSVIVT00011664001	
	1.1	1.3	4.5	2.9	PREDICTED: Vitis vinifera MATE efflux family protein 6	GSVIVT00001094001	XM_002274772
	0.8	1.6	4.4	2.0	PREDICTED: Vitis vinifera disease resistance protein	GSVIVT00033316001	XM_010646027
	1.2	1.3	3.7	3.5	PREDICTED: Vitis vinifera disease resistance protein	GSVIVT00006778001	XM_010646027
	0.8	1.7	3.5	4.4	PREDICTED: Vitis vinifera gene for chitinase III	GSVIVT00020672001	AB 105374
	0.7	1.4	3.0	18.5	PREDICTED: Vitis vinifera germin-like protein subfamily 1member 17	GSVIVT00029796001	XM_002284248
	1.1	1.1	2.4	5.4	PREDICTED: Epoxide hydrolase	GSVIVT00025835001	
	1.0	1.5	2.4	3.6	PREDICTED: Vitis vinifera B-cell receptor-associated protein 31-like	GSVIVT00012113001	XM_002270265
	1.3	1.2	2.0	2.1	PREDICTED: Vitis vinifera gene for chitinase II	GSVIVT00026961001	AB 105374
	0.9	1.0	1.0 3.6 0.4 PREDICTED: Vitis vinifera TMV resistance protein N-like				XR_788432
	0.9	0.9	2.5	0.4	PREDICTED: Vitis vinifera putative disease resistance protein	GSVIVT00034601001	
	0.7	1.4	0.5	2.9	PREDICTED: Vitis vinifera stromal cell-derived factor 2-like protein	GSVIVT00032696001	XM_002285252
	1.0	1.5	0.2	10.5	PREDICTED: Vitis vinifera pleiotropic drug resistance protein 1-like	GSVIVT00034505001	XM_010656419
	1.0	0.8	0.5	0.4	PREDICTED: Vitis vinifera chaperone protein dnaJ 20, chloroplastic	GSVIVT00031635001	XM_002264118
	1.2	0.7	0.5	0.2	PREDICTED: Vitis vinifera cysteine proteinase inhibitor 1-like	GSVIVT00011952001	XM_003634968
	1.0	0.7	0.5	0.1	PREDICTED: Defense - Dirigent protein	GSVIVT00024746001	XM_002285647
	0.9	1.0	0.4	0.4	PREDICTED: Vitis vinifera M LO-like protein 10	GSVIVT00019324001	XM_002276572
	1.0	0.7	0.4	0.2	PREDICTED: integrase	GSVIVT00008063001	
	1.0	0.6	0.4	0.2	PREDICTED: Vitis vinifera uncharacterized LOC 100248098	GSVIVT00026485001	XR_139826
	0.9	0.7	0.4	0.2	PREDICTED: transducin protein	GSVIVT00012724001	
	0.8	0.6	0.4	0.1	PREDICTED: Disease resistance protein (TIR-NBS-LRR class)	GSVIVT00021828001	
	1.1	0.6	0.3	0.3	PREDICTED: Vitis vinifera glutathione S-transferase U9	GSVIVT00000140001	XM_002269082
	1.6	0.8	0.3	0.2	PREDICTED: Vitis vinifera putative disease resistance RPP 13-like protei	GSVIVT00034920001	
	1.1	0.9	0.3	0.2	PREDICTED: ACCELERATED CELL DEATH 1ACD1	GSVIVT00024785001	XM_002283556
	1.0 1.0 0.3 0.2		0.2	PREDICTED: Vitis vinifera uncharacterized (LOC 100245966)	GSVIVT00012890001	XM_010656905	
	1.1	0.8	0.3	0.1	PREDICTED: Pathogenesis Bet v I allergen - abscisic acid receptor PYL11	GSVIVT00035869001	XM_002272743
	0.9	0.5	0.3	0.1	PREDICTED: endochitinase PR4	GSVIVT00034644001	XM_002274722
	0.8	0.6	0.3	0.0	PREDICTED: Vitis vinifera hsp70-Hsp90 organizing protein 3-like	GSVIVT00012628001	XM_003635638
	1.4	0.7	0.2	0.4	PREDICTED: Vitis vinifera probable receptor-like protein kinase	GSVIVT00013403001	XM_010662106
	1.2	0.5	0.2	0.3	PREDICTED: Vitis vinifera probable NAD(P)H dehydrogenase (quinone) FQR1like 2	GSVIVT00024987001	XM_002272994
	1.1	0.9	0.2	0.3	PREDICTED: Glutathione S-transferase U10-like	GSVIVT00036965001	XM_002275302
	1.1	0.8	0.2	0.3	PREDICTED: Vitis vinifera polyadenylate-binding protein-interacting protein 4	GSVIVT00034112001	XM_010656176

Table 2 (continued)

	Fold Change				ID	Accession
T0-20	T0-7vh	T0-7tg	ΤO	Functional annotation	genoscope	Number (NCBI)
0.4	0.5	0.2	0.3	PREDICTED: Disease resistance - PMR5 (Powdery Mildew Resistant 5)	GSVIVT00018816001	XM_002277193
1.1	0.7	0.2	0.2	PREDICTED: Vitis vinifera glycine-rich protein 2-like	GSVIVT00036773001	XM_002266079
1.1	0.6	0.2	0.1	PREDICTED: Vitis vinifera putative disease resistance RPP 13-like protein 1	GSVIVT00035449001	XM_003633332
0.7	1.1	0.2	0.1	PREDICTED: Vitis vinifera uncharacterized (LOC 100248098)	GSVIVT00026485001	XR_139826
1.5	0.6	0.1	0.2	PREDICTED: retrotransposon protein, Ty1-copia subclass	GSVIVT00029789001	
1.7	0.7	0.1	0.1	PREDICTED: Vitis vinifera chaperone protein ClpB4, mitochondrial	GSVIVT00032702001	XM_002282844
1.2	0.8	0.0	0.2	PREDICTED: Disease resistance : Receptor kinase TRKa	GSVIVT00018767001	XM_010666231
0.7	1.4	5.0	1.3	PREDICTED: Disease resistance protein (TIR-NBS-LRR class)	GSVIVT00021884001	
0.7	1.3	3.7	1.1	PREDICTED: Vitis vinifera putative disease resistance RPP 13-like protein 1	GSVIVT00025723001	
0.6	1.9	3.5	1.0	PREDICTED: Vitis vinifera heat shock 70kDa protein 1/8-like	GSVIVT00021301001	XM_002283496
1.4	0.5	3.2	1.8	PREDICTED: Vitis vinifera 20 kDa chaperonin, chloroplastic	GSVIVT00017690001	XM_002277825
0.6	1.3	3.2	0.7	PREDICTED: Vitis vinifera uncharacterized (LOC 100255258)	GSVIVT00008635001	XM_010663660
0.8	1.0	3.0	1.3	PREDICTED: Vitis vinifera pathogenesis-related protein 10 (PR10.2)	GSVIVT00033076001	XM_002274206
0.7	1.7	2.9	1.9	PREDICTED: Vitis vinifera dolichyl-diphosphooligosaccharideprotein glycosyltrans	GSVIVT00015676001	XM_002277380
0.9	1.1	2.8	0.5	PREDICTED: Vitis vinifera pleiotropic drug resistance protein 1-like	GSVIVT00034512001	XM_010656419
0.8	1.4	2.8	1.4	PREDICTED: Vitis vinifera gene for chitinase III	GSVIVT00026948001	AB 105374
1.1	1.2	2.7	1.7	PREDICTED: Vitis vinifera bifunctional epoxide hydrolase 2	GSVIVT00025831001	XM_010650793
1.0	1.5	2.7	1.5	PREDICTED: Vitis vinifera probable protein phosphatase 2C 55	GSVIVT00015482001	XM_010666364
0.8	1.5	2.7	0.9	PREDICTED: Vitis vinifera germin-like protein 5 (GER5)	GSVIVT00022771001	NM_001281199
0.9	1.2	2.5	0.8	PREDICTED: Wo und induced protein [Vitis vinifera]	GSVIVT00013090001	
1.3	0.9	2.3	0.6	PREDICTED: Disease resistance	GSVIVT00025182001	
0.9	1.3	2.1	0.8	PREDICTED: Vitis vinifera gamma-interferon-inducible lysosomal thiol reductase (LC	GSVIVT00024041001	XM_002275247
1.6	1.2	2.0	1.0	PREDICTED : Disease resistance protein	GSVIVT00025170001	
0.8	1.3	2.0	0.5	PREDICTED: Vitis vinifera zeaxanthin epoxidase, chloroplastic-like	GSVIVT00008708001	XR_785224
0.9	1.0	0.5	1.9	PREDICTED: Vitis vinifera superoxide dismutase [Cu-Zn]	GSVIVT00032849001	XM_010661684
0.9	0.9	0.4	0.6	PREDICTED: Vitis vinifera reticuline o xidase-like protein	GSVIVT00029833001	XM_002270103
0.6	1.7	0.8	3.9	PREDICTED: Vitis vinifera probable LRR receptor-like serine/threonine-protein kinas	GSVIVT00029260001	XM_010659989
0.6	1.5	0.6	3.4	PREDICTED: Vitis vinifera respiratory burst oxidase homolog protein E	GSVIVT00016386001	XM_002277504
0.9	1.5	1.4	3.0	PREDICTED: Vitis vinifera beta-gluco sidase 11-like	GSVIVT00027994001	XM_002267559
1.1	1.3	0.8	2.7	PREDICTED: Vitis vinifera FAD-linked sulfhydryl oxidase ERV1	GSVIVT00011077001	XM_002263782
0.8	1.6	0.8	2.5	PREDICTED: Vitis vinifera dehydration-responsive protein RD22-like	GSVIVT00032491001	XM_010650235
0.6	0.8	1.7	2.5	PREDICTED: Vitis vinifera 66 kDa stress protein	GSVIVT00017796001	XM_002281430
0.8	1.6	1.1	2.4	PREDICTED: Vitis vinifera cultivar Riesling thaumatin-like protein mRNA	GSVIVT00001108001	DQ406687
0.7	1.2	0.8	2.4	PREDICTED: Vitis vinifera pathogenesis-related protein 10	GSVIVT00033084001	XM_002274206
0.6	1.6	0.8	2.3	PREDICTED: Vitis vinifera uncharacterized (LOC 100263302)	GSVIVT00035913001	XM_002279165
0.9	1.7	1.1	2.2	PREDICTED: Vitis vinifera MLP-like protein 34	GSVIVT00030515001	XM_002284534
1.0	0.9	1.2	0.5	PREDICTED: Vitis vinifera elicitor-responsive protein 1	GSVIVT00018476001	XM_002283449
0.5	1.0	0.7	0.5	PREDICTED: Vitis vinifera pleiotropic drug resistance protein 1-like	GSVIVT00008910001	XM_010656419
1.2	0.7	1.3	0.4	PREDICTED: Vitis vinifera protein NEDD 1 like	GSVIVT00015386001	XM_010665913
1.2	0.7	0.7	0.4	PREDICTED: Vitis vinifera cleavage stimulating factor 64-like	GSVIVT00017689001	XM_010665298
1.1	0.9	1.8	0.4	PREDICTED: Vitis vinifera cysteine proteinase inhibitor 1-like	GSVIVT00013094001	XM_003634968
0.8	1.4	0.8	0.4	PREDICTED: Vitis vinifera probable protein phosphatase 2C 25	GSVIVT00029318001	XM_010652586
0.8	1.3	0.8	0.4	PREDICTED: Vitis vinifera basic form of pathogenesis-related protein 1	GSVIVT00038580001	XM_002265014
0.7	1.3	1.9	0.4	PREDICTED: Vitis vinifera MATE efflux family protein 5	GSVIVT00030436001	XM_002280176
0.7	1.8	1.8	0.3	PREDICTED: Vitis vinifera heat shock factor protein HSF30	GSVIVT00032192001	XR_785545
0.7	1.3	0.8	0.3	PREDICTED: Vitis vinifera probable disease resistance protein	GSVIVT00009711001	XM_002268171
0.7	0.9	1.5	0.3	PREDICTED: Vitis vinifera monothiol glutaredoxin-S2	GSVIVT00019806001	XM_002275348
0.6	1.1	1.5	0.3	PREDICTED: Vitis vinifera 15.7 kDa heat shock protein, peroxisomal-like	GSVIVT00018510001	XM_002283824
0.6	0.8	0.6	0.3	PREDICTED: Vitis vinifera patatin-like protein 1	GSVIVT00019467001	XM_002277269
1.3	0.9	0.9	0.2	PREDICTED: Vitis vinifera disease resistance protein	GSVIVT00032853001	XM_010646027
0.7	0.7	0.7	0.2	PREDICTED: Vitis vinifera uncharacterized LOC 100264617	GSVIVT00020796001	XM_002275240
0.9	1.1	1.1	0.2	PREDICTED: Vitis vinifera putative disease resistance protein	GSVIVT00026613001	
0.9	0.9	0.7	0.2	PREDICTED PMR5 (powdery mildew resistant 5)	GSVIVT00033105001	
1.0	0.7	0.5	0.2	PREDICTED: Disease resistance RPP 3	GSVIVT00031272001	
0.9	1.0	1.0	0.2	PREDICTED: Vitis vinifera pleiotropic drug resistance protein 1-like	GSVIVT00034494001	XM_010656419
0.8	0.8	0.6	0.2	PREDICTED: Vitis vinifera disease resistance protein	GSVIVT00031272001	XM_010646027
1.1	0.6	0.6	0.1	PREDICTED: Vitis vinifera putative disease resistance RPP 13-like protein 1	GSVIVT00029984001	XM_003633332

Table 3. Relative expression of 18 selected genes in the visually healthy leaves of preapoplectic vines of cultivar Chardonnay 50 (T0-50), 30 (T0-30), 20 (T0-20) and 7 (T0-7) days before symptoms emergence and at the onset of symptoms (T0). Analyses were performed by both Illumina sequencing and RT-PCR. Gene expression was considered as significantly up- or down-regulated to the 1× control, when changes in relative expression were >2× or <0.5×, respectively. The values obtained for regulated gene expression appear in bold. The ratio values correspond to the mean of three biological replicates.

