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Abstract

Genome-wide association meta-analyses (GWAMAs) conducted separately by two strata

have identified differences in genetic effects between strata, such as sex-differences for

body fat distribution. However, there are several approaches to identify such differences

and an uncertainty which approach to use. Assuming the availability of stratified GWAMA

results, we compare various approaches to identify between-strata differences in genetic

effects. We evaluate type I error and power via simulations and analytical comparisons for

different scenarios of strata designs and for different types of between-strata differences.

For strata of equal size, we find that the genome-wide test for difference without any filtering

is the best approach to detect stratum-specific genetic effects with opposite directions, while

filtering for overall association followed by the difference test is best to identify effects that

are predominant in one stratum. When there is no a priori hypothesis on the type of differ-

ence, a combination of both approaches can be recommended. Some approaches violate

type I error control when conducted in the same data set. For strata of unequal size, the best

approach depends on whether the genetic effect is predominant in the larger or in the

smaller stratum. Based on real data from GIANT (>175 000 individuals), we exemplify the

impact of the approaches on the detection of sex-differences for body fat distribution (identi-

fying up to 10 loci). Our recommendations provide tangible guidelines for future GWAMAs

that aim at identifying between-strata differences. A better understanding of such effects will

help pinpoint the underlying mechanisms.
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Introduction

Genome-wide association studies (GWAS) and genome-wide association meta-analyses

(GWAMAs) are one of the most successful approaches to identify genetic regions that are rele-

vant for complex phenotypes and diseases [1]. Usually in GWAMAs, a group responsible for

meta-analyses develops an analysis plan describing each of the models to be conducted by par-

ticipating studies and distributes it to study analysts; the study analysts then conduct the speci-

fied study-specific GWAS and the meta-analysts collect, quality control, and meta-analyze the

study-specific aggregated statistics across studies [2]. To not burden study partners too much,

the study-specific analysis models are generally sparse, clearly described, and easy to conduct

with available software in a standardized way.

Recently, the identification of genetic loci where the genetic effects are modulated by non-

genetic factors such as sex or life-style factors (gene-environment interaction, GxE), became a

major focus [3]. When the “environmental” factor is dichotomous—such as sex or ever versus

never smoking—the interaction effect is equivalent to a difference of the genetic effect between

the two groups (genetic effect with between-strata difference, GxS). Many GWAMA consortia

do not search genome-wide for variants with GxS, but restrict their test for GxS on genetic var-

iants that are identified with an overall genetic effect on the phenotype of interest [4–7]. How-

ever, this approach would have little chance to detect an effect in opposite directions for the

two strata. Only few consortia conduct GWAMAS based on models including an interaction

effect [8] (Rao et al. 2017, accepted at Circulation Cardiovascular genetics). Notably, such

interaction models can become particularly complex when further covariates are involved [9].

While such interaction models are theoretically feasible, they are also logistically challenging

as the more complex models and limitations of GWAS software to extract multiple covariate

estimates hamper the study analysts to conduct the analyses smoothly and correctly.

Several consortia conduct stratified GWAMAS, where study analysts are asked to perform

the analyses separately by stratum—for example separately for men and women or for persons

with and without diabetes [4,5,7,10]. For study analysts, this is relatively straight forward to

implement with existing genome-wide analysis software. For meta-analysts, stratified GWAS

allow a stratified meta-analyses, opening up multiple options: (i) to test for stratum-specific

effects (stratified association test), (ii) to combine stratified results together and to test for stra-

tum-combined effects (overall association test [11]), (iii) to test for difference between stratum-

specific effects (difference test [12]), or (iv) to test for joint effects accounting for potential GxS

by using the sum of squared stratum-specific test statistics (alternative joint test [13]). The

alternative joint test was shown to be equivalent to the joint test combining the main and the

interaction effect for a dichotomous factor S [8]. Numerous variants with GxS have already

been identified via stratified GWAMAs [8,14,15], applying different approaches to search for

GxS. While the difference test is always the ultimate test to establish GxS and frequently uti-

lized to search for GxS [12], there is also previous work where genetic variants are filtered

prior to the difference testing using the overall [7,10], the stratified [12], or the joint test as a

filter [8], allegedly to increase power. Still, the power to detect GxS depends on the type of GxS

interaction: whether the effects point into opposite directions in the two strata (qualitative),

the effect is zero in one stratum and significant in the other (pure), or the effects are direction-

ally consistent being larger in one stratum (quantitative). A systematic evaluation of all app-

roaches and a recommendation as to which approach should be utilized—with or without

making assumptions on the type of GxS—are lacking.

Here, we conduct a systematic comparison of approaches to identify GxS based on stratified

GWAMAs for a continuous outcome with regard to type I error and power. We exemplify the
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impact of the different approaches on the identification of sexually dimorphic variants for

body fat distribution using real data from the GIANT consortium [12].

Materials and methods

Notation and models

We consider K studies and 2 strata, with a total sample size of n = n1+n2, ni = sumk(nik),
k = 1. . .,K, i = 1,2 strata, and f = n2/n1. For an individual j, Y ðjÞik denotes a continuous phenotype

value and GðjÞik = 0,1,2 the number of alleles for a genetic variant (omitting the indexing of the

millions of variants analyzed). A stratified GWAMA involves two steps, the study- and stra-

tum-specific GWAS conducted by the study analyst and the stratum-specific meta-analysis.

For stratified GWAS, the linear regression model computed per stratum for each of the

genetic variants (omitting further covariates) can be written as

Y ðjÞik ¼ /ik þ bikG
ðjÞ
ik þ EðjÞik ; ð1Þ

with αik denoting the intercept, βik the genetic effect and EðjÞik � Nð0; s2
EikÞ. We assume that phe-

notypes have been normalized to have zero mean and unit variance in each study and stratum

(i.e., s2
Yik ¼ s2

Y ¼ 1). We also assume similar minor allele frequencies across studies and strata

(MAFik�MAF) and thus similar genotype variances, s2
Gik ¼ s2

G = 2 � MAF � (1-MAF), i.e. that

the SNP is not associated with the stratum variable and homogeneous across studies (S1

Note). Our notation here assumes that the studies include only unrelated individuals (see

below for the extension to related individuals).

For the stratum-specific meta-analysis per variant, pooled genetic effect estimates, b̂i, and

standard errors, sei, are computed via an inverse-variance weighted meta-analysis by stratum

[16], assuming equal genetic effects across studies, since we focus on identification rather than

quantification of genetic effects [17]. Under the assumption that the studies are from similar pop-

ulations with similar genotypic variance, the inverse-variance weighted meta-analyzed b̂ i and sei
are approximately identical to an estimate derived from one single large mega-study [18,19].