				Relat	ive expressi	ion of target	ed genes			
Functional classification	Selection as marker		T0-50	T0-30	T0-20	T0-7vh	то	Methods		
	20	aluDuriT	1.07	1.01	1.23	0.72	1.26	RT-PCR		
	no	giuPurri			0.50	12.50	87.60	Illumina		
Carbohydrate	20	Succo	0.92	0.88	0.36	0.56	0.72	RT-PCR		
metabolism	no	Suc.52			0.20	1.50	0.00	Illumina		
	20	SucDHEla	1.11	1.09	1.00	0.80	0.88	RT-PCR		
	no	SUCDIFIC			5.10	13.50	4.70	Illumina		
Amino acid	20	Spors	1.81	1.29	1.29	0.97	0.57	RT-PCR		
metabolism	no	spers			0.00	0.90	1.20	Illumina		
	20	vu/DC	1.16	0.79	1.12	0.78	1.20	RT-PCR		
Linid motabolism	no	XyIF 3			1.30	0.50	0.20	Illumina		
Lipiu metabolism	20	imic7	1.00	1.07	1.27	0.70	0.71	RT-PCR		
	no	JIIJC7			0.80	0.30	0.00	Illumina		
	ok	Aux1045	1.25	0.48	1.60	0.29	0.22	RT-PCR		
	UK	AUXIOAS			1.10	0.40	0.20	Illumina		
Hormonal	20	Mucchain	1.59	1.26	1.14	0.88	0.80	RT-PCR		
signalisation	no	wyochain			9.20	9.30	2.10	Illumina		
0.8.10.1000000	20	FboxWD4	0.69	0.76	0.88	0.80	1.02	RT-PCR		
	no	0			4.20	1.20	51.20	Illumina		
	no	Cask	1.08	0.93	1.10	0.96	1.05	RT-PCR		
Cellular	no	Cask			3.90	0.90	0.10	Illumina		
processes	no	Hatn7	1.27	0.93	0.91	1.25	0.97	RT-PCR		
	no	ΠατρΖ			3.20	11.40	61.30	Illumina		
	20	SPIRDA	0.96	0.85	0.83	1.23	1.11	RT-PCR		
Phenylpropanoid	no	SHIKDH			2.30	8.70	8.50	Illumina		
metabolism	ok		0.64	1.25	0.81	0.41	0.27	RT-PCR		
	UK	IVIT D4A			1.70	0.20	0.10	Illumina		
	no	enovHE	0.98	1.06	1.71	1.42	2.29	RT-PCR		
	no	ерохнг			2.30	8.60	46.70	Illumina		
	ok		1.40	0.46	1.73	2.49	3.23	RT-PCR		
	UK	HALH			0.70	19.90	49.10	Illumina		
Detoxification	<u>no</u>	GSTA	2.91	1.66	1.63	0.62	0.26	RT-PCR		
Detoxincation	110	USIA			1.00	14.70	56.50	Illumina		
	<u></u>	GSTR	3.94	1.90	1.11	0.26	0.21	RT-PCR		
	110	0310			1.10	10.10	42.90	Illumina		
	no	GSTC	1.09	1.31	1.01	1.37	1.35	RT-PCR		
	no	no	no	Gal			1.10	0.60	0.30	Illumina

Table 4. Relative expression by RT-PCR analysis of *GST1* gene in the visually healthy leaves of pre-apoplectic vines of cultivar Chardonnay 50 (T0-50), 30 (T0-30), 20 (T0-20) and 7 (T0-7) days before symptoms emergence and at the onset of symptoms (T0). Gene expression was considered as significantly up- or down-regulated to the 1× control, when changes in relative expression were $>2\times$ or $<0.5\times$, respectively and the value appear in bold. The ratio values correspond to the mean of three biological replicates.

	Relative expression of GST1 (glutathion-S-transferase)					
Marker	T0-50	T0-30	T0-20	T0-7vh	то	
GST1	2.9	1.91	3.8	2.99	36	

FIGURE CAPTIONS

Figure 1: Repartition of up- or down-regulated genes in grapevine leaf tissues (cv Chardonnay) at 20 days and 7 days before symptoms appearance and at the onset of apoplexy. The number of the genes differentially expressed in leaf tissues of future apoplectic plant in comparison to those of control (asymptomatic) plants for each time point is reported at the top. The expression of a same gene can be altered at different points of kinetics and therefore counted several times. The percentage indicates the repartition of genes characterized by an up- or a down-regulation of their expression for each point of kinetic (in red or blue, respectively). T0-20: visually healthy leaves sampled 20 days before apoplexy event, T0-7vh: visually healthy leaves sampled 7 days before apoplexy event, T0: visually healthy leaves sampled at the onset of apoplexy event.

Figure 2: Distribution into functional categories of genes differentially expressed in leaves of vines of cultivar Chardonnay affected by apoplexy event. The percentage of each category is reported in the figure. Only genes with a known function were integrated in this figure, which represents 31% of the total differentially expressed genes in T0-20 leaves (A), 30% in T0-7vh leaves (B), 44% in T0-7tg leaves (C) and 45% in T0 leaves (D) of plants affected by apoplexy event.

Figure 3: Discrimination of FT-ICR-MS data samples and detailed visualization of the samples.

OPLS-DA analysis showing the discrimination of control, T0-20 / T0-7 diseased samples and T0 diseased samples (A). Venn diagrams showing the distribution of the m/z obtained by (-) FT-ICR-MS analysis of the samples (B). Van Krevelen diagrams representing the elemental

formulas attributed to the top m/z of total samples (C), control (D), T0-20 / T0-7 (E), and T0 samples (F) onto two axes according H/C and O/C atomic ratios. Dots are colored according to their elemental composition (CHO, CHOS, CHON, CHONS, CHOP, CHONP, CHONSP) and sized according to their relative intensity in mass spectra. Diagrams (on the right) indicate the number of these formula and show their distribution according to their elemental composition (CHO, CHONS, CHOP, CHONP, CHONSP). Top m/z correspond to m/z with the highest regression coefficient value (VIP ≥ 1).

Figure 4: Metabolic pathways associated to the top m/z identified in the different sample groups

The metabolic pathways corresponding to the top m/z of control, T0-20 / T0-7, and T0 were obtained after KEGG query with the MassTRIX interface using *Vitis vinifera* organism (vvi). The x axis correspond to the number of annotated formulas obtained for each pathway.

Figure 5: Possible transformations of the complete m/z data set.

Figure 6: Focus on glutathione metabolism

Partial metabolic pathway obtained after KEGG query with the MassTRIX interface using *Vitis vinifera* organism (vvi) focused on glutathione metabolism (A), signal intensity of putative glutathione (B), network analysis of S containing compounds (C) with a focus on glutathione (D) and an example of transformations involving glutathione (E).

Figure 7: Visualization of GST1 expression in grapevine leaf tissues

A control without probe (A) was made to be sure that colorimetric (blue) signal further observed correspond to a specific detection of the probe. The transcripts were localized using a digoxigenin-labelled antisense probe (C, E, G) and the specificity of hybridization was checked with the corresponding sense probe as negative control (B, D, F). *VvGST1* localization (E, G) was compared with the 26S ribosomic (Rib) RNA probe pattern, which was known to be constitutively express in all tissues (C). *VvGST1* transcripts were not detected in asymptomatic (control) leaves (E), whereas visualized in phloem cells of pre-apoplectic ones (G, red arrow heads). Bars represent 100 µm.

Figure 8: Visualization of GST1 expression in leaf primary bundles

A control without probe (A) was made to be sure that colorimetric (blue) signal further observed correspond to a specific detection of the probe. The transcripts were localized using a digoxigenin-labelled antisense probe (C, E and G) and the specificity of hybridization was checked with the corresponding sense probe as negative control (B, D and F). *VvGST1* localization (E and G) was compared with the 26S ribosomic (Rib) RNA probe pattern, which was known to be constitutively express in all tissues (C). *VvGST1* transcripts were not detected in primary bundles asymptomatic leaves (E), whereas appeared to be exclusively localized in phloem cells of pre-apoplectic ones (G). Bars represent 100 µm.

SUPPLEMENTARY DATA

Supplementary Table 1: Primers of genes analyzed by real-time reverse-transcription polymerase chain reaction used in this research.

Supplementary Table 2: Functional classification of the genes differentially expressed between control and diseased plants and whose expression is altered tardily and/ or during apoplectic expression (at T0-20 and/ or T0-7 and / or T0). Values indicating over- or down-expressed (ratio |2|) are highlighted in light or dark gray, respectively.

Fig 1. Repartition of up- or down-regulated genes in grapevine leaf tissues (cv Chardonnay) at 20 days and 7 days before symptoms appearance and at the onset of apoplexy.

194x47mm (150 x 150 DPI)

Fig. 2. Distribution into functional categories of genes differentially expressed in leaves of vines of cultivar Chardonnay affected by apoplexy event.

281x191mm (150 x 150 DPI)

Fig 3. Discrimination of FT-ICR-MS data samples and detailed visualization of the samples.

188x182mm (150 x 150 DPI)

Fig 4. Metabolic pathways associated to the top m/z identified in the different sample groups 254×190 mm (72 x 72 DPI)

Fig 5. Possible transformations of the complete m/z data set.

228x149mm (150 x 150 DPI)

Fig 6. Focus on glutathione metabolism.

251x170mm (150 x 150 DPI)

Fig 7. Visualization of VvGST1 expression in grapevine leaf tissues.

148x186mm (150 x 150 DPI)

Fig 8. Visualization of VvGST1 expression in leaf primary bundles.

126x189mm (150 x 150 DPI)

Table 1: Primers of genes analyzed by real-time reverse-transcription polymerase chain reaction.

	Genes	Primer sequences	Genbank or NCBI accession numbers
Housekeeping	$EF1-\alpha$ (elongation factor 1- α)	5'-GAACTGGGTGCTTGATAGGC-3' 5'-AACCAAAATATCCGGAGTAAAAGA-3'	GU585871
genes	60SRP (60S ribosomal protein L18)	5'-ATCTACCTCAAGCTCCTAGTC-3' 5'-CAATCTTGTCCTCCTTTCCT-3'	XM_002270599
	gluPuriT (UTP-glucose-1-phosphate uridylyltransferase-like)	5'-AAATTGCACAGGTCCCAGATG3' 5'-TCAGCCTCCACAAGCCTCTT-3'	XM_002285070
Carbohydrate metabolism	SucS2 (sucrose synthase 2)	5'-TGTGGGCTTCCTACATTTGCT-3' 5'-CCTTCTGGCATCGTTCAAAGA-3'	XM_002271494
	SucDHFla (Succinate dehydrogenase flavoprotein subunit 1)	5'-TGCCCGTGAAGATTTTACGAA-3' 5'-ATCGTCCAATGGGTTCATGTG-3'	XM_002269371
Amino acid metabolism	SperS (thermospermine synthase ACAULIS5-like)	5'-TGCAGGCATTTTTACCCACAA -3' 5'-AAGACGGAACATGAGCTGCAT-3'	XM_002281075
Lipid	xylPS (1-deoxy-d-xylulose 5-phosphate synthase)	5'- GCAGAAGCTGCCAGTGAAATT -3' 5'- GGCAAGCCATGAAAGTGACA -3'	XM_002277883
metabolism	<i>imjc7</i> (jmjC containing-domain protein 7-like))	5'- TGCCTTGGTGCAGTGTGAAT-3' 5'-AATCTCCCCAGCCTTGACTGT-3'	XM_0010646063
Hormonal	Aux10A5 (auxin-induced protein 10A5)	5'-CCTTCATTCAGATCCTTGCTTTG-3' 5'-TCAAGAAAAGCATGTTCCTCACA-3'	XM_002271727
regulation,	Myochain (myosin-H heavy chain-like)	5'-AAAGAGCAACCACCCTGGATT-3' 5'TGTAGGTGTGGGAGACTCAAATACAG-3'	XM_002281579
signalisation	<i>FboxWD40</i> (Fbox / WD 40 repeat-containing protein At2g52030-like))	5'-TAGACGGCGTGTTACGCATTT-3' 5'-GTCGGTTTTCTGGGAGGAAGT-3'	XM_002271652
Cellular	CasK (casein kinase I isoform delta-like)	5'-CTGCTGCTAGTTCTGGCATACG-3' 5'-CATGTGTGCATCGCTCACAATA-3'	XM_002284008
processes	HatpZ (V type H transporting ATPase subunit B)	5'- GCCTATGACACCCGCAACAT-3' 5'- GTACTGGTCGAGGGTCTTTGCT-3'	XM_002280255
Phenylpropanoid	ShiKDH (bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase)	5'-GTGGTTCCCCCTTAGCTGGTA-3' 5'-GCATAAGTGCGATTGGCAATC-3'	XM_002277359
metabolism	MYB4A (flavonoid-related R2R3 MYB 4a repressor)	5'-TCAGAATCAGCCCACCATACC-3' 5'-GGTATTCCCAAACTGCATGCA-3'	XM_002278186
	<i>epoxHF</i> (epoxide hydrolase 2-like)	5'-TGCTCGTCTTGGCACTGAGA-3' 5'-TGAGCGCACCACTGTACCAT-3'	XM_003632333
	Hahl (haloacid dehalogenase hydrolase)	5'-CCCTCAGGATAGCCAACATCA-3' 5'-AGGTGCCAACCAGAACTGTGT-3'	XM_002267523
Detoxication	GSTA (glutathion-S-transferase U9-like)	5'-AGGGGGCACTCCTTCCATTA-3' 5'-TGAACAAGGCCCACGAGTTT-3'	XM_003634217
	GSTB (glutathion-S-transferase)	5'-CCCCTGAAAATCTTGCTCTCGTT-3' 5'-AGAGCTTCAGGTCTCCGTCT-3'	XM_002262806
	GSTC (glutathion-S-transferase U9)	5'-GAAACGCCCCTCACTGATCT-3' 5'-ACAAGGCCATCAGCGTAACC-3'	XM_002269082
Detoxication	GST1 (glutathion-S-transferase, tau form)	5'-TGCATGGAGGAGGAGTTCGT-3' 5'-CAAGGCTATATCCCCATTTTCTTC-3'	AY156048

Supplemental Table 2: Functional classification of the genes differentially expressed between control and diseased plants and whose expression is altered precociously and during apoplectic expression (at D-20 and/or D-7 and D0) and implicated in growth, replication, DNA repair, signalisation, hormonal regulation, transduction, transcription factor, proteins metabolism, cellular processes. Values indicating over- or down-expressed (ratio [2]) are highlighted in light or dark gray, respectively.

	Fold C	hange		P	ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	то	Functional annotation	genoscope	Number (NCBI)
Growth	, replica	tion and	I DNA di	amage repair	9h	
30.7	43.7	8.5	7.6	minichromosome maintenance complex component 6 (MCM6),		XM_003634960
8.5	4.2	11.9	9.5	uncharacterized LOC 100264054		XM_002283016
4.6	16.8	19.0	15.7	probable S-acyltransferase At3g51390-like	GSVIVT00011882001	XM_002270945
2.0	2.4	20.5	15.1	vinifera myosin-Vb-like		XM_002278992
2.3	7.8	2.4	0.4	mps one binder kinase activator-like 1 transcript variant 2	GSVIVT01026291001	XM 003631810
0.5	4.0	23.4	8.8	guanylate kinase-like, transcript variant 2	GSVIVT00019884001	 XM 003631933
0.4	14.2	46.1	36.4	ATP-dependent RNA helicase dhx8-like		 XM_002266606
0.4	2.1	6.3	22.9	homeobox-leucine zipper protein ATHB-13-like		 XM_002276853
0.4	2.1	6.6	3.2	uncharacterized protein LOC 100265514		XM 002281757
2.0	5.0	1.4	29.4	intron-binding protein aguarius-like		XM 002268267
5.4	0.4	1.7	0.2	methyl-CpG-binding domain-containing protein 4-like. (LOC 100245968)		XM 002273034
2.4	0.5	0.2	0.4	DNA-directed RNA polymerase III subunit	GSVIVT01028933001	 XM_002267628
0.5	2.9	1.6	8.7	WD repeat-containing protein 89 homolog-like	GSVIVT00027980001	XM 002264768
0.4	15	139.0	25.9	DNA repair protein RAD50-like (LOC 100243413).		XM 002266629
0.8	12.9	14.4	15.5	histone H3-like, transcript variant 2	GSVIVT00008852001	XM_003631870
0.0	97	21.9	43.5	probable polygalacturo pase-like		XM_002269001
1.0	77	12.5	23.3	histone H4-like. transcript variant 1		XM 002262809
1.0	6.4	26.3	14.5	putative DNA repair protein RAD23-3-like	GSVIVT01011907001	XM 002282316
0.6	5.6	4.6	28.2	PREDICTED: uncharacterized protein LOC100251250	GSVIVT00018369001	XM_002281489
0.0	4.6	11.7	9.8	adenvlate kinase B-like	GSVIVT00017909001	XM 002283472
0.0	3.0	3.1	10.1	uncharacterized LOC 100260605	20111100011000001	XM 002289782
0.9	3.5	19.1	2 1	ankyrin reneat do main-containing protein 17-like		XM_002270388
0.0	3.5	11.2	15.1	nutative RING-H2 finger protein ATL214_like (LOC 1002/11/20)	GSV/IV/T00027027001	XM_002277351
0.8	3.0	11.5 6 F	15.1	AMP deaminase like	GSV/IVT01011185001	XM_002263270
0.7	3.0	6.5	4.2	PREDICTED: uncharacterized protein LOC 100250482	03 11 10 10 11 10 500 1	XM_002284581
0.7	2.9	0.7	3.9	PREDICTED: uncharacterized protein LOC 1002608/1/isoform 2		XM_002268890
0.8	2.8	7.1	7.1	PREDICTED: uncharacterized protein LOC 100266704 isoform 1	CS\/I\/T00021270001	XM_0022751/3
1.4	2.7	5.0	6.2		G3VIV10002 1270001	XM 00262275 H3
1.5	2.7	3.7	11.0		CEV/IV/T00024846001	XM_000085528
0.6	2.5	7.8	8.8	collulose synthese like protein C2	GSVIVT00024640001	XM_002265020
1.0	2.4	3.8	8.3 10.5		0001010000120001	XM_002274067
1.0	2.3	9.8	10.5		CS\/I\/T00000117001	XM 002267344
0.8	2.2	3.8	7.3	REPLICIED: Litimo loctin domain containing recentor kingso IX 1	GSVIV100009#7001	XM_002267344
1.1	2.1	6.9	5.4	PREDICTED. L-type lectif-domain containing receptor kinase IX.1	GSVIVT00008560001	XM_002285285
0.8	2.1	6.3	4.5		0311100027430001	XM_002282739
1.4	2.0	2.0	7.4	uppharaotorized LOC 100257061		XM_002285570
0.9	0.5	0.4	0.1			XM_002272202
1.3	0.5	0.0	0.1			XD 078082
0.8	0.4	0.1	0.2	probable pectinesterase/pectinesterase inhibitor 6-like	CS)//\/T01020569001	XR_078082
1.3	0.4	0.0	0.0	ribe publicance B (MBD protein subupit B OB 1//ke	GSVIV101020568001	XM_00262224604
1.4	0.3	0.0	0.0			NW 000070070
1.6	0.3	0.0	0.1		001/0/00000000000	AWI_002278978
1.0	2.0	18.0	100.7	PPEDICTED: Vitie visifore replication factor C suburit 0	GSVIVT00045440004	VM 000085000
0.6	1.3	12.9	9.5	FINEDICTED. Vitis Vitilera replication factor & Suburit 3	GSVIV 1000 164 13001	AIVI_002285832
0.6	1.5	11.9	5.4	r NEDICTED, VIIIs VIIIIera uncharacienzea (LOC 100852985)	GSVIV 1000 10280001	XM 000004557
1.1	1./	9.9	2.6	r NEDICTED, VIIIS VIIII eta Killesiii- 5A DDEDICTED: Vitis vinifara DING 42 finana protoio A TL54	GSVIV 1000 10/49001	AWI_002284357
0.8	1.5	9.7	4.8		GSVIV 10003 200001	ANI_003034309
0.7	10	9.0	3.7	PREDICTED: Vitis vinitera uncharacterized (LOG100263121)	GSVIV 100035144001	
0.9	1.0	6.2	4.4	PREDICTED: Vitis vinifera uncharacterized (LOC10024/64/)	GSVIV T000 214001	AIVI_U U0001384
0.7	1.5	6.2	3.1	F NEDICTED. Vitis Vitilera uncharacterizea (LOC 00249461)	GSVIV100023045001	XM_040652507
0.8	1.7	6.1	7.8	r REDiciteD. Vills vinitera centrosomal protem of 63 kDa	GSVIV I 00023930001	ANI_0.00022007
0.6	18	6.1	2.7	PREDICTED: VITIS VITIFER PRODADIE Xyloglucan endotransglucosylase/hydro	GSVIV I 00031402001	XIVI_002274118
0.6	1.0	5.9	2.5	r REDICTED: VIIIs VIIIIrera RRP 10-like protein	GSVIVT00029062001	XIVI_U 10659195
1.1	1.3	5.8	3.9		GSVIV100024116001	XM_010652608
0.9	1.7	5.5	2.5	PREDICTED: Vitis vinifera phragmoplast orienting kinesin-1	GSVIV I 00019702001	XM_010651367
0.8	1.5	4.5	6.2	PREDICTED: Vitis vinifera Mre11DNA repair/recombination protein	GSVIV100027588001	XM_002281690
0.9	1.7	3.9	2.7	PREDICTED: Vitis vinifera uncharacterized (LUC100250156)	GSVIV100024750001	XM_010653049
0.9	1.6	3.9	2.1	PREDICTED VIIIs vinifera uncharacterized (LUC100853685)	GSVIV100028344001	XM_003632985
0.6	1.5	3.0	9.5	PREDICTED: Vitis vinitera DNA repair endonuclease UVH1	GSVIVT00010719001	XM_010648930
0.9	1.8	3.0	7.7	PREDICTED: Vitis vinifera elongator complex protein 4	GSVIVT00011637001	XM_010648137
0.8	1.5	2.9	2.9	PREDICTED: Vitis vinifera senescence-associated carboxylesterase 101-like	GSVIVT00033062001	XM 010651259

	Fold C	hange		Functional appotation	ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	TO		genoscope	Number (NCBI)
1.3	1.5	2.8	2.3	PREDICTED: Vitis vinifera la-related protein 1C	GSVIVT00014357001	XM_010648570
0.6	1.2	2.7	2.9	PREDICTED: Vitis vinifera uncharacterized (LOC 100262931)	GSVIVT00021226001	XM_010665402
0.6	1.9	2.6	4.4	PREDICTED: Vitis vinifera kinetochore protein ndc80-like	GSVIVT00026619001	XM_002273906
0.9	1.8	2.6	3.3	PREDICTED: Vitis vinifera protein DA1	GSVIVT00025021001	XM_010666339
1.2	0.8	2.5	4.4	PREDICTED: Vitis vinifera GRIP and coiled-coil domain-containing protein 2	GSVIVT00000755001	XM_010650551
0.9	1.6	2.5	3.2	PREDICTED: Vitis vinifera probable RNA polymerase II transcription factor I	GSVIVT00033473001	XM_002276021
0.9	1.6	2.4	3.8	PREDICTED: Vitis vinifera cyclin-dependent kinase G-2	GSVIVT00017899001	XM_010656984
1.5	0.9	3.8	0.5	PREDICTED: Vitis vinifera kinesin-13A	GSVIVT00019756001	XM_002271729
1.5	0.9	3.8	0.5	PREDICTED: Vitis vinifera kinesin-13A	GSVIVT00019756001	XM_002271729
0.8	0.9	3.7	0.5	PREDICTED: Vitis vinifera protein CHUP 1, chloroplastic	GSVIVT00019730001	XM_010651400
0.6	1.4	3.5	0.4	PREDICTED: Vitis vinifera pumilio homolog 24	GSVIVT00033058001	XM_010651263
2.0	0.7	0.3	2.2	PREDICTED: Vitis vinifera DNA mismatch repair protein MSH3	GSVIVT00009202001	XM_010664189
0.7	0.9	0.5	0.2	PREDICTED: Vitis vinifera uncharacterized (LOC 104879951)	GSVIVT00031053001	XM_010654716
1.1	0.9	0.4	0.3	PREDICTED: Vitis vinifera eukaryotic translation initiation factor 3 subunit K	GSVIVT00016373001	XM_002274950
0.9	0.7	0.4	0.2	PREDICTED: Vitis vinifera telomerase Cajal body protein 1	GSVIVT00012724001	XM_002277010
0.9	0.6	0.4	0.1	PREDICTED: Vitis vinifera replication factor C subunit 3	GSVIVT00024904001	XM_002263177
1.1	0.8	0.3	0.4	PREDICTED: Vitis vinifera uncharacterized (LOC 100264366)	GSVIVT00014457001	XM_010666487
0.8	0.9	0.3	0.3	PREDICTED: Vitis vinifera rho danese-like do main-containing protein 4, chlo	GSVIVT00027006001	XM_010663599
1.6	0.7	0.3	0.3	PREDICTED: Vitis vinifera nuclear pore complex protein NUP 58-like	GSVIVT00008483001	XM_003635588
1.2	0.7	0.3	0.1	PREDICTED: Vitis vinifera deo xycytidylate deaminase	GSVIVT00017944001	XM_002283781
0.9	0.7	0.3	0.1	PREDICTED: Vitis vinifera actin-related protein 2/3 complex subunit 5-like	GSVIVT00019114001	XM_003633846
1.1	0.5	0.3	0.0	PREDICTED: Vitis vinifera ankyrin-2-like	GSVIVT00033277001	XM_010657416
1.3	0.8	0.2	0.5	PREDICTED: Vitis vinifera polygalacturonase	GSVIVT00028122001	XM_002266063
0.6	1.7	0.2	0.4	PREDICTED: Vitis vinifera UDP-D-xylose:L-fucose alpha-1,3-D-xylosyltransf	GSVIVT00014656001	XM_002283185
1.4	0.7	0.2	0.2	PREDICTED: Vitis vinifera adenylyl-sulfate kinase 3-like	GSVIVT00019663001	XM_002265482
1.1	0.6	0.1	0.3	PREDICTED: Vitis vinifera probable xyloglucan glycosyltransferase 5	GSVIVT00000743001	XM_002274363
1.5	0.6	0.1	0.2	PREDICTED: Vitis vinifera uncharacterized (LOC 104880805)	GSVIVT00029789001	XM_010658622
0.7	0.6	0.1	0.2	PREDICTED: Vitis vinifera regulator of nonsense transcripts UPF3	GSVIVT00035287001	XM 010659667
0.6	1.2	0.1	0.1	PREDICTED: Vitis vinifera elongator complex protein 2	GSVIVT00030407001	 XM_002282904
0.7	12	7.0	1.0	PREDICTED: Vitis vinifera UDP-D-xylose:L-fucose alpha-1,3-D-xylosyltransf	GSVIVT00018144001	 XM_002273119
0.7	13	6.5	11	PREDICTED: Vitis vinifera exocvst complex component SEC8	GSVIVT00018143001	XM 010660069
0.9	1.5	4.4	1.1	PREDICTED: Vitis vinifera protein ACCUM ULATION AND REPLICATION	GSVIVT00035128001	XM 010656659
0.8	17	4.1	0.9	PREDICTED: Vitis vinifera N-acetyltransferase 9-like protein	GSVIVT00029152001	XM 010659117
0.8	1.2	4.0	19	PREDICTED: Vitis vinifera protein misato homolog 1	GSVIVT00009705001	XM 010654349
0.7	1.5	4.0	13	Retro transposon dag protein	GSVIVT00019016001	
0.7	1.5	3.8	1.0	PREDICTED: Vitis vinifera mito cho ndrial inner membrane protease ATP 23	GSVIVT00020602001	XM 002269076
0.5	1.5	3.4	0.9	PREDICTED: Vitis vinifera formin-like protein 4	GSVIVT00028920001	XM 010654581
0.8	15	3.3	1.0	PREDICTED: Vitis vinifera putative pectinesterase/pectinesterase inhibitor	GSVIVT00028250001	XM 010657774
0.8	15	3.3	10	PREDICTED: Vitis vinifera putative pectinesterase/pectinesterase inhibitor	GSVIVT00028250001	XM_010657774
10	12	3.2	0.7	PREDICTED: Vitis vinifera polygalacturonase QRT3	GSVIVT00030119001	XM_010650873
0.7	14	3.1	1.0	PREDICTED: Vitis vinifera histone acetyltransferase GCN5-like	GSVIVT00023828001	XM 002275110
0.7	1.4	3.0	1 /	Retro transposion protein	GSVIVT00025150001	002210110
0.0	1.0	2.8	1.4	PREDICTED: Vitis vinifera actin-7	GSVIVT00025385001	XM 002282480
12	13	2.3	0.8	PREDICTED: Vitis vinifera mannosyl-olicosaccharide 12-alpha-mannosidas	GSVIVT00008673001	XM_010657347
0.8	17	2.2	0.6	PREDICTED: Vitis vinifera biotin carboxyl carrier protein of acetyl-CoA carbo	GSVIVT00026587001	XM_002278115
0.0	1 2	2.2	0.0	PREDICTED: Vitis vinifera wee1like protein kinase	GSVIVT00023546001	XR 786155
0.7	1.5	2.1	0.9	PREDICTED: Vitis vinifera tether containing UBX domain for GLUT4	GSVIVT00020575001	XM_002266616
0.7	1.5	0.5	0.0	Vitis vinifera partial rol2 gene for putative ribosomal protein L2	GSVIVT00014647001	A.1441290
15	1.9	0.5	10	PREDICTED: Vitis vinifera evnansin-like	GSV/VT00020445001	XW 002280264
1.0	1 /	0.0	1 /	PREDICTED: Vitis vinifera uncharacterized (LOC 100255472)	GSVIVT00025573001	XM_010655480
1.0	1.4	0.2	0.2	PREDICTED: Vitis vinifera structural maintenance of chromosomes protein	GSVIVT00029974001	XM_002269818
0.0	1.4	0.9	5.2	PREDICTED: Vitis vinifera pentatricopentide repeat-containing protein	GSVIVT00032631001	XM_003632046
0.8	1.9	1.1	0.3	PREDICTED: Vitis vinifera keleh domain containing protein 2	GSV/IVT00022502004	XM_010665160
0.8	1./	1.3	4.0	PREDICTED: Vitis vinitera recon domani-containing protein 3	GSVIVT00022093001	
0.9	1.0	0.7	3.8		0.0 414 1 0003 09/001	AIVI_002270360
0.7	1.9	0.8	3./	DEDICTED: Vitic visifors uncharacterized LOC 400252006	CSV/IV/T00049477004	XM 000070044
0.8	1.6	1.0	3.3	PREDICTED: Vitis vinitera unonaracterizea LOC N0253090	GSVIV 1000 /80 / 0001	XM 040605500
1.2	1.4	1.7	3.2	PREDICIED: VIIIs VINIrera protein M EI2-IIKe 4	GSVIV I 00018040001	XIVI_U 10665500
0.8	1.1	1.4	2.9		GOVINT0001/639001	XM 00000010-
0.8	0.9	1.4	2.9	PREDICTED: VITIS VINITERA GLABRAZ expression modulator	GSVIV I 00011458001	XM_002263437
0.8	1.4	1.0	2.8	PREDICTED: Vitis vinifera uncharacterized CRM domain-containing protein	GSVIV I 00001969001	XM_010652295
1.1	1.3	0.9	2.5	PREDICIED: Vitis vinifera myosin-1	GSVIVT00003146001	XM 010657729