Stratified GWAMA approaches to identify G x S

Our stratified GWAMA approaches are based on four statistical tests. The statistical test to identify

GxS is the difference test, ZDiff ¼ ðb̂1 � b̂2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

1
þ se2

2

p
. This is under the assumption of no relat-

edness of subjects across strata and thus no correlation of b̂1 with b̂2. Under the assumption of

unrelated individuals across strata and no latent covariate interacting with a dichotomous factor

S, the difference test is equivalent to testing interaction of the genetic effect with a dichotomous

factor S. We consider three further tests that are utilized to filter genetic variants prior to the dif-

ference testing: filtering on (i) overall association, ZOverall ¼ ðb̂1=se2
1
þ b̂2=se2

2
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=se2

1
þ 1=se2

2

p
,

(ii) stratified association, Z1 ¼ b̂1=se1 or Z2 ¼ b̂2=se2, or (iii) the alternative joint association,

CJoint ¼ ðb̂1=se1Þ
2
þ ðb̂2=se2Þ

2
. All test statistics can be computed based on stratified GWAMA

results, i.e. stratum-specific pooled genetic effect, b̂i, and corresponding standard errors, sei,
i = 1,2 (see S1 Table for a detailed description of the four tests).

The tests are used to generate various approaches to identify GxS. In the approach without

filtering, the difference test is applied genome-wide, ½DiffaDiff
�, and GxS can readily be identi-

fied using a genome-wide significance level of αDiff = 5x10-8 (= 0.05/1,000,000) [20]. In the

approaches with filtering, one of the three filtering tests is applied genome-wide, variants with

a p-value below a filtering threshold, αFilter, are selected, and lead variants are extracted (variant
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with lowest P-value within +/- 500,000 base positions). When M lead variants are selected by

the filtering, these variants have an established association with the phenotype, but GxS has yet

to be ascertained by the difference test using a Bonferroni-corrected significance level, αDiff =

0.05/M (S1 Methods). The stricter the filtering threshold, the smaller M, thus decreasing the

multiple testing burden; however, a stricter filtering threshold might miss true GxS signals. We

will thus consider varying filtering thresholds.

When overall, stratified or joint association filtering is applied to the same stratified

GWAMA results as the difference test (one-stage approach), the approaches to detect GxS are

denoted here as ½OverallaFilter
! DiffaDiff

�, ½StrataFilter
! DiffaDiff

� or ½JointaFilter
! DiffaDiff

�, respec-

tively. When the filtering test is statistically dependent on the difference test the tests have to be

applied to two independent sets of stratified GWAMA results (two-stage approach) to achieve

appropriate type 1 error control. To obtain two independent stratified GWAMA results, the

available GWAS studies are to be separated into a first and a second stage and meta-analyzed by

stage. Then the filtering is to be conducted in the first stage meta-analysis and the difference test

in the second stage meta-analysis. We denote the respective two-stage approaches to detect GxS

as ½OverallaFilter
� ! ½DiffaDiff

�, ½StrataFilter
� ! ½Diff aDiff

� or ½JointaFilter
� ! ½Diff aDiff

�.

We explore the three filtering tests followed by the difference test both as one-stage and as

two-stage approaches. Together with the difference test without filtering, this yields a total of

seven approaches to detect GxS in our systematic evaluation (an overview of approaches is

shown in S1 Fig).

Extending to related individuals

When a study includes related individuals, this can be accounted for within each stratified

GWAS model and thus within each stratum by extending to mixed models [21]. Relatedness

across studies within the same stratum can be handled via generalized meta-analysis [22].

Including related individuals across strata yields correlated stratum-specific (variant-specific)

estimates (b̂1 and b̂2). This correlation can be estimated by the Pearson correlation coefficient

of all b̂1 and b̂2 estimates across all genetic variants, denoted by r.
The test statistics for the difference test can then be extended to ZDiff ¼ ðb̂1 � b̂2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2
1
þ se2

2
� 2 � Covðb̂1; b̂2Þ

q

and the Covðb̂1; b̂2Þ can be estimated by r � se1 � se2. In the case of

related individuals (r > 0), this correction yields more extreme test statistics compared to

when relatedness is ignored and will thus have better power to detect a difference. When the

individuals are unrelated (r close to 0), this formula is the same as the one given in the previous

chapter. There is no disadvantage of using this extended formula in all circumstances.

For the filtering with the overall or the joint test, the inclusion of related subjects between

strata without accounting for them will yield underestimated standard errors and therefore

deflated p-values and larger type I error. Thus, when filtering at a threshold at, e.g. 5x10-5, the

filtering will be less stringent allowing for more variants to pass. The filtering by the stratified

test is unaffected by the inclusion of such related subjects.

Simulation-based evaluation of type I error

Based on simulated data, we estimate the type I error rate of each of the seven stratified GWAMA

approaches to detect GxS. We simulate one large data set of 200,000 unrelated individuals under

the null hypothesis of no GxS i.e. no difference between stratum-specific effects (H0: β1 = β2 = β).

We implement several scenarios of varying values for β, varying MAF (0.05, 0.30) and varying

strata designs (balanced design, f = 1; unbalanced designs f = 1/3, 3) (details in S2 Methods).

Genetic effects with between-strata differences
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For each scenario and approach, we estimate the type I error rate for a 5% significance level

as the proportion of nominally significant variants (PDiff< 0.05) relative to the number of con-

ducted difference tests (# significant variants/1,000,000 without filtering, # significant variants/

M with filtering).

Analytical computation of power

For all stratified GWAMA approaches to detect GxS that have valid type I error, we compute

power analytically. As a measure of the stratum-specific genetic effect, we introduce

Ri ¼ bi
sG

sY
ð2Þ

For each stratum, R2
i represents the phenotypic variance explained by the variant; Ri denotes

the direction of the effect as does bi, which can be opposite in the two strata (qualitative GxS),

zero in one stratum and significant in the other (pure GxS), or directionally consistent with dif-

ferent quantity (quantitative GxS). Analytical power formulae are provided in the S3 Methods

for the difference test, PowerDiff, and for each of the filtering tests, PowerFilter, for varying n1, f,
R1, R2, and α, where n1 reflects the sample size of the stratum with the larger absolute effect (|R2|

< = |R1|); α is the filtering threshold, αFilter, for the filtering tests or the significance level, αDiff,
for the difference test. When the filtering test and difference test are independent or when they

are applied to two different stages of meta-analysis results, the power of the approach can be

derived as the product of the power of the filtering test and the power of the difference test, i.e.