	Fold Change				ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	то	Functional annotation	genoscone	Number (NCBI)
1.1	1.5	12	2.5	PREDICTED : Pectinesterase inhibitor	GSVIVT00033172001	Humber (Hebly
0.8	1.9	1.2	2.3	PREDICTED: Vitis vinifera LIM domain-containing protein WLIM 2b	GSVIVT00018297001	XM_010660182
1.3	1.7	1.7	2.2	PREDICTED: Vitis vinifera DNA (cytosine-5)-methyltransferase DRM2	GSVIVT00019681001	XM_010651351
0.9	1.5	0.7	2.2	PREDICTED: Vitis vinifera translin	GSVIVT00023218001	XM_002281872
0.6	1.8	1.2	2.2	PREDICTED: Vitis vinifera probable 28S rRNA (cytosine-C(5))-methyltransfe	GSVIVT00033387001	XM_002266076
1.8	0.6	1.2	0.4	PREDICTED: Vitis vinifera polyadenylate-binding protein RBP45-like	GSVIVT00011496001	XM_002280565
1.4	1.0	1.1	0.4	PREDICTED: Vitis vinifera probable polygalacturonase	GSVIVT00037720001	XM_002273633
1.4	0.6	0.6	0.4	PREDICTED: Vitis vinifera uncharacterized LOC 100242981	GSVIVT00034123001	XR_786537
0.9	1.5	0.9	0.4	PREDICTED: Vitis vinifera probable serine incorporator	GSVIVT00025214001	XM_010656831
0.8	1.1	1.1	0.4	PREDICTED: Vitis vinifera DNA replication licensing factor MCM3 homolog	GSVIVT00003433001	XM_010657342
0.7	1.3	1.8	0.4	PREDICTED: Vitis vinifera uncharacterized LOC 100262931	GSVIVT00033238001	XM_010665402
1.1	0.7	0.8	0.3	PREDICTED: Vitis vinifera chromatin assembly factor 1subunit FAS1	GSVIVT00012871001	XM_010648823
1.1	0.6	0.5	0.3	PREDICTED: Vitis vinifera ribonucleoside-diphosphate reductase small cha	GSVIVT00019890001	XM_002279907
0.9	1.1	1.3	0.3	PREDICTED: Vitis vinifera xyloglucan galactosyltransferase KATAMARI1ho	GSVIVT00033532001	XM_003632384
0.8	0.8	0.7	0.3	PREDICTED: Vitis vinifera uncharacterized LOC 100267366	GSVIVT00024524001	XM_010653154
0.7	1.2	1.9	0.3	PREDICTED: Vitis vinifera protein PHR1-LIKE 1	GSVIVT00025352001	XM_002278639
0.7	1.0	1.5	0.3	PREDICTED: Vitis vinifera putative UDP-rhamnose:rhamnosyltransferase 1	GSVIVT00011805001	XM_002273927
1.1	0.7	0.7	0.2	PREDICTED: Vitis vinifera helicase and polymerase-containing protein TEB	GSVIVT00032488001	XM_010650234
0.9	0.9	0.7	0.2	PREDICTED: Vitis vinifera wall-associated receptor kinase 2-like	GSVIVT00015471001	XM_010665406
0.9	0.6	0.8	0.2	PREDICTED: Vitis vinifera UDP-N-acetylglucosamine transferase subunit A	GSVIVT00022866001	XM_010661525
0.8	0.9	0.6	0.2	PREDICTED: Vitis vinifera transcription factor JUNGBRUNNEN 1	GSVIVT00025717001	XM_002283215
0.7	1.0	1.1	0.2	PREDICTED: Vitis vinifera NAC domain-containing protein 7	GSVIVT00029905001	XM_010663928
0.6	0.8	0.5	0.2	PREDICTED: Vitis vinifera DNA-directed RNA polymerase I subunit RPA2	GSVIVT00002001001	XM_010660782
0.9	1.0	1.6	0.2	Retrotransposon gag -pol precursor pseudogene.	GSVIVT00022426001	
1.2	0.9	0.6	0.1	Zinc finger (C2H2 type) family	GSVIVT00016268001	
0.7	0.9	0.7	0.1	PREDICTED: Vitis vinifera uncharacterized LOC 104880805	GSVIVT00032650001	XM_010658622
Signalis	ation, ho	rmonal r	equlatio	n, transduction, transcription factor		
9.2	9.3	11.2	2.1	myosin-H heavy chain-like		XM_002281579
3.4	65.4	77.9	34.6	embryogenesis-associated protein EM B8-like	GSVIVT00000521001	XM_002280146
2.8	10.9	0.3	0.3	squamosa promoter-binding-like protein 8, transcript variant 2	GSVIVT00019158001	XM_003633858
0.4	9.5	22.6	13.7	GATA transcription factor 18-like		XM_002266628
0.5	3.0	12.2	12.1	probable receptor-like protein kinase At 1g80640-like		XM_002285350
0.4	2.3	21.1	17.6	auxin-induced protein PCNT115-like, transcript variant 2	GSVIVT00033541001	XM_003632000
0.3	2.3	13.3	25.9	uncharacterized LOC 100258132		XM_002269459
0.4	2.3	7.0	2.9	two-component response regulator-like APRR2	GSVIVT00015824001	XM_002279114
0.3	2.9	9.3	0.5	ethylene-responsive transcription factor RAP 2-11-like	GSVIVT00024804001	XM_002283591
0.0	0.0	0.1	0.1	DUF246 do main-containing protein At 1g04910-like	GSVIVT01034027001	XM_002277113
4.2	1.2	51.8	51.2	F-box/WD-40 repeat-containing protein A t3g52030-like		XM_002271652
3.5	0.6	0.2	0.1	NEDD8-conjugating enzyme Ubc12-like		XM_003631580
3.3	0.6	0.2	0.1	hypothetical protein VITISV_004773		XM_002272888
2.2	1.1	0.1	0.2	auxin response factor 19-like		XM_002276601
0.2	1.1	2.3	0.1	eukaryotic translation initiation factor 3 subunit l-like	GSVIVT00030682001	XM_002285245
1.0	10.9	176.9	45.6	PREDICTED: bidirectional sugar transporter SWEET2	GSVIVT00027922001	XM_002285600
1.6	8.3	9.4	11.8	uncharacterized protein LOC 100259554	GSVIVT01017826001	XM_002277726
0.9	5.7	10.7	12.7	zinc finger CCCH do main-containing protein 62-like		XM_002262791
0.6	4.5	2.1	15.1	PRA1family protein F2-like		XM_002279736
0.9	4.2	7.4	4.4	bHLH-like DNA binding protein (M YC 1)		XM_002277472
0.7	3.8	9.2	5.7	ethylene-responsive transcription factor ERF021-like	GSVIVT01036389001	XM_002275835
0.9	2.9	4.3	8.7	putative ETHYLENE INSENSITIVE 3-like 4 protein-like		XM_002262623
0.5	2.8	21.7	5.4	translation initiation factor IF-2-like		XM_002279454
1.0	2.6	9.0	7.8	transcription factor bHLH25-like		XM_002263010
0.8	2.1	3.8	15.0	auxin-induced protein 5NG4		XM_002284416
1.5	0.5	0.3	0.2	PREDICTED: Vitis vinifera abhydrolase domain-containing protein 3	GSVIVT00035401001	 XM_002263734
1.3	0.5	0.2	0.1	uncharacterized protein LOC 100248606	-	 XM_002268051
1.2	0.5	0.2	0.1	myb-related protein 330-like		 XM_002268423
0.8	0.4	0.4	0.2	PREDICTED: flotillin-like protein 4	GSVIVT00032735001	XM_002283041
1.1	0.4	0.2	0.2	PREDICTED: auxin-induced protein 10A5	GSVIVT00025082001	XM_002271727
1.0	0.4	0.1	0.1	eukaryotic initiation factor 4A-2-like	GSVIVT00034135001	 XM_002277667
1.8	0.4	0.0	0.1	LOB domain-containing protein 11-like	GSVIVT00024480001	XM_002282034
1.6	0.4	0.0	0.1	PREDICTED: ethylene-responsive transcription factor ABR1	GSVIVT00019350001	XM_002278190
1.8	0.4	0.0	0.1	LOB domain-containing protein 11-like	GSVIVT00024480001	XM_002282034

	Fold Change				ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	TO	Functional annotation	genoscone	Number (NCBI)
1.6	0.4	0.0	0.1	uncharacterized LOC 100262406	genoscope	XM_002264761
0.6	1.6	91.4	108.0	PREDICTED: Vitis vinifera F-box/LRR-repeat protein	GSVIVT00025001001	XM_002283859
0.8	0.6	53.3	7.9	PREDICTED: Vitis vinifera F-box protein SKIP31	GSVIVT00001173001	XM_002270845
0.6	1.6	16.5	6.9	PREDICTED: Vitis vinifera F-box protein SKIP22-like	GSVIVT00038619001	XM_002276120
0.8	1.8	6.6	2.5	PREDICTED: Vitis vinifera transcription factor bHLH80-like	GSVIVT00001847001	XM_002271354
0.8	1.5	5.8	4.7	PREDICTED: Vitis vinifera ethylene-responsive transcription factor ERF105	GSVIVT00032652001	XM_002281876
0.9	1.4	5.8	2.6	PREDICTED: Vitis vinifera transcription factor bHLH3	GSVIVT00023884001	XM_002282548
1.3	1.5	4.8	2.9	PREDICTED: Vitis vinifera O-glucosyltransferase rumi homolog	GSVIVT00000391001	XM_010664454
0.6	1.8	4.6	5.8	PREDICTED: Vitis vinifera squamosa promoter-binding-like protein 1	GSVIVT00028195001	XM_010654006
1.1	1.8	4.5	3.6	PREDICTED: Vitis vinifera general transcription factor IIE subunit 2	GSVIVT00025001001	XM_002283521
1.0	1.2	4.4	2.9	PREDICTED: Vitis vinifera uncharacterized (LOC100266659)	GSVIVT00011146001	XM_010648067
0.8	2.0	4.2	3.0	PREDICTED: Vitis vinifera transcription initiation factor TFIID subunit 1	GSVIVT00008042001	XM_010658662
1.9	2.0	4.2	5.6	PREDICTED: Vitis vinifera uncharacterized (LOC 100243147)	GSVIVT00022100001	XM_010653438
0.6	1.3	4.0	2.5	PREDICTED: Vitis vinifera probable ADP-ribosylation factor GTP ase-activa	GSVIVT00027600001	XM_003634640
0.6	1.6	3.2	4.2	PREDICTED: Vitis vinifera phytochrome A-associated F-box protein	GSVIVT00027993001	XM_002266123
0.9	1.8	3.1	6.7	PREDICTED: Vitis vinifera protein unc-45 homolog A	GSVIVT00012842001	XM_002266009
0.9	1.6	3.1	5.8	PREDICTED: Vitis vinifera protein phosphatase 2C 16	GSVIVT00016669001	XM_010656199
0.8	1.1	2.5	2.1	PREDICTED: Vitis vinifera golgin subfamily B member 1-like	GSVIVT00000573001	XM_010663504
0.8	1.7	2.4	7.6	PREDICTED: Vitis vinifera GTP-binding protein ERG	GSVIVT00030112001	XM_002274185
1.2	1.1	2.4	2.4	PREDICTED: Vitis vinifera calcium-binding protein PBP1-like	GSVIVT00015817001	XM_002283267
0.7	0.9	2.3	8.7	PREDICTED: Vitis vinifera putative pentatricopeptide repeat-containing prot	GSVIVT00024893001	XM_002265990
0.9	1.8	2.3	8.2	PREDICTED: Vitis vinifera probable protein phosphatase 2C 33	GSVIVT00025063001	XM_002277357
0.5	1.1	2.3	5.2	PREDICTED: Vitis vinifera ethylene-responsive transcription factor SHINE 2	GSVIVT00032652001	XM_002285071
0.8	1.7	2.3	3.5	PREDICTED: Vitis vinifera putative dual specificity protein phosphatase DSF	GSVIVT00031649001	XM_010663081
0.8	1.3	2.3	2.5	PREDICTED: Vitis vinifera uncharacterized (LOC100263199)	GSVIVT00009688001	XM_010648613
0.7	0.9	2.1	0.2	PREDICTED: Vitis vinifera transcription factor MYC4	GSVIVT00000514001	XM_002279937
1.0	1.9	2.0	7.5	PREDICTED: Vitis vinifera probable F-box protein	GSVIVT00003940001	XM_002266444
0.9	1.8	3.7	0.4	PREDICTED: Vitis vinifera ammonium transporter 1member 1	0.01/11/17.0000000000	
0.7	0.8	3.6	0.5	PREDICTED: Vitis vinifera LOB domain-containing protein 1like	GSVIVT00008636001	XM_002265506
0.7	1.1	3.0	0.3	PREDICTED: Vitis vinifera squamosa promoter-binding-like protein 8	GSVIVT00019158001	XM_003633858
0.9	1.0	2.7	0.5	PREDICTED: Vitis vinifera probable indole-3-pyruvate monooxygenase YUC	GSVIV100020401001	XM_002282612
0.8	1.3	2.6	0.5	PREDICTED: Vitis vinifera probable senne/threonine-protein kinase wink4	GSVIVT00023951001	XM_002268264
0.8	1.4	2.5	0.5	PREDICTED: Vitis vinifera probable protein phoephotoco 20.15	GSVIV1000#223001	XIM_010605942
0.9	1.0	2.3	0.5	PREDICTED: Vitis vinifera PEL 1iko homoodomain protoin 2	GSVIVT00030365001	XM 002624529
1.0	1.1	2.3	0.5	PREDICTED: Vitis vinifera Auv/IA A protoin	GSVIVT00023696001	XM_010665767
1.0	0.8	2.3	0.4	PREDICTED: Vitis vinifera E-box protein SKIP %-like	GSVIVT00010294001	XP 785800
1.2	0.7	0.1	5.5 24 F	PREDICTED: Vitis vinifera dof zinc finger protein DOE5 1	GSVIVT00018482001	XM_002260905
1.2	0.0	0.0	0.2	PREDICTED: Vitis vinifera SWR1complex protein 4	GSVIVT00028159001	XM_010653983
1.5	0.9	0.5	0.3	PREDICTED: Vitis vinifera eukarvotic translation initiation factor NCRP	GSVIVT00025466001	XM 002281661
1.0	0.5	0.4	0.4	PREDICTED: Vitis vinifera agamo us-like MADS-box protein AGI 12	GSVIVT00021903001	XM 002278203
1.5	0.7	0.4	0.4	PREDICTED: Vitis vinifera agamous-like MADS-boxprotein AGL 12	GSVIVT00012221001	XM 002278203
1.0	0.6	0.4	0.2	PREDICTED: Vitis vinifera uncharacterized (LOC 100248098)	GSVIVT00026485001	XR 139826
0.6	0.9	0.3	0.4	PREDICTED: Vitis vinifera serine/threonine protein phosphatase 2A 57 kDa	GSVIVT00032527001	XM_010650251
1.4	0.7	0.3	0.3	PREDICTED: Vitis vinifera uncharacterized (LOC 100258629)	GSVIVT00028864001	XM_002265724
1.3	0.7	0.3	0.3	PREDICTED: Vitis vinifera uncharacterized (LOC 100253058)	GSVIVT00021520001	 XM_010658593
1.0	0.7	0.3	0.3	PREDICTED: Vitis vinifera zinc finger CCCH domain-containing protein 24	GSVIVT00024526001	XM_002282278
0.9	0.6	0.3	0.1	PREDICTED: Vitis vinifera protein IQ-DOMAIN 14	GSVIVT00008074001	XM_002265424
1.5	0.8	0.2	0.4	PREDICTED: Vitis vinifera uncharacterized (LOC 100265991) / MYB family tra	GSVIVT00024052001	XM_002268019
0.9	0.8	0.2	0.3	PREDICTED: Vitis vinifera probable protein phosphatase 2C 59	GSVIVT00008801001	XM_010650484
1.3	0.7	0.2	0.3	PREDICTED: Vitis vinifera probable BOI-related E3 ubiquitin-protein ligase 2		XM_010666262
1.3	0.7	0.2	0.2	PREDICTED: Vitis vinifera transcription initiation factor TFIID subunit 6	GSVIVT00025841001	XM_002264254
1.1	0.7	0.2	0.2	PREDICTED: Vitis vinifera expansin-A4	GSVIVT00000596001	XM_002283322
1.1	0.6	0.2	0.1	PREDICTED: Vitis vinifera homeobox-leucine zipper protein HAT4	GSVIVT00012221001	XM_002263157
1.2	0.7	0.2	0.1	PREDICTED: Vitis vinifera KH domain-containing protein	GSVIVT00015027001	XM_002283555
1.1	0.8	0.1	0.2	PREDICTED: Vitis vinifera 1-aminocyclopropane-1-carboxylate oxidase (ACC	GSVIVT00021584001	XM_003632599
1.9	1.0	0.1	0.2	PREDICTED: Vitis vinifera MADS-box protein SVP	GSVIVT00008993001	XM_010648493
1.7	0.9	0.1	0.1	PREDICTED: Vitis vinifera inactive protein kinase SELM ODRAFT_444075	GSVIVT00034194001	XM_010656246
0.5	0.6	0.0	0.1	PREDICTED: Vitis vinifera trihelix transcription factor GT-3b	GSVIVT00007624001	XR_786356
0.5	0.6	0.0	0.1	PREDICTED: Vitis vinifera trihelix transcription factor GT-3b	GSVIVT00007624001	XR_786356
0.9	1 9	7.0	19	PREDICTED: Vitis vinifera primary amine o xidase	GSVIVT00019977001	XM 002278208

	Fold Change				ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	T0	Functional annotation	genoscope	Number (NCBI)
0.8	1.3	6.9	1.0	PREDICTED: Vitis vinifera homeobox-leucine zipper protein HAT22	GSVIVT00011041001	XM_010649008
1.6	0.8	6.2	1.0	PREDICTED: Vitis vinifera serine/threonine-protein kinase EDR1	GSVIVT00017808001	XM_003634237
1.6	0.8	6.2	1.0	PREDICTED: Vitis vinifera serine/threonine-protein kinase EDR1	GSVIVT00017808001	XM_003634237
1.0	0.6	5.9	1.4	PREDICTED: Vitis vinifera transcription factor bHLH36	GSVIVT00008249001	XM_003635317
0.9	1.2	5.2	0.5	PREDICTED: Vitis vinifera trihelix transcription factor ASIL1-like	GSVIVT00025282001	XM_002264740
0.7	1.6	5.1	0.5	PREDICTED: Vitis vinifera transcriptional activator M yb	GSVIVT00014316001	XM_002279243
1.1	1.2	4.9	0.6	PREDICTED: Vitis vinifera guanine nucleotide-binding protein subunit beta-li	GSVIVT00017791001	XM_002281243
1.0	1.9	4.8	0.5	PREDICTED: Vitis vinifera lysine-specific histone demethylase 1homolog 3	GSVIVT00014490001	XR_788316
0.7	1.3	4.8	1.7	PREDICTED: Vitis vinifera sacsin	GSVIVT00037657001	XM_010650117
0.8	0.9	4.5	1.9	PREDICTED: Vitis vinifera WD repeat-containing protein 61	GSVIVT00001149001	XM_002280687
0.8	1.6	4.2	0.5	PREDICTED: Vitis vinifera myb-related protein 3R-1-like		XM_002281492
0.7	1.9	4.0	3.8	PREDICTED: Vitis vinifera serine/threonine-protein kinase pakB	GSVIVT00035977001	XM_010649265
1.2	1.5	4.0	0.9	PREDICTED: Vitis vinifera transcription elongation factor SPT6	GSVIVT00008954001	XM_010655357
0.8	1.4	3.7	1.1	PREDICTED: Vitis vinifera uncharacterized (LOC100267848)	GSVIVT00014864001	XM_010666257
0.8	1.3	3.4	0.8	PREDICTED: Vitis vinifera PRA1family protein F2-like	GSVIVT00023862001	XM_002279736
1.1	1.3	3.2	0.6	PREDICTED: Vitis vinifera putative zinc finger protein	GSVIVT00029230001	XM_002272888
0.7	1.9	3.0	1.6	PREDICTED: Vitis vinifera ras-related protein RABH1e	GSVIVT00012066001	XM_002271184
0.6	1.3	3.2	0.7	PREDICTED: Vitis vinifera uncharacterized (LOC100255258)	GSVIVT00008635001	XM_010663660
1.1	1.4	3.0	0.6	PREDICTED: Vitis vinifera TIM ELESS-interacting protein	GSVIVT00021265001	XM_010656341
0.7	1.4	2.9	0.9	PREDICTED: Vitis vinifera zinc finger protein NUTCRACKER	GSVIVT00023802001	XM_010647827
1.0	0.7	2.8	1.2	PREDICTED: Vitis vinifera auxin-induced protein X15-like	GSVIVT00036007001	XM_003631505
1.2	0.9	2.5	0.5	PREDICTED: Vitis vinifera BTB/POZ domain-containing protein	GSVIVT00029147001	XM_002270766
0.9	1.2	2.4	0.8	PREDICTED: Vitis vinifera HVA22-like protein j	GSVIVT00021528001	XM_002281002
1.0	1.3	2.2	0.6	PREDICTED: Vitis vinifera CCR4-NOT transcription complex subunit 1-like	GSVIVT00029978001	XM_010663024
0.6	1.2	0.4	1.0	PREDICTED: Vitis vinifera F-box/kelch-repeat protein SKIP 11-like	GSVIVT00000121001	XM_010653935
1.2	0.9	0.3	1.3	PREDICTED: Vitis vinifera auxin-induced protein X15	GSVIVT00035991001	XM_010649207
1.2	0.9	0.3	1.3	PREDICTED: Vitis vinifera auxin-induced protein X15	GSVIVT00035991001	XM_010649207
1.4	0.5	0.2	1.3	PREDICTED: Vitis vinifera zinc finger CCCH domain-containing protein 14	GSVIVT00025374001	XM_002279035
0.7	0.9	0.9	9.3	PREDICTED: Vitis vinifera equilibrative nucleotide transporter 3-like	GSVIVT00011005001	XM_010648063
1.6	2.0	0.9	4.6	PREDICTED: Vitis vinifera HD domain-containing protein 2	GSVIVT00030235001	XR_785531
0.8	1.1	1.0	3.1	PREDICTED: Vitis vinifera protein ROOT HAIR DEFECTIVE 3 homolog 2	GSVIVT00035518001	XM_010647065
1.0	1.4	0.7	3.1	PREDICTED: Vitis vinifera probable protein phosphatase 2C 49	GSVIVT00028179001	XM_002279654
0.8	1.8	0.6	3.1	PREDICTED: Vitis vinifera protein ULTRAPETALA 1	GSVIVT00026010001	XM_002278628
1.1	1.0	0.9	3.1	PREDICTED: Vitis vinifera AT-rich interactive domain-containing protein 2	GSVIVT00026942001	XM_010659834
1.1	1.0	0.9	3.1	PREDICTED: Vitis vinifera AT-rich interactive domain-containing protein 1	GSVIVT00026942001	XM_010663552
0.7	1.5	0.8	2.9	PREDICTED: Vitis vinifera zinc finger CCCH domain-containing protein 14	GSVIV100024576001	XM_002279035
0.9	1.5	1.1	2.8	PREDICTED: Vitis vinifera mavicyanin	GSVIV100020596001	XM_002275021
1.1	1.0	1.4	2.4	PREDICTED: Vitis vinifera probable WRKY transcription factor 47	GSVIV100028232001	XM_002281158
1.1	1.7	1.1	0.5	PREDICTED: Vitis Vinifera auxin-repressed 12.5 kDa protein	GSVIV100034028001	XM_010656093
0.5	1.1	1.6	0.4	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein	GSVIV100028346001	XM_002272907
0.9	1.0	1.9	0.4	PREDICTED: VIIIs VINITERA UNCHARACTERIZED (LOC 100249460)	GSVIV I 00025852001	XM_002270874
1.1	0.9	0.7	0.4		GSVIVI 00079607001	XIVI_U U054454
0.9	0.9	1.1	0.3		GSVIV 100035536001	VM 000000704
0.5	1.0	0.7	0.3		GSVIV I 00037526001	XM_002266784
0.8	0.8	0.5	0.3		GSVIV 100025490001	XM 000074056
0.9	0.9	1.1	0.3	PREDICTED: Vitis vinitera RZR3 wird transcription factor (MirBA6)	GSVIV 100022409001	XM 010655022
0.6	0.9	1.9	0.3	PREDICTED: Vitis vinitera DEL Fine nomenouomain proteina anteining are t	CSVIV 10002 H04001	XM 000000002
1.1	0.6	0.5	0.3	PREDICTED: Vitis vinitera putative peritatricopeptide repeat-containing prot	CSVIV 100024370001	XM 000079600
0.7	1.2	1.9	0.3	F NEDICIED. VIIIs VIIIIera proteini P RK FLIKE 1	GSVIV I 00025352001	XM 000075575
0.9	0.8	1.1	0.3	FREDICTED. Vitis vinitera probable ODP-N-acetyigiucosaminepeptide N-a	GSVIV 1 000 89 0001	XM_040666430
0.6	1.1	0.9	0.2		GSVIV 1000 H347001	XM 00000430
0.8	0.9	0.6	0.2	DREDICTED: Vitis vinifera athylene.responsive transportation factor RAD2.4	GSVIV 1000237 1/001	XM 010649070
0.7	0.9	1.0	0.2	PREDICTED: Vitis vinifera errigene/threeping protein kingso like protein COP	GSVIV 1000 0923001	XM 002276007
0.6	0.6	1.5	0.2	PREDICTED: Vitis vinitera serine un econice protein rateining recenter C28	GSVIV 1000 10209001	XM_002273207
0.8	0.7	1.3	0.2	PREDICTED: Vitie vinifera uncharacterized // OC/00247524)	CSV/IV/T00020760004	XM 002270062
0.8	0.8	1.1	0.2		GSV/IVT00024604004	XM 002279003
0.0	1.1	2.0	0.2	PREDICTED: Vitis vinifera no bable WPKY transcription factor 75	GSV/IVT00037881001	XM 002275540
0.0	1.0	0.0	0.2	PREDICTED: Vitis vinifera transcription factor LINE(2)	GSV/IV/T00023837001	XM 002273540
0.6	0.8	1.1	0.2		CSV/IV/T00023037001	XM 010650207
0.7	1.0	0.7	0.2		CSVIV100032454001	NIM 004204400
1.0	U.ŏ	1./	0.1		JJ VIV / UUUJUU/ / UU I	11111 _ UU IZO 110U