PowerApproach = PowerFilter � PowerDiff (S3 Methods). Of note, n1 and n2 reflect the stratum-spe-

cific effective number of subjects for related subjects can be computed by the method proposed

for correlated SNPs [23].

We compute the power of each approach for various realistic scenarios varying strata design

and varying genetic effect sizes, motivated by the GIANT data with n = 200,000. We also varied

the types of GxS (qualitative, pure, quantitative) and the filtering threshold (details in S4

Methods).

Genetic Investigation of Anthropometric Traits (GIANT) consortium

To exemplify the impact of the different stratified GWAMA approaches to detect GxS, we uti-

lize the sex-stratified GWAMA results for WHRadjBMI from GIANT [12]. This data com-

prises up to 77,000 men and 98,000 women from two independent stages that derive from the

fact that the GWAS data was collected in two waves. The GWAMA results contain pooled sex-

specific genetic effect estimates and standard errors for ~2.8 million variants. We apply each of

the stratified GWAMA approaches with valid type I error to detect variants with between-sex

difference, using the two stages for the two-stage approaches and meta-analyzing the stage-

specific estimates by sex to generate one set of meta-analyzed results for each sex for the one-

stage approaches. Given that the majority of the 2.8 million variants can be considered as not

associated, we evaluate the empirical type I error by QQ plots and by calculating genomic con-

trol inflation factors (λGC) [24]. We also derive the number of sexually dimorphic loci for

WHRadjBMI based on each of the approaches, to demonstrate the approaches taken.

Results

Overview

We examine type I error and power of stratified GWAMA approaches to detect GxS. We aim

at identifying the best approach, which is the approach that maintains type I error and exhibits

Genetic effects with between-strata differences
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the best power, for various strata designs (balanced, unbalanced) with and without an a priori

hypothesis of a given type of GxS (qualitative, pure, quantitative). We exemplify the impact of

each approach on the identification of sexually dimorphic genetic variants for WHRadjBMI

based on the sex-stratified GWAMA results from GIANT. A summary of the workflow is

shown in Fig 1.

Type I error of the stratified GWAMA approaches to detect GxS

In order to derive the empirical type I error for the seven stratified GWAMA approaches to detect

GxS, we simulate genetic association data first under a balanced strata design with n1 = 100,000,

n2 = 100,000. Our results show that the difference test without filtering, ½Diff aDiff
�, when judged at

a significance level of 0.05, keeps type I error control (4.97% to 5.02%, Table 1). Among the three

one-stage approaches with filtering, we yield a valid type I error for the overall association filtering,

½OverallaFilter
! Diff aDiff

�, but a severe violation of type I error control for the stratified test filtering

and the alternative joint test filtering, ½StrataFilter
! Diff aDiff

� and ½JointaFilter
! Diff aDiff

� (type I error

from 8.83% to 49.9%). When applied in two stages, all three filtering approaches, ½OverallaFilter
� !

½Diff aDiff
�, ½StrataFilter

� ! ½Diff aDiff
�, or ½JointaFilter

� ! ½Diff aDiff
�, keep type I error control as expected

(type I error from 4.90% to 5.18%, Table 1). These results are supported by QQ-plots depicting

the observed distribution of the difference test P-values versus the expected, which show that the

number of observed P-values matches the expected very well across the full range of values (S2 Fig

and S3 Fig). For unbalanced strata designs, we observe similar results (S4 Fig and S5 Fig). Our

results demonstrate that the stratified and the alternative joint tests are statistically not indepen-

dent of the difference test, while the overall association is independent.

In summary, the difference test without filtering and the overall association filtering prior to

the difference testing are the only valid one-stage approaches, and all two-stage approaches are

valid, yielding five valid approaches altogether: ½Diff aDiff
�, ½OverallaFilter

! Diff aDiff
�, ½OverallaFilter

� !

½Diff aDiff
�, ½StrataFilter

� ! ½Diff aDiff
� or ½JointaFilter

� ! ½Diff aDiff
�. Since the one-stage approach

½OverallaFilter
! Diff aDiff

� is valid and the two-stage approach ½OverallaFilter
� ! ½Diff aDiff

� is not

expected to be more powerful, we will ignore the latter and focus in the following on the remain-

ing four valid approaches.

Power of stratified GWAMA approaches to detect GxS under a balanced

strata design

Next, we compare the power of the selected four approaches to detect GxS, ½DiffaDiff
�,

½OverallaFilter
! DiffaDiff

�, ½StrataFilter
� ! ½DiffaDiff

� and ½JointaFilter
� ! ½DiffaDiff

�, for a balanced

strata design (n1 = 100,000, n2 = 100,000) for varying stratum-specific effect sizes, R1 and R2,

and varying types and sizes of GxS. We assume a genome-wide significance level for the differ-

ence test without filtering (αDiff = 5 x 10−8) and, for the approaches with filtering, a filtering

threshold of αFilter = 1 x 10−5 with a Bonferroni-corrected significance level at 0.05/M for the

subsequent difference test (M being the number of filtered variants).

Our computations show that the power of an approach largely depends on the type of GxS

(Fig 2A–2C): when the effects point into opposite direction (qualitative GxS), the difference test,

[Diff5e-8], and the two-stage approaches ½Strat1e� 5� ! ½Diff aDiff
� and ½Joint1e� 5� ! ½DiffaDiff

� per-

form substantially better than the overall association filtering approach, ½Overall1e� 5 ! Diff aDiff
�.

In contrast, when the effects point into the same direction (quantitative GxS) or are only pro-

nounced in one stratum (pure GxS), the overall association filtering approach shows much better

power than the other three approaches. For the example of the medium sized R1 (Fig 2B), the

Genetic effects with between-strata differences
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Fig 1. Workflow of the conducted analyses. The figure shows an overview on the four major project steps that were

outlined subsequently: 1) Simulations to evaluate Type 1 Error, 2) Analytical computations of power, 3) Real data

Genetic effects with between-strata differences
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power to detect a pure GxS is 80.8% for ½Overall1e� 5 ! Diff aDiff
�, and only 47.4%, 61.1%, or

55.2%, for [Diff5e-8], ½Strat1e� 5� ! ½Diff aDiff
� or ½Joint1e� 5� ! ½Diff aDiff

�, respectively. When the

predominant effect (stratum 1) is large enough (Fig 2C), a quantitative or pure GxS can also be

detected by the approaches [Diff5e-8], ½Strat1e� 5� ! ½Diff aDiff
� or ½Joint1e� 5� ! ½Diff aDiff

�, but with

less power compared to ½Overall1e� 5� ! ½Diff aDiff
� (18.9%, 56.2%, and 51.% compared to 85.3%

for a quantitative GxS with R2
1

= 0.167%, R2
2

= 0.042%). In all scenarios, ½Overall1e� 5 ! Diff aDiff
�

is the best approach to detect pure GxS (with 0.7%, 80.8%, and>99.9% power for the three effect

sizes of R1 depicted in Fig 2A–2C, respectively) and [Diff5e-8] is the best approach to detect a

qualitative GxS with equal effects pointing into opposite directions (43.7%,>99%, and>99%

power for the three effect sizes of R1 depicted in Fig 2A–2C, respectively).