	Fold C	hange		Functional annotation	ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	то		genoscope	Number (NCBI)
1.0	0.8	0.5	0.1	PREDICTED: Vitis vinifera zinc finger protein WIP2	GSVIVT00024637001	XM_002277501
0.6	0.9	1.0	0.1	PREDICTED: Vitis vinifera probable protein phosphatase 2C 25	GSVIVT00025384001	XM_010655586
0.8	0.7	0.8	0.1	PREDICTED: Vitis vinifera UDP-glycosyltransferase 86A1/ cytokinin-O-glyc	GSVIVT00023233001	XM_002276822
0.9	0.8	0.9	0.1	PREDICTED: Vitis vinifera transcription factor DIVARICATA-like	GSVIVT00024157001	XM_010655884
Protein	s metabo	lism				
2.7	2.5	8.9	9.9	SKP 1-like protein 1A	GSVIVT00036131001	XM 002279196
2.2	5.5	2.5	91	T-complex protein 1subunit beta-like	GSVIVT00015538001	
3.4	0.4	0.1	0.2	methionine aminopentidase 18. chloroplastic-like	GSVIVT01011946001	XM_002278712
0.3	11 3	86.8	71.1	ubiguitin-like domain-containing CTD phosphatase		XM_002265755
2.5	11.5	0.0	/1.1			XM_003631580
3.5	0.6	0.2	0.1		CEV/IV/T00002822001	XM_000000000
0.5	1.1	0.2	2.5	605 ribe se mel protein L 10 like	GSVIVT00003823001	XM_002270097
1.2	4.2	59.0	17.8		G3VIV100028043001	XM 00228227
0.7	4.4	3.4	10.4			XM_002285377
1.2	3.6	26.2	9.8		000/00/7004	XIVI_002263711
0.7	11.7	26.4	7.0	Inactive mombold protein Hike	GSVIV100021327001	XM_002270606
0.5	3.7	10.5	7.6	A I P-dependent zinc metallo protease FtsH-like		XM_002283718
1.9	41.3	231.0	388.8	protein bem46-like		XM_002280177
0.9	3.5	4.3	7.3	E3 ubiquitin-protein ligase COP 1-like	GSVIVT00025955001	XM_002271379
0.5	2.0	12.5	8.0	PREDICTED: Vitis vinifera proteasome subunit alpha type-5-like	GSVIVT00033998001	XM_010656068
0.7	1.1	9.7	2.6	PREDICTED: Vitis vinifera ubiquitin-like-specific protease ESD4	GSVIVT00019757001	XM_010651415
1.0	1.3	8.4	4.9	PREDICTED: Vitis vinifera 60S ribosomal protein L13a-4-like	GSVIVT00031707001	XM_002268865
0.6	1.2	6.8	3.2	PREDICTED: Vitis vinifera ATP-dependent zinc metalloprotease FTSH 2	GSVIVT00038548001	XM_010657177
0.7	1.9	6.6	5.3	PREDICTED: Vitis vinifera protein LURP - one-related 8	GSVIVT00033620001	XM_002269152
0.8	1.5	6.3	7.6	PREDICTED: Vitis vinifera probable cytosolic oligopeptidase A	GSVIVT00022112001	XM_002270183
0.7	2.0	5.2	48.5	PREDICTED: Vitis vinifera E3 ubiquitin-protein ligase UPL1	GSVIVT00033388001	XM_010646285
1.3	1.4	4.9	4.0	PREDICTED: Vitis vinifera serine carbo xypeptidase-like	GSVIVT00018114001	XM_010660041
0.8	1.9	4.7	3.7	PREDICTED: Vitis vinifera PCI domain-containing protein-like	GSVIVT00016574001	XM_002282266
0.8	1.8	3.7	6.1	PREDICTED: Vitis vinifera E3 ubiquitin-protein ligase M BR2	GSVIVT00019515001	XM_002282341
1.1	2.0	2.2	4.1	PREDICTED: Vitis vinifera uncharacterized (LOC 100241484)	GSVIVT00012831001	XM_010648591
0.8	1.8	2.1	7.4	PREDICTED: Vitis vinifera ubiquitin-conjugating enzyme E2 variant 1D	GSVIVT00021532001	XM_002271736
0.9	1.1	2.1	2.8	PREDICTED: Vitis vinifera 20 kDa chaperonin, chloroplastic	GSVIVT00019006001	 XM_002267310
1 3	1.0	2.1	2.1	PREDICTED: Vitis vinifera 26S proteasome non-ATP ase regulatory subunit	GSVIVT00009324001	 XM_010648116
0.6	1.4	3 5	0.4	PREDICTED: Vitis vinifera pumilio homolog 24	GSVIVT00033058001	
0.7	1.4	2.9	0.4	PREDICTED Vitis vinifera xaa-Pro dipentidase	GSVIVT00016599001	XM_002282743
0.8	1.0	2.5	0.5	PREDICTED: Vitis vinifera OTU domain-containing protein DDB_G0284757	GSVIVT00023222001	XM_010655298
0.5	1.5	2.5	0.5	PREDICTED: Vitis vinifera 60S ribosomal protein 17-2-like	GSVIVT00021788001	XM_002279257
1.6	0.7	2.4	0.4	PREDICTED: Vitis vinifera polyubiquitin 9	GSVIVT00017850001	XM_010665386
1.0	1.6	2.1	0.3	PREDICTED: Vitis vinifera 26S proteasome non-ATPase regulatory subunit	GSV/VT0001/791001	XM_002284530
1.0	1.0	2.1	0.5	PREDICTED: Vitis vinifera 200 proteasonie non-ATT ase regulatory subdinit	GSVIVT00031714001	XM_002262666
1.0	1.2	0.4	2.5	PREDICTED: Vitis vinifera eukaryotic translation initiation factor NCPD	GSV/IV/T00025466001	XM_002281661
1.8	0.5	0.5	0.2	A. thaliana - carbo xyl-terminal peptidase	GSV/IVT00004449004	7.01_00220.001
0.9	0.8	0.5	0.2	PPEDICTED: Vitin viniforo gukonotio translation initiation factor 2	GSVIV 10000 148001	XM 000074050
1.1	0.9	0.4	0.3	PREDICTED. Vitis vinitera dukaryo tid translation initiation factor 3 Subunit K	GSVIVI00000666004	XM 000074060
0.8	1.1	0.4	0.3	F REDICTED. Vitis vinitera dos noosoffal protein L27a-3-like		XM_000005000
1.0	0.9	0.3	0.3	PREDICTED: VIIIs vinitera thioredoxin-like protein CDSP32, chioroplastic	GSVIV I UUU 15512001	XM_002285866
0.9	0.6	0.3	0.2	PREDICTED: VIIIs VINIFERAU-box domain-containing protein 43	GSVIV 100008662001	XM_002273185
1.2	0.9	0.2	0.4	PREDICTED: VIIIs VINITERA UNCHARACTERIZED (LOC 100853/55)	GSVIVI 00001353001	XR_/86361
1.4	0.5	0.2	0.3	PREDICTED: VIIIs vinifera eukaryotic translation initiation factor 2 subunit a	GSVIV100024042001	XM_002275276
0.7	0.9	0.2	0.3	PREDICIED: Vitis vinifera endoplasmic reticulum metallo peptidase 1	GSVIVT00010855001	XM_002279204
1.0	0.6	0.2	0.2	PREDICTED: Vitis vinifera ribosome biogenesis protein BRX1	GSVIVT00028481001	XM_002269993
0.9	0.7	0.1	0.3	PREDICTED: Vitis vinifera heterogeneous nuclear ribonucleoprotein H2	GSVIVT00008733001	XM_010651148
1.4	0.9	0.1	0.2	PREDICTED: Vitis vinifera microtubule-associated protein TORTIFOLIA1	GSVIVT00017006001	XM_010658410
1.4	0.6	0.1	0.1	PREDICTED: Vitis vinifera 40S ribosomal protein S15-like	GSVIVT00020133001	XM_002282258
0.8	1.0	0.1	0.1	PREDICTED: Vitis vinifera heterogeneous nuclear ribonucleoprotein H2	GSVIVT00032030001	XM_010651148
1.1	1.4	4.6	1.6	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein	GSVIVT00029079001	XM_002267911
0.9	1.3	3.1	1.5	PREDICTED: Vitis vinifera aspartic proteinase PCS1like	GSVIVT00032938001	XM_002263584
0.9	1.3	3.1	1.5	PREDICTED: Vitis vinifera uncharacterized (LOC 100250825)	GSVIVT00030177001	XM_010650393
0.9	0.6	2.9	1.1	PREDICTED: Vitis vinifera eukaryotic translation initiation factor 1A	GSVIVT00034754001	XM_002285808
0.7	1.5	2.8	0.6	PREDICTED: Vitis vinifera eukaryotic peptide chain release factor subunit 1:	GSVIVT00001852001	XM_002271620
0.9	1.2	2.5	0.9	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein	GSVIVT00030057001	XM_002274396
0.6	1.2	2.1	1.0	PREDICTED: Vitis vinifera uncharacterized (LOC 100247715)	GSVIVT00001036001	XM_002269463
0.8	0.6	0.2	1.7	PREDICTED: Vitis vinifera nucleolar GTP-binding protein 1	GSVIVT00027086001	XM 002265220

	Fold C	hange			ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	T0	Functional annotation	genoscope	Number (NCBI)
1.1	2.9	1.4	10.1	PREDICTED: Vitis vinifera 26S protease regulatory subunit 8 homolog A	GSVIVT00032563001	XM_002284711
0.6	1.5	0.9	4.0	PREDICTED: Vitis vinifera serine carboxypeptidase-like 16	GSVIVT00038626001	XM_002272080
0.8	1.3	1.9	4.0	PREDICTED: Vitis vinifera RWD domain-containing protein 1	GSVIVT00034208001	XM_002281127
1.1	0.8	1.2	3.4	PREDICTED: Vitis vinifera putative 60S ribosomal protein L30-1	GSVIVT00015281001	XM_002285777
1.1	0.8	1.2	3.4	PREDICTED: Vitis vinifera putative 60S ribosomal protein L30-1	GSVIVT00015281001	XM_002285777
0.6	1.6	1.2	3.2	PREDICTED: Vitis vinifera putative pentatricopeptide repeat-containing prot	GSVIVT00033662001	XM_010654833
0.8	1.4	1.0	2.8	PREDICTED: Vitis vinifera uncharacterized CRM domain-containing protein	GSVIVT00001969001	XM_010652295
1.2	1.4	0.7	2.8	PREDICTED: Vitis vinifera PITH domain-containing protein At3g04780	GSVIVT00031148001	XM_002278284
0.7	2.0	1.7	2.4	PREDICTED: Vitis vinifera oligoribo nuclease	GSVIVT00022313001	XM_002279417
0.8	1.4	0.7	2.1	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein At3g	GSVIVT00016595001	XM_010657918
0.7	1.4	0.9	2.0	PREDICTED: Vitis vinifera subtilisin-like protease	GSVIVT00001053001	XM_002278256
0.7	1.4	0.9	2.0	PREDICTED: Vitis vinifera subtilisin-like protease	GSVIVT00001055001	XM_002284065
1.7	1.0	1.0	0.5	PREDICTED: Vitis vinifera 40S ribosomal protein S3-3	GSVIVT00016476001	XM_002279914
1.4	0.7	1.0	0.3	PREDICTED: Vitis vinifera T-complex protein 1subunit delta	GSVIVT00017754001	XM_002280198
0.6	1.1	0.7	0.3	PREDICTED: Vitis vinifera oligoribo nuclease	GSVIVT00017340001	XM_002271292
0.9	1.0	1.3	0.3	PREDICTED: Vitis vinifera protein CYPRO4	GSVIVT00036588001	XM_002282124
1.1	0.6	0.5	0.3	PREDICTED: Vitis vinifera ribosome biogenesis regulatory protein homolog	GSVIVT00026149001	XM_002264612
0.8	0.8	0.9	0.2	PREDICTED: Vitis vinifera putative E3 ubiquitin-protein ligase LIN-1	GSVIVT00016710001	XM_010657996
0.6	1.0	1.1	0.2	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein	GSVIV I 00031640001	XM_010652032
1.1	0.7	0.7	0.2	רטוט I ED: Vitis vinifera iysosomal Pro-X carboxypeptidase	GSVIV100022128001	XM_002271697
Cellular	processe	25	64.2	V two proton ATD and output D 11/4	CS\//\/T0100000001	XM 00000055
3.2	11.4	4.5	61.3	V-type proton A I Pase subunit B 'Hike	GSVIV101023982001	XM_002280255
0.5	18.1	104.7	1/4.0	ABC transporter B family member 13-like		XM_002279435
0.5	3.5	17.0	2.8	putative metallophosphoesterase At3g03305-like		XM_002266850
0.4	5.1	30.7	7.8	Lupharaotorized L OC 100262507		XM_002276071
0.4	1.6	6.9	17.4	Di glugogo hinding protojn with Louging rich report domain like	GSV/IV/T0101000001	XM_002276971
0.2	7.9	72.9	104.7	probable serine/three nine protein kingse At/a25220 like	GSVIVT00036214001	XM_00228.632
0.3	3.5	0.2	11.8	uncharacterized LOC 1002/17096	G3VIV1000302 H001	XM_002279521
2.7	9.5	0.5	4.2	PREDICTED: serine/three nine-protein pho sphatase 7	GSV/IVT00005999001	XM_002263704
7.2	0.5	0.0	0.2	AP-1complex subunit camma-2-like	GSVIVT01020209001	XM_002265154
4.5	18.7	3.2	10.4	G-type lectin S-receptor-like serine/threonine-protein kinase At2019130	GSVIVT00029223001	XM_002277183
2.6	18.7	9.9	26.3	V-type proton ATP ase subunit C-like	GSVIVT01033006001	XM 002275474
8.2	1.0	0.4	2.6	potassium transporter 5-like		XM 003631177
4.0	0.7	0.1	0.0	cation/calcium exchanger 4-like	GSVIVT00034062001	 XM_002272544
3.9	0.9	0.3	0.1	casein kinase I isoform delta-like		XM_002284008
0.5	0.5	0.7	0.1	erd6-like transporter	GSVIVT00006082001	XM_002263382
0.4	1.3	27.2	3.8	uncharacterized LOC 100257476		XM_002271055
0.3	0.8	0.4	8.6	UDP-glycosyltransferase 87A2-like		XM_002274384
0.1	1.3	0.4	0.1	cysteine-rich receptor-like protein kinase 25-like		XM_003631474
0.5	35.0	208.7	11.1	protein SEC 13 homolog-like	GSVIVT00020856001	XM_002281820
1.3	16.6	21.8	115.0	12S seed storage globulin 1-like	GSVIVT00026049001	XM_002280155
0.7	10.0	8.4	6.5	ATP synthase subunit beta, mito chondrial-like		XM_002283915
0.6	9.8	62.4	38.1	probable LRR receptor-like serine/threonine-protein kinase At 1g29720-like		XM_002264038
0.5	9.3	11.9	6.8	probable LRR receptor-like serine/threonine-protein kinase At 1953430	GSVIVT01020456001	XM_002268701
0.9	9.0	3.2	2.7	uncharacterized LOC 100243620	GSVIVT00027784001	XM_002282951
0.8	8.9	74.8	71.4	probable LRR receptor-like serine/threonine-protein kinase At 1956130	GSVIVT01029718001	XM_002267093
1.9	7.5	2.3	4.7	uncharacterized LOC 100260760	GSVIVT00018781001	XM_002281940
1.1	7.3	22.3	70.5	cation/calcium exchanger 4-like	GSVIVT00034062001	XM_002272544
1.5	6.7	7.9	25.8	G-type lectin S-receptor-like serine/threonine-protein kinase RLK1	GSVIVT00003760001	XM_002268983
0.6	6.6	4.7	55.1	cytochrome c oxidase assembly protein COX19-like	GSVIVT00034344001	XM_002284132
0.9	6.5	41.7	58.2	endo-1,4-beta-xylanase A	0.01/0/074455555555	XM_002283514
0.7	6.4	13.7	8.9	quino ne o xido reductase-like protein 2 homolog	GSVIVT00029244001	XM_002267141
1.3	5.9	29.3	36.3	ras-related protein Rab7-like	GSVIVT00034372001	XM_002284372
1.1	5.9	18.5	10.4	coatomer subunit beta'-2-like		XM_002284737
1.6	5.5	5.6	4.3	peritatrico peptide repeat-containing protein At2g32230		XM_002267869
0.8	5.4	14.0	18.2	casem kinase lisotorm delta-like	000/00/20000 20000	XM_000000704
1.1	4.9	20.8	14.5	Probable LKK receptor-like serine/threonine-protein kinase	GSVIV101020456001	XM_002268701
0.5	4.4	19.1	4.5	ren repeat-containing (noredoxin 1 1 L Hike		ANI_002283061
0.6	4.1	16./	13.9	probable LTR receptor-like senile/theonine-protein kinase At4g08850-like	GSV///T01000500001	AWI_002278525
0.9	3./	7.4	9.4	0,000m0m01 400 0204-mc	COMIN 10 1009090001	AWI_002203933

	Fold Change				ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	то	Functional annotation	genoscope	Number (NCBI)
0.6	3.6	64.4	96.0	probable LRR receptor-like serine/threonine-protein		XM_002267636
1.3	3.4	48.7	107.2	uncharacterized LOC 100255442	GSVIVT00031820001	XM_002267832
0.8	3.2	3.6	13.3	ABC transporter B family member 26		XM_002272024
1.2	3.1	8.2	3.5	uncharacterized LOC 10024 1221		XM_002285181
1.2	3.1	8.2	3.5	uncharacterized LOC 10024 1221		XM_002285181
1.6	2.6	6.3	5.5	sulfate transporter	GSVIVT00015271001	XM_002285774
0.9	2.5	8.3	11.1	flavin-containing monooxygenase YUCCA6-like	GSVIVT00032480001	XM_002281561
0.9	2.4	34.9	3.4	G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290-like		XM_002280681
0.3	2.4	6.6	6.9	sorting nexin-1-like	GSVIVT00021573001	XM_002281974
1.3	2.1	25.4	9.1	copper-transporting ATP ase RAN1-like		XM_002275968
0.9	2.1	6.4	8.5	membrane-bound O-acyltransferase C24H6.01c-like	GSVIVT00004222001	XM_002268808
1.4	0.5	0.0	0.1	peptide/nitrate transporter	GSVIVT00018397001	XM_002277546
1.8	0.4	0.0	0.1	leucine-rich repeat receptor-like serine/threonine-protein kinase BAM3	GSVIVT00021105001	XM_002264916
1.1	0.3	0.1	0.0	nitrate transporter 13-like		XM_002274191
15	0.4	0.1	0.0	ankyrin repeat-containing protein At5q02620-like		XM 002284486
11	0.5	0.2	0.1	PREDICTED: Vitis vinifera UDP-glycosyltransferase 85A 3-like	GSVIVT00015205001	 XM_002285731
1.1	0.5	0.4	0.1	dehvdrogenase/reductase SDR family member 4-like	GSVIVT00011718001	XM 002264461
0.4	17	52.5	195.6	PREDICTED: Vitis vinifera ATP-dependent zinc metallo pro tease FtsH	GSVIVT00022916001	XM 002266039
0.8	1.7	32.5	12.8	PREDICTED: Vitis vinifera mito cen-activated pro tein kinase kinase kinase 7	GSVIVT00026986001	XM 010660668
0.7	1.0	21.0	16.5	PREDICTED: Vitis vinifera uncharacterized (LOC100254866)	GSVIVT00034368001	XM 010656352
0.7	1.7	15.6	93	PREDICTED: Vitis vinifera probable LRR recentor-like serine/three nine-prot	GSVIVT00033651001	XM 010654820
0.7	1.2	12.6	5.2	PREDICTED: Vitis vinifera G-type lectin S-receptor-like serine/threonine-pro	GSVIVT00021390001	XM 002277183
0.8	1.0	9.7	3.2	PREDICTED: Vitis vinifera cyto chrome P450 948 3-like	GSVIVT00017932001	XM_002279945
0.9	1.5	9.0	2.0	PREDICTED: Vitis vinifera cytochrome h5 do main-containing protein RI E	GSVIVT00028750001	XM_010661135
1.2	1.0	0.0	2.5	PREDICTED: Vitis vinifera serine/threonine-protein kinase Nek5	GSVIVT00017494001	XM_010653343
0.0	1.1	7.6	12.4	PREDICTED: Vitis vinifera probable L-type lectin-domain containing recento	GSVIVT00022018001	XM_002275483
1.2	1.0	7.0	12.0	PREDICTED: Vitis vinifera recentor-like serine/threonine-protein kinase	GSVIVT00016952001	XM_002285354
1.2	1.7	7.0	Z.4	PREDICTED: Vitis vinifera uncharacterized (I OC 100264257)	GSV/IVT00015663001	XP 787976
0.9	1.5	5.9	5.4	PREDICTED: Vitis vinifera uncharacterized (LOC 00204257)	GSVIVT00003435001	XM_010657343
1.4	1.0	5.7	0.2	PREDICTED: Vitis vinifera ras-related protein RGP1	GSVIVT00022294001	XP 787330
0.7	1.7	5.0	2.8	PREDICTED: Vitis vinifera probable so dium/metabolite cotransporter BASS	GSVIVT00022294001	XM_002263649
0.7	1.3	5.4	2.3	PREDICTED: Vitis vinifera probable sodium/metabolite cortansporter BAS	GSVIVT00032664001	XM_010650262
0.0	1.5	4.8	3.1	PREDICTED: Vitis vinifera ABC transporter C family member 10 like	GSVIVT0000264001	XM_010664280
0.8	0.9	4.6	2.1	PREDICTED: Vitis vinifera ABC transporter Channiy member b-like	GSVIV10000264001	XM_0106560346
0.8	1.7	4.3	10.7	PREDICTED: Vitis vinifera ATP, dependent zine metalle proteose ETSH 2, de	GSVIVT000055001	XM_010657177
0.9	0.8	3.9	2.1	PREDICTED: Vitis vinifera L DD recenter like period/three pine protein kinese	GSVIVT00035051001	XM_010654045
0.8	1.0	3.8	2.1	PREDICTED: Vitis vinifera CRL interacting protein kinges 4	GSVIV100028256001	XM_010653183
1.7	1.6	3.3	9.0	PREDICTED: Vitis vinifera voguelos amino asid transportos 1	GSVIV100018753001	XIVI_010653163
1.1	1.7	3.3	2.6	PREDICTED: Vitis vinitera vacuolai annito acid transporter 1	GSVIV1000 6 63001	XM 040040507
1.0	1.2	3.2	3.3	PREDICTED: Vitis vinifera Cystelle-hon receptor-like protein kinase to	GSVIVT00008005001	XM_010646597
0.8	1.3	3.1	2.5	PREDICTED: Vitis vinitera G-type lectin S-receptor-like seririe/threo hine-pro	GSVIV10002/480001	
0.8	1.6	2.9	3.8		GS\/I\/T00027400001	AIVI_UUZ209420
0.7	1.9	2.7	5.7	PREDICTED. Vitis vinitera organic cation/camitine transporter 4	GSVIV 10002/403001	XM_040050000
0.7	0.9	2.7	4.6	PREDICTED: Vitis vinitera protein HUTHEAD	GSVIV I 000341/4001	XIVI_U10656222
0.7	1.5	2.7	2.8	REDICTED: Vitis vinitera uncharacterized (LOC 10243040)	GSVIV 100008094001	XM_00050942
0.7	1.8	2.1	2.5	PREDICTED: Vitis vinitera nico unale-nucleo tide pyrophosphorylase [Carbo)	GSVIV100030474001	XM_040640074
1.0	1.4	2.0	2.1	PREDICTED: VIIIs vinitera calcineurin B-like protein 07	GSVIV I 000321/8001	XIVI_U 10649971
0.8	1.1	5.3	0.4	PREDICTED. Vitis vinitera vacuolar protein sorting-associated protein 22 hd	GSVIV 10002/355001	XIVI_002281094
1.0	1.3	4.4	0.5	PREDICTED: Vitis Vinitera probable sugar phosphate/phosphate translocate	GSVIV100001039001	XM_002281587
0.9	1.1	4.2	0.2	PREDICTED: Vitis vinitera mo GTPase-activating protein 1	GSVIV I UUU27595001	XIVI_U10653575
0.8	1.2	3.3	0.5	PREDICTED: VIIIs vinitera protein kinase PVPK-1	GSVIV I 00020660001	XIVI_UU22/26/5
1.0	0.9	3.0	0.5	PREDICTED: VIIIs VINITERA ABC transporter A family member /	GSVIV I 00031557001	XM_002274267
1.1	1.3	2.7	0.5	PREDICTED: VIIIs Vinifera frataxin, mitochondrial	GSVIV 100029229001	XM_0022277055
0.7	1.0	2.9	0.4	PREDICTED VILLS VILLE VILLE XAA-Pro dipeptidase	GSVIV100016599001	XIVI_002282743
0.6	1.0	2.5	0.3	PREDICTED: VITIS VINIFERA Endoplasmic reticulum-Golgi intermediate compa	GSVIV100018943001	XIVI_010658644
0.8	1.5	0.4	2.8	PREDICTED. Vitis vinitera te-S cluster assembly factor HCF 101, chloroplast	GSVIV100016780001	XM_00228131/
0.6	1.4	0.4	2.3	PREDICTED: VIIIs Vinifera probable purine permease 5	GSVIV I 00008067001	XM_002266443
0.7	0.9	0.3	17.6	PREDICTED: VIIIs VINIFERA UNCHARACTERIZED (LOC10026770)	GSVIV 100034903001	XR_/85/18
1.4	1.2	0.5	0.3	PREDICTED: Vitis vinifera glutamate receptor 2.8-like	GSVIV I 00000721001	XM_002266180
1.0	1.0	0.5	0.3	PREDICTED: Vitis vinitera G-type lectin S-receptor-like serine/threonine-pro	GSVIVI 00012561001	XM_010659090
0.7	0.9	0.5	0.3	PREDICIED: Vitis vinifera uncharacterized transporter YBR287W-like	GSVIVT00038733001	XM_010651032
0.9	0.9	0.5	0.2	PREDICTED: Vitis vinifera probable serine/threonine protein kinase IRE4 (LO	GSVIV100014640001	XM_002282922