Among the two-stage approaches, ½Joint1e� 5� ! ½Diff aDiff
� has more power compared to

½Strat1e� 5� ! ½DiffaDiff
� for qualitative GxS and similar power for pure and quantitative GxS.

application and 4) Recommendation. *The valid 2-stage approach ½OverallaFilter
� ! ½Diff aDiff

� was omitted from power

computations due to expectedly lower power of the approach compared to the valid 1-stage approach ½OverallaFilter
! DiffaDiff

�

that makes use of the full available sample size for both filtering and difference testing.

https://doi.org/10.1371/journal.pone.0181038.g001

Table 1. Simulation-based Type I error for the seven stratified GWAMA approaches to detect GxS. Shown is the type I error at a 5% significance level

derived from simulated data as the proportion of variants with nominally significant difference test (PDiff<0.05) relative to the number of variants tested for dif-

ference (1,000,000 in the difference test without filtering, number of filtered variants in the approaches with filtering). The simulation results are based on a bal-

anced strata design (n1 = 100,000, n2 = 100,000; split in half for two-stage approaches), variants with MAF = 0.05 or 0.30, and phenotypes simulated under

the null hypothesis of no GxS, i.e. no difference between stratum-specific effects (H0: β1 = β2 = β). We present the results for β = 0 and β 6¼ 0. For the second

setting, we set β as the minimum effect size detectable at 80% power for the given MAF and the given sample size for the difference test (n = 200 000 for one-

stage approaches, β = 0.029, 0.014 for MAF = 0.05, MAF = 0.30, respectively; nStage = 100,000 for the two-stage approaches, β = 0.041, 0.019 for

MAF = 0.05, MAF = 0.30, respectively). Marked in bold are violated type 1 error rates.

β = 0 β 6¼ 0

Approach MAF #variants in difference

testa
#variants with

PDiff<0.05b
Type I

Error [%]

#variants in difference

testa
#variants with

PDiff<0.05b
Type I error [%]

Approach without filtering

½DiffaDiff
� 0.05 1 000 000 49 882 4.99 1 000 000 49 652 4.97

0.30 1 000 000 49 949 4.99 1 000 000 50 207 5.02

One-stage filtering approaches

½OverallaFilter
! DiffaDiff

� 0.05 50 032 2 454 4.90 323 857 16 143 4.98

0.30 49 879 2 497 5.01 324 431 16 323 5.03

½StrataFilter
! DiffaDiff

� 0.05 49 018 20 956 42.8 76 496 21 732 28.4

0.30 49 057 20 912 42.6 76 415 22 094 28.9

½JointaFilter
! DiffaDiff

� 0.05 49 809 24 732 49.7 235 152 20 762 8.83

0.30 49 667 24 784 49.9 235 383 21 076 8.95

Two-stage filtering approaches

½OverallaFilter
� ! ½DiffaDiff

� 0.05 49 812 2 475 4.97 16 346 801 4.90

0.30 49 726 2 548 5.12 16 291 801 4.92

½StrataFilter
� ! ½DiffaDiff

� 0.05 49 249 2 475 5.03 3 780 189 5.00

0.30 49 306 2 459 4.99 3 786 196 5.18

½JointaFilter
� ! ½DiffaDiff

� 0.05 49 948 2 470 4.95 11 812 562 4.76

0.30 49 976 2 504 5.01 11 749 601 5.12

a Number of independent variants tested for difference.
b Number of variants with nominally significant difference (PDiff < 0.05); MAF = minor allele frequency.

https://doi.org/10.1371/journal.pone.0181038.t001
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Fig 2. Power of stratified GWAMA approaches to identify GxS for balanced strata design. Shown is the power to detect GxS in

equally sized strata (n1 = 100,000, n2 = 100,000) for each of the considered approaches, for varying effect sizes in stratum 2, R2
2
, with
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However, both two-stage approaches are outperformed in all scenarios by one of the one-stage

approaches [Diff5e-8] and ½Overall1e� 5 ! DiffaDiff
� (Fig 2A–2C).

In summary, the difference test without any filtering, [Diff5e-8], and the approach filtering

for overall association followed by the difference test, ½Overall1e� 5 ! DiffaDiff
�, are the two best

approaches to detect qualitative or pure/quantitative GxS, respectively.

Influence of varying filtering thresholds

We next investigate how the filtering threshold impacts the power of the approaches to identify

GxS. We thus compute the power analytically for the various approaches under the same sce-

narios as before (balanced strata design, n1 = 100,000, n2 = 100,000), but now vary the filtering

threshold, αFilter, from 0.05 to 5 x 10−8, again with a Bonferroni-corrected α-level for the conse-

cutive difference test, 0.05/M, with M being the number of filtered variants.

We observe the following: (1) For qualitative GxS (Fig 3A), the difference test without filter-

ing, [Diff5e-8], shows better power than any filtering approach, irrespective of αFilter. (2) For

pure GxS (Fig 3B), the overall association filtering, ½OverallaFilter
! DiffaDiff

�, has the best power,

irrespective of αFilter; the power of this approach is the highest for αFilter of 0.05 to 1x10-4, but

then decreases with decreasing αFilter down to a level that coincides with the power of the differ-

ence test without filtering (power = 46.7% and 47.4%, for approaches ½Overall5e� 8 ! DiffaDiff
�

and [Diff5e-8], respectively). The two-stage approaches ½JointaFilter
� ! ½DiffaDiff

� and ½StrataFilter
� !

½DiffaDiff
� show a maximum power at αFilter = 1x10-5. (3) For quantitative GxS (Fig 3C), the over-

all association filtering, ½OverallaFilter
! DiffaDiff

�, again, has the highest power of all approaches,

irrespective of αFilter. The power of all three filtering approaches increases with decreasing filter-

ing threshold.

Altogether, while [Diff5e-8] outperforms all filtering approaches for qualitative GxS,

½OverallaFilter
! DiffaDiff

� is most powerful for pure/quantitative GxS. This approach can benefit

from less stringent filtering (i.e., larger αFilter, larger M) to detect pure GxS, but from more

stringent filtering (i.e., smaller αFilter, smaller M) to detect quantitative GxS, requiring a com-

promise to serve both.

Influence of unbalanced strata designs

We next investigate how an unbalanced strata design impacts the power of the approaches to

identify GxS. We compute the power analytically for the same scenarios and approaches as

previously, but now we model unbalanced strata designs by varying the proportion of the stra-

tum sample sizes (with a total n = 200,000, as before). Denoting f = n2/n1, with stratum 1 defin-

ing the stratum with the larger effect, f = 0.05 indicates that stratum 1 (with the larger effect) is

20 times larger than stratum 2, whereas f = 20 indicates that stratum (with the larger effect) is

in very small with only a 20th of stratum 2 sample size.

As expected from theory, we find that, for all three types of GxS (Fig 4A–4C), the power of

[Diff5e-8] is symmetric to and at a maximum at f = 1. This indicates that the difference test

without filtering is most efficient, if the two strata are balanced in size, and that its power does

not depend on whether the larger effect is in the larger or in the smaller stratum.

a fixed genetic effect in stratum 1, R2
1
, that is (A) small (R2

1
¼ 0:014%), (B) medium (R2

1
¼ 0:058%), or (C) large (R2

1
¼ 0:167%). The

effect sizes for R2
1

are chosen as those observed for WHRadjBMI near STAB1, PPARG or LYPLAL1, respectively. The modeled GxS

are visualized on the left side (red bar: R2
1
, blue arrows: varyingR2

2
). For the difference test without filtering, we assume a significance

level at 5 x 10−8; for approaches with filtering, the filtering threshold is 1 x 10−5 and the significance level applied for the consecutive

difference test is αDiff = M/0.05, with M being the number of filtered lead variants (see Methods).

https://doi.org/10.1371/journal.pone.0181038.g002

Genetic effects with between-strata differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0181038 July 27, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0181038.g002
https://doi.org/10.1371/journal.pone.0181038


Fig 3. Influence of filtering threshold on the power to detect GxS. Shown is the power to detect GxS for the same approaches

as in Fig 2 (n1 = 100,000, n2 = 100,000), but here with varying filtering thresholds and fixed R2
2

relative to R2
1

for different types of GxS:
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For a qualitative GxS (Fig 4A), [Diff5e-8] shows the best power for moderately unbalanced

strata designs (0.2< f< 5), whereas ½Overall1e� 5 ! DiffaDiff
� shows best power for more

extremely unbalanced strata designs (f< 0.2 or f> 5). Here, power curves for all approaches

are symmetric to f = 1, because absolute genetic effects are the same across strata. However,

the symmetry of the filtered approaches disappears when varying R2 (S6–S8 Figs).

For a pure GxS (Fig 4B) with the effect in the larger stratum (f< 1), the filtering approaches

½Overall1e� 5 ! Diff aDiff
�, ½Strat1e� 5� ! ½Diff aDiff

�, and ½Joint1e� 5� ! ½Diff aDiff
� have larger power

than the difference test alone with a maximum power at f ~ 0.66 (i.e. ‘effect’ stratum 1 is 1.5-times

larger than the ‘no effect’ stratum 2). The best approach here is the overall filtering approach,

½Overall1e� 5 ! Diff aDiff
�. When the effect is in the smaller stratum (f> 1), the difference test with-

out filtering, [Diff5e-8], can provide a power gain over the filtering approaches: For the presented

scenario, the power of [Diff5e-8] surpasses the power of the filtering approaches at f ~ 1.5 (‘no

effect’ stratum 2 is 1.5 times larger than the ‘effect’ stratum 1). Generally, when using the filtering

approaches, it is easier to identify pure GxS with the effect in the larger stratum (f< 1) than with

the effect in the smaller stratum (f> 1), while the difference test alone does not depend on

whether the effect is in the smaller or the larger stratum.

For quantitative GxS (Fig 4C) and for the presented scenario, the power of all approaches is

symmetric to and at maximum at f = 1. Irrespective of f, ½Overall1e� 5 ! DiffaDiff
� displays the

best power to identify quantitative GxS compared to all other considered approaches (Fig 4C,

S6–S8 Figs).

Altogether, ½Overall1e� 5 ! DiffaDiff
� is the most powerful approach to detect pure/quantita-

tive GxS, for all stratum designs. It has also the best power to detect effects pointing into oppo-

site directions (qualitative difference) when the strata are extremely unbalanced. [Diff5e-8] is

the most powerful approach to detect qualitative GxS, when the sample sizes of the strata do

not differ too extremely.

Application to real sex-stratified GWAMA results for waist-hip ratio

We exemplify the impact of our approaches on the number of identifiable sexually dimorphic

loci for WHRadjBMI, based on our sex-stratified GWAMA results from the GIANT consor-

tium (up to 77,000 men and 98,000 women) [12].

First, in order to derive empirical type I error based on the real GIANT data, we apply all

seven approaches to the real sex-stratified meta-analyzed GWAMA results and evaluate

lambda factors and QQ plots. For [Diff5e-8] and ½OverallaFilter
! DiffaDiff

�, we observe no infla-

tion of difference P-Values (λGC = 1.02 and λGC = 1.06, respectively, S9 Fig). However, we

observe inflated difference P-values for the one-stage approaches ½StrataFilter
! DiffaDiff

� and

½JointaFilter
! DiffaDiff

�, (λGC = 6.67 and λGC = 6.39, respectively, S9 Fig). This is in-line with the

statistical theory and our results from simulated data, which support the notion that the strati-

fied and the alternative joint tests depend on the difference test, while the overall test appears

to be independent.