	Fold Change			e un time terreteri	ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	T O	Functional annotation	genoscope	Number (NCBI)
0.9	0.7	0.5	0.2	PREDICTED: Vitis vinifera potassium transporter 1	GSVIVT00035544001	XM_010652583
0.8	0.7	0.5	0.2	PREDICTED: Vitis vinifera ankyrin repeat-containing protein At5g02620-like	GSVIVT00018558001	XM_002266996
1.2	1.0	0.4	0.5	PREDICTED: Vitis vinifera cyto chrome P450 76A1	GSVIVT00009931001	XM_010655729
0.8	0.8	0.4	0.4	PREDICTED: Vitis vinifera probable L-type lectin-domain containing recepto	GSVIVT00027870001	XM_002275483
0.9	1.0	0.4	0.4	PREDICTED: Vitis vinifera glutamate receptor 2.8-like	GSVIVT00000720001	XM_002266180
1.7	0.8	0.4	0.3	PREDICTED: Vitis vinifera probable metal-nicotianamine transporter YSL7	GSVIVT00037055001	XM_002266621
1.2	0.7	0.4	0.3	PREDICTED: Vitis vinifera NADH kinase	GSVIVT00027917001	XM_002283633
1.7	0.6	0.4	0.1	PREDICTED: Vitis vinifera L-type lectin-domain containing receptor kinase I	GSVIVT00011490001	XM_010648556
1.5	0.7	0.3	0.2	PREDICTED: Vitis vinifera G-type lectin S-receptor-like serine/threonine-pro	GSVIVT00027519001	XM_010649231
1.1	0.8	0.3	0.4	PREDICTED: Vitis vinifera WD repeat-containing protein 74	GSVIVT00015713001	XM_010664964
1.1	0.8	0.3	0.3	PREDICTED: Vitis vinifera uncharacterized (LOC 100260982)	GSVIVT00017071001	XR_785635
0.9	0.6	0.3	0.2	PREDICTED: Vitis vinifera mitochondrial import inner membrane translocas	GSVIVT00016660001	XM_002283601
0.6	1.0	0.3	0.2	PREDICTED: Vitis vinifera protein EXORDIUM-like 5	GSVIVT00036277001	XM_003631510
1.1	0.9	0.3	0.2	PREDICTED: Vitis vinifera protochlorophyllide-dependent translocon comp	GSVIVT00024785001	XM_002283556
1.2	0.5	0.3	0.1	Vitis vinifera hexose transporter	GSVIVT00038182001	NM_001281111
1.1	0.5	0.3	0.0	PREDICTED: Vitis vinifera ankyrin-2-like	GSVIVT00033277001	XM_010657416
1.4	0.7	0.2	0.4	PREDICTED: Vitis vinifera probable receptor-like protein kinase	GSVIVT00013403001	XM_010662106
1.3	0.6	0.2	0.3	PREDICTED: Vitis vinifera ankyrin repeat-containing protein At2g01680	GSVIVT00030584001	XM_002284866
1.0	0.8	0.2	0.2	PREDICTED: Vitis vinifera UDP-galactose/UDP-glucose transporter 5	GSVIVT00024400001	XM_002281418
0.5	1.1	0.2	0.2	PREDICTED: Vitis vinifera polyadenylate-binding protein 2	GSVIVT00014106001	XM_002279112
1.2	0.8	0.2	0.2	PREDICTED: Vitis vinifera nicotinamide adenine dinucleotide transporter 1, c	GSVIVT00030386001	XM_010645902
1.9	0.9	0.2	0.1	PREDICTED: Vitis vinifera ABC transporter C family member 8-like	GSVIVT00034195001	XM_010656248
1.2	0.8	0.2	0.1	PREDICTED: Vitis vinifera protein TIC 55 (Translocon at the inner envelope	GSVIVT00032812001	XM_002283397
0.6	0.7	0.2	0.0	PREDICTED: Vitis vinifera transmembrane emp24 domain-containing protei	GSVIVT00033393001	XM_002265269
0.9	0.7	0.1	0.2	PREDICTED: Vitis vinifera equilibrative nucleo tide transporter 3-like	GSVIVT00013175001	XM_010648063
1.9	0.6	0.1	0.2	PREDICTED: Vitis vinifera beta-hexo saminidase 3-like	GSVIVT00007781001	XM_010648158
1.4	0.6	0.1	0.2	PREDICTED: Vitis vinifera probable ATP synthase 24 kDa subunit, mitocho	GSVIVT00019377001	XM_002279353
1.3	0.5	0.1	0.1	PREDICTED: Vitis vinifera vesicle transport v-SNARE 13	GSVIVT00016295001	XM_010662789
1.8	0.4	0.0	0.1	PREDICTED: Vitis vinifera leucine-rich repeat receptor-like serine/threonine-	GSVIVT00035385001	XM_002264916
0.8	1.2	5.9	1.8	PREDICTED: Vitis vinifera oligopeptide transporter 2	GSVIVT00015062001	XM_002283655
1.2	1.5	4.8	0.6	PREDICTED: Vitis vinifera probable aquaporin NIP-type	GSVIVT00011149001	XM_003633656
0.7	1.3	4.2	1.1	PREDICTED: Vitis vinifera mito cho ndrial carrier protein MTM1	GSVIVT00009710001	XM_010664299
0.7	1.3	4.1	1.3	PREDICTED: Vitis vinifera probable receptor-like protein kinase	GSVIVT00011563001	XM_010662183
0.8	1.4	3.9	0.8	PREDICTED: Vitis vinifera TOM 1-like protein 2	GSVIVT00027891001	XM_010645783
0.7	1.5	3.3	0.9	PREDICTED: Vitis vinifera ankyrin-2-like	GSVIVT00030146001	XM_010657417
0.8	1.5	3.3	1.2	PREDICTED: Vitis vinifera clathrin coat assembly protein AP 180	GSVIVT00025947001	XM_002271201
0.5	1.2	3.2	1.0	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein At3g	GSVIVT00012784001	XM_010657590
1.1	1.3	3.0	0.7	PREDICTED: Vitis vinifera phytanoyl-CoA dioxygenase	GSVIVT00033627001	XM_002284433
0.7	1.1	3.0	0.6	PREDICTED: Vitis vinifera ankyrin repeat-containing protein At5g02620	GSVIVT00024413001	XM_002284486
0.3	1.9	2.9	1.5	PREDICTED: Vitis vinifera WAT1-related protein At3g28050	GSVIVT00028879001	XM_002279726
1.1	1.3	2.6	0.9	PREDICTED: Vitis vinifera G-type lectin S-receptor-like serine/threonine-pro	GSVIVT00010007001	XM_010659090
1.1	1.3	2.6	0.9	PREDICTED: Vitis vinifera uncharacterized (LOC 100267196)	GSVIVT00010007001	XM_010659075
0.8	1.6	2.5	0.8	PREDICTED: Vitis vinifera metal transporter Nramp6	GSVIVT00015428001	XM_010656720
0.7	1.6	2.4	0.8	PREDICTED: Vitis vinifera probable receptor-like protein kinase	GSVIVT00013404001	XM_010662183
1.1	1.1	2.4	0.6	PREDICTED: Vitis vinifera probable LRR receptor-like serine/threonine-prot	GSVIVT00035813001	XM_010657265
0.6	1.3	2.3	0.7	PREDICTED: Vitis vinifera UDP-glycosyltransferase 90A 1-like	GSVIVT00016118001	XM_010662632
0.9	1.7	2.2	1.0	PREDICTED: Vitis vinifera random slug protein 5	GSVIVT00024935001	XM_010666381
1.3	0.9	2.1	1.1	PREDICTED: Vitis vinifera serine/threonine-protein kinase SRK2I	GSVIVT00009710001	XM_002264136
1.1	1.0	0.4	0.5	PREDICTED: Vitis vinifera putative clathrin assembly protein At 1g25240	GSVIVT00030651001	XM_002281674
1.0	1.0	0.2	0.5	PREDICTED: Vitis vinifera casein kinase I	GSVIVT00028561001	XM_010651803
1.1	1.1	0.0	1.0	PREDICTED: Vitis vinifera AP-1complex subunit mu-2	GSVIVT00009485001	XM_002274427
1.0	1.6	0.9	5.0	PREDICTED: Vitis vinifera endo philin-A3	GSVIVT00007619001	XM_002266198
0.9	1.2	1.6	3.8	PREDICTED: Vitis vinifera receptor-like serine/threonine-protein kinase SD	GSVIVT00029671001	XM_010648578
1.0	1.4	0.6	3.2	PREDICTED : NADH dehydrogenase subunit 7	GSVIVT00035567001	
1.6	1.7	1.0	3.1	PREDICTED: Vitis vinifera transmembrane 9 superfamily member 5	GSVIVT00037359001	XM_002274218
0.9	1.5	1.4	3.0	PREDICTED: Vitis vinifera beta-glucosidase 11-like	GSVIVT00027994001	XM_002268111
0.8	1.0	1.6	2.9	PREDICTED: Vitis vinifera probable LRR receptor-like serine/threo nine-prot	GSVIVT00008037001	XM_010658778
0.9	1.4	0.9	2.8	PREDICTED: Vitis vinifera mito cho ndrial import inner membrane translocas	GSVIVT00017994001	XM_002284234
1.1	1.3	0.8	2.7	PREDICTED: Vitis vinifera FAD-linked sulfhydryl o xidase ERV1	GSVIVT00011077001	XM_002263782
0.9	0.8	0.6	2.6	PREDICTED: Vitis vinifera receptor-like serine/threonine-protein kinase SD	GSVIVT00013447001	XM_010645972
0.9	0.8	0.6	2.6	PREDICTED: Vitis vinifera receptor-like serine/threonine-protein kinase SD1	GSVIVT00013447001	XM_010645972

	Fold C	hange			ID	Accession
T0-20D	T0-7Dvh	T0-7Dtg	то	Functional annotation		Number (NCBI)
0.7	15	0.8	25	PREDICTED: Vitis vinifera probable purine permease 5	GSVIVT00012052001	XM 002266443
0.8	1.5	1.0	2.5	PREDICTED: Vitis vinifera vesicle-associated protein 2-2	GSVIVT00008892001	XM_010661688
0.8	1.0	1.0	2.1	PREDICTED: Vitis vinifera L-type lectin-domain containing receptor kinase S	GSVIVT00001301001	XM 002277979
0.6	1.0	1.1	0.5	PREDICTED: Vitis vinifera receptor-like cytosolic serine/threonine-protein k	GSVIVT00019857001	XM_010651519
1.1	0.8	1.0	0.5	PREDICTED: Vitis vinifera luminal-binding protein 5	GSVIVT00022356001	XM_002263287
0.0	0.6	0.0	0.4	PREDICTED: Vitis vinifera uncharacterized (LOC100243949)	GSVIVT00035507001	XM_002278525
0.9	1.2	1.2	0.4	PREDICTED: Vitis vinifera probable LRR recentor-like serine/threonine-prot	GSVIVT00008078001	XM_010648962
0.8	1.2	0.6	0.4	PREDICTED: Vitis vinifera ABC transporter C family-like	GSVIVT00028387001	XM_010657404
0.0	1.2	1.4	0.4	PREDICTED: Vitis vinifera WAT1-related protein At3o28050	GSVIVT00028877001	XM_002279726
0.7	0.7	0.5	0.4	PREDICTED: Vitis vinifera cyto chrome P450 82C4	GSVIVT00036470001	XM_002283995
0.5	0.7	0.5	0.4	PREDICTED: Vitis vinifera ankyrin reneat-containing protein At5g02620-like	GSVIVT00018555001	XM_010658839
0.5	1.0	0.5	0.4	PREDICTED: Vitis vinifera UDP-glucose iridoid glucosyltransferase-like	GSVIVT00018352001	XM_010660352
0.0	0.9	0.7	0.4	PREDICTED: Vitis vinifera G-type lectin S-recentor-like serine/threo nine-pro	GSVIVT00015350001	XM_010665932
0.7	0.5	0.0	0.3	PREDICTED: Vitis vinifera protein TRANSPARENT TESTA 12-like	GSVIVT00033862001	XM_010654867
0.8	1.0	0.5	0.3	PREDICTED: Vitis vinifera ABC transporter B family member 15-like	GSVIVT00027398001	XM_010662694
0.6	0.9	0.5	0.3	PREDICTED: Vitis vinifera mechanosensitive ion channel protein 6-like	GSVIVT00036185001	XM_010648148
0.0	1.0	1.4	0.3	PREDICTED: Vitis vinifera equilibrative nucleo tide transporter 3-like	GSVIVT00008459001	XM_010648063
0.6	0.7	0.7	0.3	PREDICTED: Vitis vinifera phosphoenolovruvate/phosphate translocator 2	GSVIVT00020707001	XM_002276460
1.0	0.7	1.2	0.3	PREDICTED: Vitis vinifera magnesium transporter MRS2-5	GSVIVT00030033001	XM_010651475
0.6	0.9	0.3	0.3	PREDICTED: Vitis vinifera G-type lectin S-receptor-like serine/three nine-pro	GSVIVT00027036001	XM_010648577
0.0	0.9	0.5	0.2	PREDICTED: Vitis vinifera wall-associated receptor kinase 2-like	GSVIVT00015471001	XM_010665406
0.5	11	0.9	0.2	PREDICTED: Vitis vinifera BEL1-like homeodomain protein 11	GSVIVT00014547001	XM 010666430
1.0	0.7	0.5	0.2	PREDICTED: Vitis vinifera probable inactive leucine-rich repeat receptor-like	GSVIVT00017911001	XM 010665428
0.9	0.6	0.8	0.2	PREDICTED: Vitis vinifera UDP-N-acetylolucosamine transferase subunit A	GSVIVT00022866001	XM 010661525
13	0.7	11	0.2	PREDICTED: Vitis vinifera ABC transporter G family member 15	GSVIVT00022210001	XM 002274073
0.6	0.7	13	0.2	PREDICTED: Vitis vinifera proline transporter 2-like	GSVIVT00018303001	XM 002280181
0.9	0.8	1.2	0.2	PREDICTED: Vitis vinifera pentatrico peptide repeat-containing protein At3g	GSVIVT00013264001	 XM_010657590
0.7	1.3	0.9	0.2	PREDICTED: Vitis vinifera probable flavin-containing monooxygenase 1	GSVIVT00032310001	XM_002280356
1.1	0.7	1.1	0.2	PREDICTED: Vitis vinifera golgin candidate 3	GSVIVT00026946001	XM_010663555
1.2	0.8	0.8	0.2	PREDICTED: Vitis vinifera mito chondrial import inner membrane translocas	GSVIVT00016062001	XM_002284234
1.0	0.9	1.5	0.2	PREDICTED: Vitis vinifera phospholipid-transporting ATP ase 3	GSVIVT00011966001	XM_010647906
0.8	0.6	0.8	0.2	PREDICTED: Vitis vinifera uncharacterized protein OsI_027940 (LOC 100258	GSVIVT00027981001	
0.7	0.9	0.6	0.2	PREDICTED: Vitis vinifera protein NRT1/ PTR FAM ILY 6.3	GSVIVT00009628001	XM_002266915
1.0	0.6	0.6	0.1	PREDICTED: Vitis vinifera ammonium transporter 2-like	GSVIVT00019241001	XM_010655111
0.6	0.6	1.5	0.1	PREDICTED: Vitis vinifera probable zinc transporter 10	GSVIVT00031911001	XM_002273143
1.4	0.5	0.7	0.1	PREDICTED: Vitis vinifera vesicle-associated membrane protein 714	GSVIVT00020446001	 XM_002273925
0.9	0.8	1.8	0.1	PREDICTED: Vitis vinifera cyto chrome b-c1complex subunit 8	GSVIVT00023918001	 XM_002264353
0.9	1.2	1.0	0.0	PREDICTED: Vitis vinifera ABC transporter B family member 15-like	GSVIVT00035705001	XM_010662694

Molecular Plant-Microbe Interactions "First Look" paper • http://dx.doi.org/10.1094/MPMI-02-17-0036-R • posted 08/25/2017 This paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread. The final published version may differ.