Next, in order to evaluate the detectability of sexually dimorphic loci for WHRadjBMI, we

apply the four approaches [Diff5e-8], ½Overall1e� 5 ! DiffaDiff
�, ½Strat1e� 5� ! ½Diff aDiff

�, and

½Joint1e� 5� ! ½DiffaDiff
� to the real sex-stratified meta-analyzed GWAMA results. When

A. qualitative GxS with small stratum-specific effects (R2
1
¼ 0:014%; R2

2
¼ 0:014% into opposite direction), B. pure GxS with medium

sized stratum 1 effect (R2
1
¼ 0:058%; R2

2
¼ 0%), and C. quantitative GxS with large stratum 1 and smaller stratum 2 effect

(R2
1
¼ 0:167%; R2

2
¼ 0:042% into the same direction). The effect sizes for stratum 1 are chosen as those observed for the

WHRadjBMI loci around STAB1, PPARG, or LYPLAL1. The power of [Diff5e-8] is constant due to the lack of any filtering.

https://doi.org/10.1371/journal.pone.0181038.g003
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Fig 4. Power of stratified GWAMA approaches to identify GxS for unbalanced strata design. Shown is the power to detect

GxS for the same approaches as in Fig 2, but here for unbalanced strata designs with varying proportion of stratum sample sizes,
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accounting for the subtle relatedness (r = 0.05 for one-stage, r = 0.03 for stage 2 of the two-

stage approaches), we identify a total of 10 independent loci with significant sex-difference

across all considered approaches (Table 2, S2 Table and S3 Table). The 10 loci include one

qualitative, six pure and three quantitative sex-differences. Consistent with our power compu-

tations, the one-stage approaches identify more loci than the two-stage approaches, the quali-

tative difference is only detected by [Diff5e-8] and ½Overall1e� 5 ! DiffaDiff
� identifies all pure

and quantitative differences (nine loci). The overall association test filtering at an αFilter of 5 x

10−8, ½Overall5e� 8 ! DiffaDiff
�, identifies 8 of these and one additional; this approach is, in fact,

the approach used by Locke and colleagues for BMI [25] and by Shungin and colleagues for

WHRadjBMI [5], when only the genome-wide significant loci with main genetic effect are

tested for interaction. When applying the two approaches [Diff5e-8] and ½Overall1e� 5 !

DiffaDiff
� jointly, 10 sexually dimorphic loci for WHRadjBMI are detected in the GIANT data.

When ignoring the subtle relatedness, we detect only 9 loci with significant sex-difference

across all considered approaches (the one missed with a sex-difference P-value of 9.1 x 10−8

instead of 4.1 x 10−8 when accounting for the relatedness).

In summary, our application of the approaches to real sex-stratified GWAMA data for

WHRadjBMI corroborates our simulation-based and analytical evaluations of type I error

rates and power.

Discussion

Recommendations

Based on our evaluations of type I error and power, we found that two of the approaches to

search for genetic effects with GxS based on stratified GWAMA data keep type I error control

and are the most powerful: the genome-wide difference test and the overall association filtering

prior to the difference test. Which of these two performed better than the other, depended on

the type of GxS (qualitative, pure or quantitative) and on the strata design (balanced, unbal-

anced). We thus provide a recommendation of the best approach depending on the type of

strata-difference and strata design (Fig 5). Generally, for any stratified GWAMA project that

aims at detecting genetic variants with GxS without any hypothesis on the specific type of GxS

and irrespective of the strata design, we recommend to perform two approaches in parallel: (i)

a genome-wide screen for difference testing at an α-level of 5 x 10-8, and (ii) an approach that

filters for overall association at POverall< 10−5 and then tests this subset of genetic variants for

difference at a Bonferroni-corrected α-level.

This recommendation is based on several findings of our comparisons: (1) The difference

test without filtering, [Diff5e-8], has the best power to detect qualitative GxS in most scenarios

and the overall association test filtering prior to the difference test, ½OverallaFilter
! DiffaDiff

�,

has the best power for pure/quantitative GxS with few exceptions. (2) The approaches filtering

for stratified or alternative joint association prior to difference testing in the same set of

GWAMA results (one-stage approaches ½StrataFilter
! DiffaDiff

� and ½JointaFilter
! DiffaDiff

�) vio-

late type I error. Since stratified or (alternative) joint association tests are commonly applied

for filtering in GWAMA literature [8,12,26,27], it is important to note that testing the selected

variants for GxS necessitates an independent set of GWAMA results (two stage approaches

f = n2/n1, with stratum 1 being the one with the larger effect. Effect sizes are chosen as in Fig 3 (fixed R2
2

relative to R2
1
; R2

1
as

observed for WHRadjBMI loci around STAB1, PPARG, or LYPLAL1): A. qualitative GxS with small R2
1

(R2
1
¼ 0:014%; R2

2
¼ 0:014%,

into opposite direction), B. pure GxS with mediumR2
1

(R2
1
¼ 0:058%; R2

2
¼ 0%), and C. quantitative GxS with large R2

1

(R2
1
¼ 0:167%; R2

2
¼ 0:042%).

https://doi.org/10.1371/journal.pone.0181038.g004
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½StrataFilter
� ! ½DiffaDiff

� and ½JointaFilter
� ! ½Diff aDiff

�). (3) The two-stage approaches were outper-

formed by at least one one-stage approach. The reason for this is that splitting the data into

two artificial stages does not make use of the total sample size neither for the filtering nor for

the difference test, which is in-line with previous work[28]. (4) We found that the filtering

threshold of the overall association test had a substantial impact on power. Since a less

Table 2. Application to real sex-stratified GWAMA data for WHRadjBMI from the GIANT GENDER project. Shown are the 10 identified loci with GxSex

by each approach (‘x’ indicating that the locus was identified by the respective approach) at a Bonferroni-corrected significance level, based on the GIANT

data for WHRadjBMI (up to 77,000 men and 98,000 women) [12]. Detailed association results are provided in S2 Table for the one-stage approaches and in

S3 Table for the two-stage approaches.

One-stage approaches Two-stage approaches

Locus Type [Diff5e-8] ½½½½Overall1e� 5!DiffαDiff
���� ½½½½Strat1e� 5���� ! ½½½½DiffαDiff

���� ½½½½Joint1e� 5���� ! ½½½½DiffαDiff
����

LRRC69 Qualitative x - - -

SLC30A10 Pure x x x x

COBLL1 Pure x x x x

NKX3-1 Pure - x - -

PLXND1 Pure x x - -

PPARG Pure - x - -

TNFAIP8 Pure - x - -

ADAMTS9 Quantitative - x x x

ITPR2 Quantitative - x - -

VEGFA Quantitative x x x x

https://doi.org/10.1371/journal.pone.0181038.t002

Fig 5. Recommended stratified GWAMA approaches to detect GxS. Shown are the recommended approaches to detect GxS when there is no prior

hypothesis on the type of GxS (H0: No GxS) and when there is a prior hypothesis on the type of GxS (H0: No qualitative GxS; or H0: No pure GxS; or H0: No

quantitative GxS). The recommendations vary on the degree to which the strata sample sizes differ (f being the proportion of stratum 2 sample size over

stratum 1 sample size, f = n2/n1 with stratum 1 being the stratum with the larger absolute value of the genetic effect).

https://doi.org/10.1371/journal.pone.0181038.g005
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stringent filtering (larger αFilter, more variants selected) yielded larger power to detect pure GxS,

while more stringent filtering (smaller alpha, fewer variants selected) yielded larger power for

quantitative GxS, a compromise is required. We found a filtering threshold of POverall< 10−5 to

work well in most scenarios.

Several aspects are interesting to note: No matter what filtering approach is used, it is easier

to identify GxS with the larger effect in the larger stratum as compared to a GxS with the larger

effect is in the smaller stratum. For example, a filtering approach can be expected to detect

more variants with the predominant effect in non-smokers rather than in smokers (assuming

more non-smokers in the data and same number of genetic effects specific to non-smokers

compared to smokers). The genome-wide difference screen has no preference towards an

effect in the larger or in the smaller stratum, but it loses power with increasing imbalance of

strata.

It should also be noted that the commonly used GWAMA approach to screen for genome-

wide significant overall association (POverall< 5 x 10-8) and to subsequently test identified lead

variants for difference between strata performs well to find pure and quantitative difference.

The question here remains, whether many genetic effects with opposite effect direction in the

two strata exist (qualitative GxS) that are missed by such an approach or whether such effects

are biologically plausible. Without the utilization of approaches with sufficient power to detect

qualitative GxS, this question will be left unanswered.

Strengths and limitations

We focused here on approaches to identify GxS that are directly applicable to stratified GWA-

MAs results. We assumed a dichotomous stratification variable and continuous outcome that

follow identical normal distributions. To our knowledge, this is the first study to evaluate such

approaches systematically and to provide recommendations on how to design a GWAMA that

aims to identify genetic variants with between-strata differences.

Despite the fact that our work is comprehensive and covers numerous approaches and sce-

narios, there are still scenarios that we have not considered in order to stay focused. This

includes binary outcomes, different phenotypic variances between strata, between-study differ-

ences of the genetic effect, or a measurement error in the phenotype that differs between studies

and strata. Still, our results can readily be translated into stratified GWAMAs of binary out-

comes using logistic regression and different phenotypic variances can be implemented by

extending the power formulae. Between-study heterogeneity of genetic effects and measure-

ment error issues will be important extensions, but are widely ignored in the current GWAMA

approaches to locus identification.

The stratified GWAMA approaches can be translated into interaction GWAMA

approaches where the interaction term is fitted per study and meta-analyzed (S4 Table). Par-

ticularly the difference test from the stratified approach is equivalent to a test of the interaction

term when there is no interaction between covariates and the strata S and that the trait vari-

ance is the same in the two strata. Our results and recommendations based on stratified GWA-

MAS can be transferred to interaction modeling and suggest a parallel approach for testing

interaction genome-wide and a filtering for overall association (main effect) prior to testing

the interaction effect. The analogy suggests that a joint test filtering (testing jointly the main

and the interaction effect) with subsequently testing selected variants for interaction in the

same set of GWAMA results violates type I error. The stratified GWAMA framework has

some important advantages and disadvantages compared to an interaction GWAMA frame-

work (see S2 Note for a detailed discussion of pros and cons of the stratified and the interac-

tion GWAMA frameworks). The focus on stratified GWAMA results here was motivated by
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the much easier logistics of computing stratum-specific GWAS and the meta-analysis of stra-

tum-specific genetic effects compared to interaction modeling in GWAS and the respective

meta-analysis.

We did not consider GxE interaction methods that are based on linearly increasing pheno-

typic variance [29], meta-regression of summary statistics [30], or on case-only [31], data

adaptive [32,33], empirical Bayes [34] or other 2-step methods that involve filtering on gene-

exposure or gene-strata association [35–38]. The latter rely on the assumption of indepen-

dence of implemented steps [39] and any methods that involve case-only designs or empirical

Bayes methods are limited to binary disease outcome. The reason for not extending our con-

siderations to the noted methods was that they either involve data sets that are not directly

available from the stratified GWAMA or that they were only described for single genome-wide

interaction studies rather than meta-analysis settings or for binary outcomes. Their implemen-

tation and transferability into a stratified GWAMA setting with continuous outcome may be

limited and are as yet unclear.

Finally, by reducing the filtered variants to the independent lead variants (e.g. variant with

smallest filtering test P-value within +/- 500kB), we might miss the correlated variant close-by

that is the truly interesting variant with between-stratum difference (i.e. the variant with the

smallest difference test P-value). We could extend to approaches that select all variants meeting

the filtering threshold without restricting to lead variants in this step, subsequently testing all

selected variants for difference and alternative approaches for multiple testing that can handle

correlated variants, such as employing a Bonferroni-correction based on the effective number

of independent variants [23,40] or a false-discovery rate approach [41].

Summary and conclusion

In summary, we recommend the genome-wide difference test without filtering, [Diff5e-8], to

search for genetic effects that point into opposite direction in two strata and the overall associ-

ation test filtering prior to a difference test, ½OverallaFilter
! DiffaDiff

�, to detect genetic effects

that are only or more pronounced in one stratum. When there is no hypothesis on the type of

GxS that is aimed to identify, we recommend applying these two approaches in parallel. For

the overall association test filtering, a filtering threshold of 1 x 10−5 appears to be reasonable,

while a filtering threshold of 5 x 10-8 is equivalent to the common GWAMA approach to iden-

tify variants with genome-wide significance and test only these variants for GxS.

Our results provide guidelines for current and future GWAMAs that aim at the identifica-

tion of genetic effects with GxS. By these clear recommendations, researchers will be more moti-

vated to search for GxS and by enhancing our searches with the most powerful approaches we

will be able to unravel GxS for complex disease. Ultimately, our knowledge of genetic effects

that show differential effects between strata will help our understanding of how a variant exerts

its effect on the disease outcome under study.
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sex-difference P-Values (uncorrected for correlation) were added to the table for comparison.

(DOCX)

S4 Table. Statistical tests for interaction GWAMA approaches to identify GxS. Instead of

applying two stratified linear regression models per study and meta-analyzing stratified genetic

estimates, an interaction GWAMA framework involves one interaction model per study,

Y ¼ /ik þ bGikGik þ bSikSik þ bGxSikGikxSik þ E
ðjÞ
ik , where S codes strata membership (i.e. S = 0

for stratum 1, S = 1 for stratum 2). Meta-analyzed genetic main effects (b̂G) and gene-strata

interaction effects (b̂GxS) with corresponding standard errors (seG and seGxS) are obtained from

study-specific genetic main effects (b̂Gik ) or gene-strata interaction (b̂GxSik ) effects, respectively.

Stated are the tests that can be applied based on the interaction GWAMA framework, the

respective null hypotheses, test statistics, nomenclature for P-values and the usage.

(DOCX)

S1 Fig. Seven stratified GWAMA approaches to identify GxS. The figure visualizes the

approach without filtering as well as the approaches with filtering. The filtering approaches
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can either be conducted as one-stage or as two-stage approaches. For the one-stage

approaches, the filtering and the difference test are applied to one large stratified GWAMA

result of total sample size N (blue). For the two-stage approaches, the filtering and the differ-

ence test are applied consecutively to two independent stratified GWAMA results of size N/2
(purple and orange).

(TIF)

S2 Fig. Simulation-based evaluation of type 1 error for one-stage approaches assuming bal-

anced strata. Shown are the difference P-values simulated under the null hypotheses of no

GxS given no stratum-specific effects (Hb¼0

0
) or of no GxS given identical stratum-specific

effects (Hb6¼0

0
) for the one-stage approaches ½DiffaDiff

�, ½OverallaFilter
! DiffaDiff

�, ½StrataFilter
!

DiffaDiff
� and ½JointaFilter

! DiffaDiff
�. The QQ plots are based on simulated phenotypes and sim-

ulated genotypes to reflect A) Hb¼0

0
with MAF = 0.05, B) Hb¼0

0
with MAF = 0.30, C) Hb6¼0

0
with

MAF = 0.05, and D) Hb6¼0

0
with MAF = 0.30. We here assume αFilter = 0.05 for Hb¼0

0
and αFilter =

10−5 for Hb6¼0

0
and two equally sized (balanced) strata (100,000 individuals in each stratum,

f = 1).

(TIF)

S3 Fig. Simulation-based evaluation of type 1 error for two-stage approaches assuming bal-

anced strata. Shown are the simulated difference P-values for the two-stage approaches

½OverallaFilter
� ! ½DiffaDiff

�, ½StrataFilter
� ! ½DiffaDiff

� and ½JointaFilter
� ! ½DiffaDiff

�. We here assume

two equally sized (balanced) strata (50,000 individuals in each stratum and stage, f = 1). Results

are presented for varying MAF and null hypotheses as in S2 Fig.

(TIF)

S4 Fig. Simulation-based evaluation of type 1 error for one-stage approaches assuming

unbalanced strata. Shown are simulated difference P-values for the one-stage approaches

½DiffaDiff
�, ½OverallaFilter

! DiffaDiff
�, ½StrataFilter

! DiffaDiff
� and ½JointaFilter

! DiffaDiff
�. We here

assume two unbalanced strata (66,000 and 134,000 individuals in the two strata, respectively,

f = 0.33 and f = 3). Results are presented for varying MAF and null hypotheses as in S2 Fig.

(TIF)

S5 Fig. Simulation-based QQ-plots for two-stage approaches and unbalanced strata designs.

Shown are simulated difference P-values for the two-stage approaches ½OverallaFilter
� ! ½DiffaDiff

�,

½StrataFilter
� ! ½Diff aDiff

� and ½JointaFilter
� ! ½DiffaDiff

�. We here assume two unbalanced sized strata

(33,000 and 67,000 individuals in the two strata and in each stage, f = 0.33 and f = 3). Results are

presented for varying MAF and null hypotheses as in S2 Fig.

(TIF)

S6 Fig. Power of stratified GWAMA approaches to identify GxS assuming unbalanced

strata and a small effect in stratum 1. Shown is the power to detect GxS for the same

approaches and designs as in Fig 3 (unbalanced strata designs with varying proportion of stra-

tum sample sizes, f = n2/n1, with stratum 1 being the one with the larger effect). Effect size in

stratum 1 is fixed to R2
1
¼ 0:014%, as observed for the small WHRadjBMI effect at STAB1.

The effect in stratum 2 is fixed to A. 0.014%, into opposite direction (qualitative GxS; same as

main Fig 3A), B. R2
2
¼ 0:007%, into opposite direction (qualitative GxS), C. R2

2
¼ 0:003%,

into opposite direction (qualitative GxS). D. R2
2
¼ 0% (pure GxS), E. R2

2
¼ 0:003%, into con-

sistent direction (quantitative GxS), and F. R2
2
¼ 0:007%, into consistent direction (quantita-

tive GxS).

(TIF)
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S7 Fig. Power of the stratified GWAMA approaches to identify GxS assuming unbalanced

strata design and a medium effect in stratum 1. Shown is the power to detect GxS for the

same approaches and designs as in Fig 3 (unbalanced strata designs with varying proportion

of stratum sample sizes, f = n2/n1, with stratum 1 being the one with the larger effect). Effect

size in stratum 1 is fixed to R2
1
¼ 0:058%, as observed for the medium WHRadjBMI effect at

PPARG. The effect in stratum 2 is fixed to A. 0.058%, into opposite direction (qualitative GxS),

B. R2
2
¼ 0:029%, into opposite direction (qualitative GxS), C. R2

2
¼ 0:014%, into opposite

direction (qualitative GxS). D. R2
2
¼ 0% (pure GxS; same as main Fig 3B), E. R2

2
¼ 0:014%,

into consistent direction (quantitative GxS), and F. R2
2
¼ 0:029%, into consistent direction

(quantitative GxS).

(TIF)

S8 Fig. Power of the stratified GWAMA approaches to identify GxS assuming unbalanced

strata design and a large effect in stratum 1. Shown is the power to detect GxS for the same

approaches and designs as in Fig 3 (unbalanced strata designs with varying proportion of stra-

tum sample sizes, f = n2/n1, with stratum 1 being the one with the larger effect). Effect size in

stratum 1 is fixed to R2
1
¼ 0:0:167%, as observed for the large WHRadjBMI effect at LYPLAL1.

The effect in stratum 2 is fixed to A. 0.167%, into opposite direction (qualitative GxS), B.

R2
2
¼ 0:084%, into opposite direction (qualitative GxS), C. R2

2
¼ 0:042%, into opposite direc-

tion (qualitative GxS). D. R2
2
¼ 0% (pure GxS), E. R2

2
¼ 0:042%, into consistent direction

(quantitative GxS, same as main Fig 3C), and F. R2
2
¼ 0:084%, into consistent direction

(quantitative GxS).

(TIF)

S9 Fig. QQ plots showing the results of the application of one-stage approaches to sex-

stratified GWAMA from the GIANT consortium. The QQ plot contrasts observed and

expected difference P-Values for the considered 1-stage approaches ½DiffaDiff
�, ½Overall0:05 !

DiffaDiff
�, ½Strat0:05 ! DiffaDiff

� and ½Joint0:05 ! DiffaDiff
� obtained from an application of

approaches to real sex-stratified GWAMA data for WHRadjBMI from the GIANT consor-

tium.

(TIF)
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